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Abstract� In the present paper we propose a consistent way to integrate
syntactical least general generalizations 
lgg�s� with semantic evaluation
of the hypotheses� For this purpose we use two di
erent relations on
the hypothesis space � a constructive one� used to generate lgg�s and
a semantic one giving the coverage�based evaluation of the lgg� These
two relations jointly implement a semantic distance measure� The for�
mal background for this is a height�based de�nition of a semi�distance
in a join semi�lattice� We use some basic results from lattice theory and
introduce a family of language independent coverage�based height func�
tions� The theoretical results are illustrated by examples of solving some
basic inductive learning tasks�

� Introduction

Inductive learning addresses mainly classi�cation tasks where a series of training
examples �instances� are supplied to the learning system and the latter builds
an intensional or extensional representation of the examples �hypothesis�� or di�
rectly uses them for prediction �classi�cation of unseen examples�� Generally two
basic approaches to inductive learning are used� The �rst one is based mainly
on generalization�specialization or similarity�based techniques� This approach
includes two types of systems � inductive learning from examples and conceptual
clustering� They both generate inductive hypotheses made by abstractions �gen�
eralizations� from speci�c examples and di�er in the way examples are presented
to the system �whether or not they are pre�classi�ed�� The basic techniques used
within the second approach are various kinds of distances �metrics� over the ex�
ample space which are used to classify directly new examples �by similarity to
the existing ones� or group the examples into clusters�

There exists a natural way to integrate consistently the generalization�based
and metric�based approaches� The basic idea is to estimate the similarity be�
tween two objects in a hierarchical structure by the distance to their closest
common parent� This idea is formally studied within the lattice theory� In ML



this is the well known least general generalization �lgg� which given two hypothe�
ses builds their most speci�c common generalization� The existence of an lgg in
a hypothesis space �a partially ordered set� directly implies that this space is a
semi�lattice �where the lgg plays the role of in�mum�� Consequently some alge�
braic notions as �niteness� modularity� metrics etc� can be used to investigate
the properties of the hypothesis space� Lgg	s exist for most of the languages com�
monly used in ML� However all practically applicable �i�e� computable� lgg	s are
based on syntactical ordering relations� A relation over hypotheses is syntactical
if it does not account for the background knowledge and for the coverage of pos�
itive�negative examples� For example dropping condition for nominal attributes�
instance relation for atomic formulae and ��subsumption for clauses are all syn�
tactical relations� On the other hand the evaluation of the hypotheses produced
by an lgg operator is based on their coverage of positive�negative examples with
respect to the background knowledge� i�e� it is based on semantic relations �in
the sense of the inductive task�� This discrepancy is a source of many problems
in ML� where overgeneralization is the most di
cult one�

In the present paper we propose a consistent way to integrate syntactical lggs
with semantic evaluation of the hypotheses� For this purpose we use two di�erent
relations on the hypothesis space � a constructive one� used to generate lgg	s
and a semantic one giving the coverage�based evaluation of the lgg� These two
relations jointly implement a semantic distance measure� The formal background
for this is a height�based de�nition of a semi�distance in a join semi�lattice� We
use some basic results from lattice theory and introduce a language independent
coverage�based height function� We also de�ne the necessary conditions for two
relations to form a correct height function� The paper introduces a bottom�up
inductive learning algorithm based on the new semantic semi�distance which is
used to illustrate the applicability of the theoretical results�

The paper is organized as follows� The next section introduces the basic
algebraic notions used throughout the paper� Section � introduces the new a
heihgt�based semi�distance� Section � presents an algorithm for building lattice
structures and shows some experiments with this algorithm� Section 
 contains
concluding remarks and directions for future work�

� Preliminaries

In this section we introduce a height�based distance measure on a join semi�
lattice following an approach similar to those described in ��� and �
� �for a
survey of metrics on partially ordered sets see �����

De�nition � �Semi�distance� Quasi�metric��A semi�distance �quasi�metric�
is a mapping d � O � O � � on a set of objects O with the following properties
�a� b� c � O��

�� d�a� a� � � and d�a� b� � ��
�� d�a� b� � d�b� a� �symmetry��
�� d�a� b� � d�a� c� � d�c� b� �triangle inequality��



De�nition � �Order preserving semi�distance�� A semi�distance d � O �
O � � on a partially ordered set �O��� is order preserving i� �a� b� c � O �
a � b � c � d�a� b� � d�a� c� and d�b� c� � d�a� c�

De�nition � �Join	Meet semi�lattice�� A join	meet semi�lattice is a par�
tially ordered set �A��� in which every two elements a� b � A have an in
�
mum	supremum�

De�nition 
 �Size�� Let �A��� be a join semi�lattice� A mapping s � A�A� �
is called a size function if it satis
es the following properties�

S�� s�a� b� � ���a� b � A and a � b�
S�� s�a� a� � ���a � A�
S�� �a� b� c � A � a � c and c � b� s�a� b� � s�a� c� � s�c� b��
S�� �a� b� c � A � a � c and c � b� s�c� b� � s�a� b��
S�� �a� b � A� Let c � inffa� bg� For any d � A � a � d and b � d �

s�c� a� � s�c� b� � s�a� d� � s�b� d��

Theorem �� Let �A��� be a join semi�lattice and s 
 a size function� Let
d�a� b� � s�inffa� bg� a� � s�inffa� bg� b�� Then d is a semi�distance on �A����

Proof� �� d is non�negative by S��
�� d�a� a� � s�inffa� ag� a� � s�inffa� ag� a� � s�a� a� � s�a� a� � ��
�� d is symmetric by de�nition�
�� We will show that d�a�� a�� � d�a�� a�� � d�a�� a��� Let c � inffa�� a�g�

b� � inffa�� a�g� b� � inffa�� a�g� d � inffb�� b�g� By S� and S� we have
s�c� a�� � s�d� a�� � s�d� b�� � s�b�� a��� And by analogy s�c� a�� � s�d� b�� �
s�b�� a��� Then d�a�� a�� � s�c� a���s�c� a�� � s�d� b���s�b�� a���s�d� b���
s�b�� a�� � s�b�� a�� � s�b�� a�� � s�b�� a�� � s�b�� a�� � d�a�� a�� � d�a�� a��

A size function can be de�ned by using the so called height functions� The
approach of height functions has the advantage that it is based on estimating
the object itself rather than its relations to other objects�

De�nition � �Height�� The function h is called height of the elements of a
partially ordered set �A��� if it satis
es the following two properties�

�� For every a� b � A if a � b then h�a� � h�b� �isotone��
�� For every a� b � A if c � inffa� bg and d � A such that a � d and b � d

then h�a� � h�b� � h�c� � h�d��

Theorem �� Let �A��� be a join semi�lattice and h be a height function� Let
s�a� b� � h�b�	 h�a���a � b � A� Then s is a size function on �A����

Proof� �� s�a� b� � h�b�	 h�a� � � by H��
�� s�a� a� � h�a�	 h�a� � ��
�� Let a� b� c � A � a � c� c � b� Then s�a� b� � h�b� 	 h�a� � �h�b� 	 h�c�� �

�h�c�	 h�a�� � s�a� c� � s�c� b��



�� Let a� b� c � A � a � c� c � b� Then s�c� b� � s�c� b� � s�a� c� � s�a� b�
by ��


� Let c � inffa� bg and d � A � a � d and b � d� Then s�c� a� � s�c� b� �
�h�a�	h�c��� �h�b�	h�c�� � h�a� �h�b�	 �h�c� � ��h�a��h�b��	h�a�	
h�b�	 �h�c� � ��h�c��h�d��	h�a�	h�b�	 �h�c� � �h�d�	h�a��� �h�d�	
h�b�� � s�a� d� � s�b� d�

Corollary �� Let �A��� be a join semi�lattice and h be a height function� Then
the function d�a� b� � h�a� � h�b� 	 �h�inffa� bg���a� b � A is a semi�distance
on �A����

� Semantic semi�distance on join semi�lattices

Let A be a set of objects and let �� and �� be two binary relations in A� where
�� is a partial order and �A���� is a join semi�lattice� Let also GA be the set of
all maximal elements of A w�r�t� ��� i�e� GA � faja � A and 
�b � A � a �� bg�
Hereafter we call the members of GA ground elements �by analogy to ground
terms in �rst order logic�� For every a � A we denote by Sa the ground coverage
of a w�r�t ��� i�e� Sa � fbjb � GA and a �� bg�

The ground coverage Sa can be considered as a de�nition of the semantics of
a� Therefore we call �� a semantic relation by analogy to the Herbrand interpre�
tation in �rst order logic that is used to de�ne the semantics of a given term� The
other relation involved� �� is called constructive �or syntactic� relation because
it is used to build the lattice from a given set of ground elements GA�

The basic idea of our approach is to use these two relations� �� and �� to
de�ne the semi�distance� According to Corollary � we use the syntactic relation
�� to �nd the in�mum and the semantic relation �� to de�ne the height function
h� The advantage of this approach is that in many cases there exists a proper
semantic relation however it is intractable� computationally expensive or even
not a partial order� which makes impossible its use as a constructive relation too
�an example of such a relation is logical implication�� Then we can use another�
simpler relation as a constructive one �to �nd the in�mum� and still make use
of the semantic relation �to de�ne the height function��

Not any two relations however can be used for this purpose� We will show
that in order to de�ne a correct semi�distance the two relations �� and �� must
satisfy the following properties� which we call coupling�

De�nition �� �� is coupled with �� if both conditions apply�

�� For every a� b � A such that a �� b either jSaj � jSbj or jSaj � jSbj must
hold� As the other case is analogous without loss of generality we can assume
that �a� b � A� a �� b � jSaj � jSbj�

�� �a� b � A � c � inffa� bg and �d � supfa� bg one of the following must hold�

C�� jSdj � jSaj and jSdj � jSbj
C�� jSdj � jSaj and jScj � jSbj
C�� jSdj � jSbj and jScj � jSaj



Corollary �� Every partial order relation is coupled with itself�

Theorem �� Let A be a set of objects and let �� and �� be two binary rela�
tions in A such that �� is coupled with ��� Then there exists a family of height
functions h�a� � x�jSaj� where a � A� x � � and x � ��

Proof� �� Let a� b � A� such that a �� b� Then by the de�nition of coupling
jSaj � jSbj and hence h�a� � h�b��

�� Let a� b � A � c � inffa� bg and �d � supfa� bg�
�a� Assume that C� is true� Then jSdj � jSaj and jSdj � jSbj � jSaj �

jSdj�� and jSbj � jSdj�� � 	jSaj � 	jSdj 	 � and 	jSbj � 	jSdj 	 ��
Hence h�a��h�b� � x�jSaj�x�jSbj � x�jSdj���x�jSdj�� � �x�jSdj�� �
x�x�jSdj�� � x�jSdj � h�d� � h�c� � h�d��

�b� Assume that C� is true� Then jSdj � jSaj and jScj � jSbj� Hence h�a� �
h�b� � h�c� � h�d��

�c� Assume that C� is true� Then jSdj � jSbj and jScj � jSaj� Hence h�a� �
h�b� � h�c� � h�d��

� Experiments

To illustrate the theoretical results we use an algorithm that builds a join semi�
lattice G� given a set of examples GA �the set of all maximal elements of G��
The algorithm hereafter referred to as MBI �Metric�based Bottom�up Induction�
is as follows�

�� Initialization� G � GA� C � GA�
�� If jCj � � then exit�
�� T � fhjh � lgg�a�� a�� � a�� a� � C and d�a�� a�� � minfd�b� c�jb� c � Cgg�
�� DC � fhjh � C and �hmin � T � hmin �� hg�

� C � C nDC�
�� G � G � T � C � C � T � go to step ��

There is a possible modi�cation of this algorithm� In Step � instead of all� only
one minimal element h from T can be used� With this modi�cation the algorithm
has a polynomial time complexity O�n��� A disadvantage of this modi�cation
is that some useful generalizations can be missed� Therefore in the practical
implementations we augment the algorithm with another distance or heuristic
measure used to select one of all minimal elements of T which possibly leads to
the most useful generalizations�

Further in this section we discuss some experiments with the MBI algorithm
with two di�erent representation languages � atomic formulae and Horn clauses�


�� Atomic formulae

The algebraic properties of the language of �rst order atomic formulae are stud�
ied by Reynolds in ���� where he shows that the set of atoms with the same



functors and arity form a join semi�lattice �or complete lattice when the lan�
guage is augmented by adding a 	universal atom	 and a 	null atom	�� In this
framework we use ������ ��subsumption and by Corollary � we have that
��subsumption is coupled with itself�

Figure � shows the top portion of the lattice G built by the algorithm�
where GA consists of the �� positive examples of the well�known MONK� ���
database �the training sample� represented as atoms� Note that the produced
lattice can be used both for concept learning �it contains the target hypothesis
monk�A�A� � � � � or monk� � � � �red� � � and for conceptual clustering since the
classi�cations of the examples are not used �the negative examples are skipped��

monk
A�A� � �yellow� �

monk
A�A� � �blue� �

monk
A�A� � �green� �

monk
square� � � �red�yes�

monk
 �square� � �red� �

monk
A�A� � � � �

monk
 � � � �red� �

monk
 � � � � � �

�

s

�

�

q

�

z

Fig� �� Hypotheses for the MONK� problem built by the MBI algorithm�

In more complex domains however the standard version of the algorithm
performs poorly with small sets of randomly selected examples� In these cases
we use the augmented version of the algorithm with a syntactic distance measure
to choose one element of T in Step �� In this way we avoid the random choice
and allow �cautious� generalizations only� Further heuristics can be used for this
purpose� especially in the case of background knowledge�


�� Horn clauses

Within the language of Horn clauses the MBI algorithm can be used with the
��subsumption�based lgg �the constructive relation ��� and logical implication for
the semantic relation ��� Under ��subsumption as partial order the set of Horn
clauses with same head predicates forms a semi�lattice� Furthermore� it can be
shown that logical implication is coupled with ��subsumption which makes the
use of our algorithm well founded� Figure � shows the complete lattice build by
the algorithm with �� instances of the member predicate�

A major problem in bottom�up algorithms dealing with lgg� of clauses is the
clause reduction� because although �nite the length of the lgg� of n clauses can
grow exponentially with n� Some well�known techniques of avoiding this problem
are discussed in ���� By placing certain restrictions on the hypothesis language
the number of literals in the lgg� clause can be limited by a polynomial function
independent on n� Currently we use ij�determinate clauses in our experiments
�actually ���determinate��



memb(A,[A]) :- [memb(A,[3,A])]

memb(2,[2])

memb(1,[1])

memb(A,[B,C|D]) :- 
[memb(A,[A]), 

memb(A,[C|D]), 
memb(A,[3,A])]

memb(1,[3,1])

memb(1,[2,3,1])

memb(2,[3,2])

memb(A,[A]) :- []

memb(b,[b])

memb(a,[a])

memb(A,[B,A|C]) :- 
[memb(A,[A]), 
memb(a,[a|C]), 
memb(A,[A|C])]

memb(a,[b,a,b])

memb(b,[c,b])

memb(A,[B,C|D]) :- 
[memb(A,[C|D]), 

memb(A,[A])]

memb(A,[A|B]) :- []

memb(a,[a,b])

memb(A,[B|C]) :- []

Fig� �� ILP hypotheses for the instances of the member predicate�

� Conclusion

The algebraic approach to inductive learning is a very natural way to study the
generalization and specialization hierarchies� These hierarchies represent hypoth�
esis spaces which in most cases are partially ordered sets under some generality
ordering� In most cases however the oredirings used are based on syntactical re�
lations� which do not account for the background knowledge and for the coverage
of positive�negative examples� We propose an approach that explores naturally
the semantic ordering over the hypotheses� This is because although based on
syntactic lgg it uses a semantic evaluation function �the height function� for
the hypotheses� Furthermore this is implemented in a consistent way through a
height�based semi�distance de�ned on the hypothesis space�

As in fact we de�ne a new distance measure our approach can be also com�
pared to other metric�based approaches in ML� Most of them are based on
attribute�value �or feature�value� languages� Consequently most of the similarity
measures used stem from well known distances in feature spaces �e�g� Euclidean
distance� Hamming distance etc�� and vary basically in the way the weights are
computed� Recently a lot of attention has been paid to studying distance mea�
sures in �rst order languages� The basic idea is to apply the highly successful
instance based algorithms to relational data using �rst order logic descriptions�
Various approaches have been proposed in this area� Some of the most recent
ones are ��� �� �� ��� These approaches as well as most of the others de�ne a simple
metric on atoms and then extend it to sets of atoms �clauses or models� using



the Hausdor� metric or other similarity functions� Because of the complexity
of the functions involved and the problems with the computability of the mod�
els these approaches are usually computationally hard� Compared to the other
approaches our approach has two basic advantages� First� it is language indepen�
dent� i�e� it can be applied both within propositional �attribute�value� languages
and within �rst order languages and second� it allows consistent integration of
generalization operators with a semantic distance measure�

We consider the following directions for future work� Firstly� particular at�
tention should be paid to the clause reduction problem when using the language
of Horn clauses� Other lgg operators� not based on ��subsumption should be
considered too�

The practical learning data often involve numeric attributes� In this respect
proper relations� lgg	s and covering functions should be investigated in order to
extend the approach for handling numeric data�

Though the algorithm is well founded it still uses heuristics� This is because
building the complete lattice is exponential and we avoid this by employing a
hill�climbing strategy� It is based on additional distance measures or heuristics
used to select the best lgg among all minimal ones �Step � of the algorithm��
Obviously this leads to incompleteness� Therefore other strategies should be
investigated or perhaps the semantic relation should be re�ned to incorporate
these additional heuristics�

Finally� more experimental work needs to be done to investigate the behavior
of the algorithm in noisy domains�
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