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Abstract 
Inductive Logic Programming (ILP) deals with inducing 
clausal theories from examples basically through 
generalization or specialization. The specialization and 
generalization operators used are mainly based on three 
generality orderings - subsumption, implication and 
implication relative to background knowledge. Implication 
is stronger than subsumption, but relative implication is 
more powerful because background knowledge can be used 
to model all sorts of useful properties and relations. The 
least generalization under relative implication (LGRI) does 
not exist in the general case, but it exists if both the set to be 
generalized and the background knowledge satisfy some 
special conditions. The present paper discusses an algorithm 
for computing LGRI in cases when the latter exists. 

Introduction  

Inductive Logic Programming (ILP) investigates the 
problem of inducing clausal theories from given sets of 
positive and negative examples. An inductively inferred 
theory must imply all of the positive examples and none of 
the negative examples. The problem to find the least 
generalization of a set of clauses under implication relative 
to background knowledge is one of the fundamental 
problems related to the ILP task. 
 In the present paper we discuss the problem of finding 
generalizations of sets consisting of positive-only examples 
represented in the language of function-free Horn clauses 
with respect to background knowledge, represented in the 
same language. We also want the generalized hypothesis H 
to be represented in the same language. 
 If the set of clauses S to be generalized and the 
background knowledge  contain general clauses, the 
question of existence of LGRI has a negative answer. Even 
if S and  are both finite sets of function-free clauses, a 
LGRI of S relative to  does not necessarily exist. A 
counter example illustrating this is suggested in (Nienhuys-
Cheng and de Wolf 1996, 1997). There are cases however, 
where by introducing some restrictions on both S and  we 
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achieve the existence of LGRI (Boytcheva 2000). One of 
these restrictions is the so-called utter model, defined 
below. 
 Definition 1 (Utter model). Let { }kCC ,,1 K=Σ  and 

{ }nDDS ,,1 K= be sets of definite clauses. S has an utter 
PRGHO�Z�U�W�� , if for each clause Di and each body literal in 
L in Di, there exists a clause E either from D or from S and 
a substitution σ, such that Lσ ∈ E. 
 The theoretical basis of our algorithm for inducing LGRI 
is the existence theorem, stated below and proven in 
(Boytcheva 2000). 
 Theorem 1. Let { }kCC ,,1 K=Σ  be a finite set of 
function-free definite program clauses and { }nDDS ,,1 K=  
be a set of function-free definite program clauses, where all 
Di have the same predicate symbol in their heads and at 
least one of them is non-tautologous. If S has an utter 
model under  and all clauses in S are generative (all head 
variables appear also in the body), then there exists H 
which is a LGRI of S relative to , i.e. H |=  S. 
 The present paper is organized as follows. The following 
section discusses some related work. Then we present some 
basic definitions used in the further discussion. The main 
result shown in the paper is our algorithm for computing 
least generalizations relative to implication (LGRI). We 
discuss some properties of this algorithm and illustrate it 
with several examples. Finally we conclude with a 
discussion of future research ideas. 

Related work 

The approach of least generalizations is usually considered 
within the more general framework of relational learning – 
an area of machine learning dealing with relational 
representation languages for the examples and hypotheses.  
The issues of relational learning have been discussed in 
some early papers by (Plotkin 1970; Vere 1980; Dietterich 
and Michalski 1981; Langley 1985). The basic problem 
stated in these and other papers is the design of efficient 
methods for searching the hypothesis space usually in a 
Horn clause representation language. The approaches to 
solving this problem can be summarized as follows: 



• Using higher-order rule schemas to constrain 
search. This is the approach taken in MODELER 
(Wrobel 1988) and its extensions CIA (De Raedt 
and Bruynooghe, 1989a, 1989b) and RDT (Kietz 
and Wrobel, 1991). 

• Using search heuristics based on information gain 
–an approach, taken in FOIL (Quinlan 1990) and 
its extensions CHAM (Kijsirikul, Numao and 
Shimura 1991), FOCL (Pazzani and Kibler 1990) 
and STRUCT (Watanabe and Rendell 1991). 

• Constraining search by inducing refutation trees 
with inverse resolution operators. The approach is 
used in systems as MARVIN (Muggleton and 
Buntine 1988), RINCON (Wogulis and Langley 
1989; Wogulis 1989), CIGOL (Muggleton and 
Buntine 1988), IRES (Rouveirol and Puget 1990) 
and SIERES (Wirth and O'Rorke 1991). 

• Using propositional or other representations to 
simplify the search space. Basic instances of this 
approach are LINUS (/DYUDþ�� ']HURVNL� DQG�
Grobelnik 1991) and Wy1 (Flann and Dietterich 
1986). 

• Avoiding general search by constructing relative 
least general generalizations. This is the approach 
taken in GOLEM (Muggleton and Feng 1990). 
Our approach falls in the same category. 

 
 As generally the relational languages are complex and 
consequently the search space is usually huge, some 
approaches reduce the relational language to propositional 
representations, while others try to impose constraints on 
the relational representation. The latter approaches are 
more promising, because they preserve the expressive 
power of the relational languages.  
 Various restrictions have been suggested to simplify the 
search in the relational hypothesis space. In many of the 
approaches the background knowledge consists only of 
ground literals clauses. Our approach however departs from 
these strong restrictions. The algorithm we introduce 
hereafter can work with function-free non-recursive Horn 
clauses without negation. The algorithm also exhibits a 
kind of a predicate invention feature - if necessary it 
generates new-predicate description to extend the 
background knowledge. 
 

Preliminaries 

In this section we give a theorem and a basic definition 
from (Lloyd 1984), both needed in the discussion of the 
algorithm in the next section. 
 Theorem 2 (Unification theorem). Let S be a finite set 
of first order expressions. If S is unifiable, then the 
unification algorithm terminates and gives an mgu for S. If 
S is not unifiable, then the unification algorithm terminates 
and reports this fact. 
 Definition 2 (Disagreement set). Let S be a finite set of 
first order expressions. The disagreement set of S is defined 
as follows. Locate the leftmost symbol position at which 

not all expressions in S have the same symbol and extract 
from each expression in S the sub-expression beginning at 
this symbol position. The set of all such sub-expressions is 
the disagreement set.  

Algorithm for inducing LGRI 

Let { }nDDS ,,1 K=  be a finite set of function-free Horn 
clauses with identical head literals Head, i.e. Di=Head:-
Bodyi. Let { }kCC ,,1 K=Σ  be a finite set of function-free 
Horn clauses. Let S and  satisfy the requirements of 
Theorem 1. Then, there exists H, a LGRI of S relative to , 
where the clauses in H have the head literal Head. 

Algorithm 
1. Using the unification algorithm find the common 

literals in the bodies of clauses from S and create a set 
Common.  

2. Using the unification algorithm find the disagreement 
set of S and create set S’={Fi | Fi=Bodyi\&RPPRQ� i, 
i=1,…,n}, where Common is the set from step 1, Bodyi 
is the body of the clause Di ∈ S and i  is the most 
general unifier of Common and Bodyi. 

3. If S' is empty then go to step 11 else continue. 

4. Using  and S' create a set R containing all resolvents 
of clauses from S' and . This set is finite, because all 
clauses are non-recursive and function-free, and S and 

 are finite sets. 

5. If R is empty then go to step 9 else continue. 

6. Replace each Fi ∈ S' (or a part of it) with its 
corresponding resolvent Rij from R. 

7. Create a set R', where: 

R'={Rij | Rij ∈ R, ∃Fi ∈ S', ∃Gi ⊆ Fi, ∃σi, Rij= Giσi }  

8. Use the unification algorithm to create a set RCommon 
containing the common literals in the clauses from R'. 

9. Create a set S'' = S' \ RCommon and separate the 
literals in the clauses of S'' in groups with independent 
variables. Identify a subset of literals Ei in each group, 
such that, its variables when substituted by the most 
general unifier, map onto a common set of variables V 
for all clauses in S''. Find all such sets (if exist). 

10. For each non-empty set V use its variables as head 
variables and generate a new clause New(V) :- Ei with 
new predicate symbol New and go to step 12. 

11. Return H = Head :- Common. END 

12. Return H = {H1,…,Hm}, where  

Hi = Head :- Common, RCommon, Newi.  

(Newi (i = 1,…,m) are the heads of the predicates 
generated in step 10.) END 

 



Annotated example 
For better understanding we illustrate the steps of the 
algorithm with an example. Consider the following two 
DCG rules, represented as Prolog clauses:  
 
S = {sentence(X) :- append(L1,L2,X), append(D,N,L1), 

           det(D), noun(N), verb(L2);  
        sentence(X) :- append(L1,L2,X), proper_name(L1), 
               verb(L2) } 
 

 = {} 
 
Before starting the algorithm we need to rename the 
variables in the two clauses. This is a standard procedure 
required for the application of the resolution rule. Thus we 
get: 
 
S = { 
sentence(X1) :- append(L11,L21,X1),append(D1,N1,L11), 

 det(D1), noun(N1), verb(L21);  
sentence(X2) :- append(L12,L22,X2), proper_name(L12), 
        verb(L22) } 
 
Step 1. First, we antiunify the two heads in S and determine 
the head literal of the hypothesis sentence(A) along with the 
substitutions {A/X1} and {A/X2}. Then we find the set 
Common = {append(B,C,A), verb(C)} and the substitutions 

1 = {A/X1, B/L11, C/L21} and 2 = {A/X2, B/L12, 
C/L22}.  
 
Step 2. We compute the disagreement set S’ = {F1, F2}, 
where F1 = append(D1,N1,B), det(D1), noun(N1) and F2 = 
proper_name(B).  
 
Step 3. S’ is not empty, so we try step 4. 
 
Steps 4, 5. Since  is empty we cannot create any 
resolvents. Thus R is also empty and we continue with step 
9. 
 
Step 9. Since RCommon is empty, S’’ = S’. Both F1 and F2 
have one group of dependent variables (no groups with 
mutually independent variables). These groups are {D1, 
N1,B} and {B}. Obviously, the set of common variables V 
is {B}. The corresponding sets of literals are E1 = 
{append(D1,N1,B), det(D1), noun(N1)} and E2 = 
{proper_name(B)}. 
 
Step 10. Here we create the new predicate 
 
new(B) :- append(D1,N1,B), det(D1), noun(N1). 
new(B) :- proper_name(B). 
 
and continue with step 12. 
 
Step 12. Return the LGRI of S relative to : 
H = sentence(A) :- append(B,C,A), verb(C), new(B). 

 
Obviously the meaning of the new predicate is the 
definition of the noun phrase rule, so we can rename it 
accordingly as: 
 
noun_phrase(B) :- append(D1,N1,B), det(D1), noun(N1). 
noun_phrase (B) :- proper_name(B). 

Correctness 
Hereafter we shall prove the correctness of the algorithm. 
Firstly, we have to show that H is a generalization of S 
relative to , i.e. H |=  S. In fact, we have to prove that 

SH =Σ |U  or ΣUH |=Di for every Di. Let H = 
{H1,…,Hm}, where Hi is constructed by the algorithm as 
follows:  Hi  = Head :- Common, RCommon, Newi. Also, 
according to the construction method of Common and Fi, it 
is clear that Bodyi = Common, Fi. That is Di = Head :- 
Common, Fi. For each Fi we have its resolvent with  in 
RCommon, which in turn is a part of H. In this way we 
have { } =¬Σ |iDH UU ��WKDW�LV� ΣUH  |= Di. 
 Showing that H is a least generalization of S relative to  
is needs more space and due to the lack of the latter we 
omit this proof here. 

Applications 
The algorithm can be used as an incremental algorithm for 
supervised learning where the teacher chooses a particular 
sequence of clauses from S and feeds them one at a time 
into the algorithm to be generalized (Figure 1). Another 
scenario is shown in Figure 2, where the algorithm 
generalizes a set of clauses directly. 
 The algorithm is also applicable to a situation without 
background knowledge, i.e. � �ø. In this case it finds the 
least general generalization under implication of a set of 
clauses. 

Fig. 1: Incremental construction of hypothesis. 
 

Fig. 2: Construction of a hypothesis from a set of clauses. 
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More examples 

In this section we further illustrate the algorithm introduced 
in the previous section with more examples.  

Example 1 
Given  
 
S = {grandparent(X,Z) :- man(X),parent(X,Y),parent(Y,Z); 
       grandparent(X,Z) :- parent(X,Y),man(Y),parent(Y,Z)} 

 ={} 
 
the algorithm generates the hypothesis 
 
H = grandparent(X,Z) :- parent(X,Y), parent(Y,Z).  
 
 The set Common here is {parent(X,Y), parent(Y,Z)}.  As 
no common set of variables can be found in the 
disagreement set S’= {F1 = man(X), F2 = man(Y)}, no new 
predicates are generated and the final hypothesis contains 
the set Common only. 
 The generalization in this example is equivalent to the 
one produced under the subsumption generality ordering, 
because H is a subset of each one of the two clauses in S. 

Example 2 
In this example we illustrate how the algorithm handles 
background knowledge. Given 
 
S = {cuddlypet(X) :- small(X), fluffy(X), dog(X); 
   cuddlypet(X) :- fluffy(X), cat(X)}, 

 = {pet(X):-cat(X); pet(X):-dog(X); small(X):-cat(X)}, 
 
the algorithm infers 
 
H = cuddlypet(X) :- fluffy(X), small(X), pet(X). 
 
During this inference three other sets of clauses are 
generated:  
Common = {fluffy(X)} 
S’ = {:-small(X),dog(X); :- cat(X)} 
R = RCommon = {:-small(X), :-pet(X)} 

Example 3 
This example illustrates the most general situation. Given a 
set of clauses S and background knowledge : 
 
S = {employer(X) :- english(X), educated(X,Y), 
         good_reputation(Y); 
  employer(X) :- french(X), recommendation(X,Y), 
         previous_employer(X,Y)} 
 

 = {nationality(X) :- english(X);  
  nationality(X) :- french(X)}. 
 

the algorithm infers 
 
H = {employer(X) :- nationality(X), good_skills(X,Y) }. 
 
It also generates two clauses with new predicate symbols, 
which we replace for clarity with “good_skills”: 
 
good_skills(X,Y) :- educated(X,Y), good_reputation(Y). 
good_skills(X,Y) :- recommendation(X,Y), 
         previous_employer(X,Y). 

Conclusion and further work 

The presented algorithm is a step towards investigating the 
potential of constructive generalization with respect to 
background knowledge in the context of Inductive Logic 
Programming. The problem of using logical implication in 
a constructive way is known to be hard. This especially 
applies to the computational complexity of the 
generalization operators. Our algorithm is based on two 
other algorithms, which are very well studied with respect 
to their complexity. These are the unification algorithm and 
the resolution procedure. In our experimental 
implementation of the algorithm we use Prolog, a language 
in which these algorithms are built-in. Thus the examples 
we discussed in the paper, as well as more complex 
examples run relatively quickly. Nevertheless we have to 
further investigate the computational complexity of our 
algorithm, because it uses unification and resolution in a 
specific way and under some restrictions that may allow to 
improve the algorithm overall efficiency. 
 Another direction for future research is extending the 
representation language to clauses with negation and/or 
recursive clauses. Also we will continue our theoretical 
investigations on other possible cases of existence of LGRI, 
especially for sets of general (non function-free) clauses. 
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