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Abstract. In the present paper we propose a consistent way to integrate
syntactical least general generalizations (lgg’s) with semantic evaluation
of the hypotheses. For this purpose we use two different relations on
the hypothesis space — a constructive one, used to generate lgg’s and
a semantic one giving the coverage-based evaluation of the lgg. These
two relations jointly implement a semantic distance measure. The for-
mal background for this is a height-based definition of a semi-distance
in a join semi-lattice. We use some basic results from lattice theory and
introduce a family of language independent coverage-based height func-
tions. The theoretical results are illustrated by examples of solving some
basic inductive learning tasks.

1 Introduction

Inductive learning addresses mainly classification tasks where a series of training
examples (instances) are supplied to the learning system and the latter builds
an intensional or extensional representation of the examples (hypothesis), or di-
rectly uses them for prediction (classification of unseen examples). Generally two
basic approaches to inductive learning are used. The first one is based mainly
on generalization/specialization or similarity-based techniques. This approach
includes two types of systems — inductive learning from examples and conceptual
clustering. They both generate inductive hypotheses made by abstractions (gen-
eralizations) from specific examples and differ in the way examples are presented
to the system (whether or not they are pre-classified). The basic techniques used
within the second approach are various kinds of distances (metrics) over the ex-
ample space which are used to classify directly new examples (by similarity to
the existing ones) or group the examples into clusters.

There exists a natural way to integrate consistently the generalization-based
and metric-based approaches. The basic idea is to estimate the similarity be-
tween two objects in a hierarchical structure by the distance to their closest
common parent. This idea is formally studied within the lattice theory. In ML



this is the well known least general generalization (lgg) which given two hypothe-
ses builds their most specific common generalization. The existence of an Ilgg in
a hypothesis space (a partially ordered set) directly implies that this space is a
semi-lattice (where the lgg plays the role of infimum). Consequently some alge-
braic notions as finiteness, modularity, metrics etc. can be used to investigate
the properties of the hypothesis space. Lgg’s exist for most of the languages com-
monly used in ML. However all practically applicable (i.e. computable) lgg’s are
based on syntactical ordering relations. A relation over hypotheses is syntactical
if it does not account for the background knowledge and for the coverage of pos-
itive/negative examples. For example dropping condition for nominal attributes,
instance relation for atomic formulae and #-subsumption for clauses are all syn-
tactical relations. On the other hand the evaluation of the hypotheses produced
by an lgg operator is based on their coverage of positive/negative examples with
respect to the background knowledge, i.e. it is based on semantic relations (in
the sense of the inductive task). This discrepancy is a source of many problems
in ML, where overgeneralization is the most difficult one.

In the present paper we propose a consistent way to integrate syntactical 1ggs
with semantic evaluation of the hypotheses. For this purpose we use two different
relations on the hypothesis space — a constructive one, used to generate lgg’s
and a semantic one giving the coverage-based evaluation of the lgg. These two
relations jointly implement a semantic distance measure. The formal background
for this is a height-based definition of a semi-distance in a join semi-lattice. We
use some basic results from lattice theory and introduce a language independent
coverage-based height function. We also define the necessary conditions for two
relations to form a correct height function. The paper introduces a bottom-up
inductive learning algorithm based on the new semantic semi-distance which is
used to illustrate the applicability of the theoretical results.

The paper is organized as follows. The next section introduces the basic
algebraic notions used throughout the paper. Section 3 introduces the new a
heihgt-based semi-distance. Section 4 presents an algorithm for building lattice
structures and shows some experiments with this algorithm. Section 5 contains
concluding remarks and directions for future work.

2 Preliminaries

In this section we introduce a height-based distance measure on a join semi-
lattice following an approach similar to those described in [1] and [5] (for a
survey of metrics on partially ordered sets see [2]).

Definition 1 (Semi-distance, Quasi-metric). A semi-distance (quasi-metric)
is @ mapping d : O x O — R on a set of objects O with the following properties
(a,b,c€ O):

1. d(a,a) =0 and d(a,b) >
2. d(a,b) = d(b,a) (symmetry)
3. d(a,b) < d(a,c) + d(c,b) (triangle inequality).



Definition 2 (Order preserving semi-distance). A semi-distance d : O x
O — R on a partially ordered set (O, =) is order preserving iff Ya,b,c € O :
a=b=c=da,b) <d(a,c) and d(b,c) < d(a,c)

Definition 3 (Join/Meet semi-lattice). A join/meet semi-lattice is a par-
tially ordered set (A,=) in which every two elements a,b € A have an infi-
mum/supremum.

Definition 4 (Size). Let (A, <) be a join semi-lattice. A mapping s : AxA — R
is called a size function if it satisfies the following properties:

S1. s(a,b) > 0,Va,b€ A and a < b.

S2. s(a,a) =0,Va € A.

S3. Va,b,c€ A:a <X cand ¢ b= s(a,b) < s(a,c) + s(c,b).

S4. Va,b,ce A:a < candc=<b= s(c,b) <s(a,b).

S5. Ya,b € A. Let ¢ = inf{a,b}. For anyd € A :a 2 d and b < d =
s(e,a) + s(e,b) < s(a,d) + s(b,d).

Theorem 1. Let (A, =) be a join semi-lattice and s — a size function. Let
d(a,b) = s(inf{a,b},a) + s(inf{a,b},b). Then d is a semi-distance on (A, X).

Proof. 1. d is non-negative by S1.

2. d(a,0) = s(inf{a,a},a) + s(inf{a,a},a) = 5(a,a) + s(a,a) = 0.

3. d is symmetric by definition.

4. We will show that d(a1,as) < d(a1,a3) + d(as,as). Let ¢ = inf{a,as},
by = inf{a1,as}, ba = inf{as,as}, d = inf{bs,b2}. By S4 and S3 we have
s(e,a1) < s(d,ar) < s(d,br) + s(by,a1). And by analogy s(c,as) < s(d, bs) +
5(ba,a2). Then d(ay,a2) = s(c,a1) +s(c,az) < s(d,by) +s(by,a1)+s(d, b2) +
S(bg,ag) S S(bl, al) + S(bl, Clg) + S(b2, Clg) + S(b2, Clz) = d(al, Clg) + d(ag, Clg)

A size function can be defined by using the so called height functions. The
approach of height functions has the advantage that it is based on estimating
the object itself rather than its relations to other objects.

Definition 5 (Height). The function h is called height of the elements of a
partially ordered set (A, =) if it satisfies the following two properties:

1. For every a,b € A if a < b then h(a) < h(b) (isotone).
2. For every a,b € A if c = inf{a,b} and d € A such that a < d and b < d
then h(a) + h(b) < h(c) + h(d).

Theorem 2. Let (A, <X) be a join semi-lattice and h be a height function. Let
s(a,b) = h(b) — h(a),Ya < b€ A. Then s is a size function on (A, <).

Proof. 1. s(a,b) = h(b) — h(a) >0 by H1.

2. s(a,a) = h(a) — h(a) = 0.

3. Let a,b,c € A:a < ¢,c <b. Then s(a,b) = h(b) — h(a) = (h(b) — h(c)) +
(h(c) — h(a)) = s(a.c) + s(c,b).



4. Let a,b,c € A : a =< ¢,¢c 2 b. Then s(¢,b) < s(c,b) + s(a,c) = s(a,b)
by 3.

5. Let ¢ = inf{a,b} and d € A : a < d and b < d. Then s(c,a) + s(c,b) =
(h(a) — h(c)) + (h(b) — h(c)) = h(a) + h(b) — 2h(c) = 2(h(a) + h(b)) — h(a) —
h(b) —2h(c) < 2(h(c) + h(d)) — h(a) — h(b) — 2h(c) = (h(d) — h(a)) + (h(d) —

h(b)) = s(a,d) + s(b, d)

Corollary 1. Let (A, X) be a join semi-lattice and h be a height function. Then
the function d(a,b) = h(a) + h(b) — 2h(inf{a,b}),Ya,b € A is a semi-distance
on (4,=).

3 Semantic semi-distance on join semi-lattices

Let A be a set of objects and let <; and <, be two binary relations in A, where
= is a partial order and (A, <) is a join semi-lattice. Let also GA be the set of
all maximal elements of A w.r.t. <;,i.e. GA={ala € A and =3 € A :a <y b}.
Hereafter we call the members of GA ground elements (by analogy to ground
terms in first order logic). For every a € A we denote by S, the ground coverage
of a wr.t <o, 1.e. S, = {b|b € GA and a <, b}.

The ground coverage S, can be considered as a definition of the semantics of
a. Therefore we call <5 a semantic relation by analogy to the Herbrand interpre-
tation in first order logic that is used to define the semantics of a given term. The
other relation involved, < is called constructive (or syntactic) relation because
it is used to build the lattice from a given set of ground elements G A.

The basic idea of our approach is to use these two relations, <; and <5 to
define the semi-distance. According to Corollary 1 we use the syntactic relation
=< to find the infimum and the semantic relation <5 to define the height function
h. The advantage of this approach is that in many cases there exists a proper
semantic relation however it is intractable, computationally expensive or even
not a partial order, which makes impossible its use as a constructive relation too
(an example of such a relation is logical implication). Then we can use another,
simpler relation as a constructive one (to find the infimum) and still make use
of the semantic relation (to define the height function).

Not any two relations however can be used for this purpose. We will show
that in order to define a correct semi-distance the two relations <; and <5 must
satisfy the following properties, which we call coupling.

Definition 6. <y is coupled with <y if both conditions apply:

1. For every a,b € A such that a <1 b either |S,| > |Sp| or |Sa| < |Sp| must
hold. As the other case is analogous without loss of generality we can assume
that Ya,b € A, a <1 b = |S,| > |Ss]-

2. Va,be A:c=inf{a,b} and 3d = sup{a,b} one of the following must hold:

C1. |Sq| < |Sa| and |Sa| < |Ss|
C2. |S4| = |Sa| and |S.| = |Sp|
C3. |Sq| = |Sp| and |S.| = |S4]



Corollary 2. Ewvery partial order relation is coupled with itself.

Theorem 3. Let A be a set of objects and let <2 and <1 be two binary rela-
tions in A such that <5 is coupled with <1. Then there exists a family of height
functions h(a) = 1%, where a € A, x € R and x > 2.

Proof. 1. Let a,b € A, such that a <; b. Then by the definition of coupling
|Sa| > | S| and hence h(a) < h(b).
2. Let a,be A: c=inf{a,b} and 3d = sup{a, b}.
(a) Assume that C1 is true. Then |Sq| < |S,| and |Sq| < |Sp| = |Sa| >
|Sal +1 and |Sp| > |Sal +1 = —|Ss| < —|Sa| — 1 and —|Ss| < —|Sq4| — 1.
Hence h(a)+h(b) = z~ 1% 4 ¢=19] < g=[Sal=1 4 p=ISal=1 = 9—[Sal-1 <
x50 = ¢=154l = h(d) < h(c) + h(d).
(b) Assume that C2 is true. Then |Sy| = |S,| and |S¢| = |Ss|. Hence h(a) +
h(b) = h(c) + h(d).
(c) Assume that C3 is true. Then |Sy| = |Sp| and |S.| = |Sa|- Hence h(a) +
h(b) = h(c) + h(d).

4 Experiments

To illustrate the theoretical results we use an algorithm that builds a join semi-
lattice G, given a set of examples GA (the set of all maximal elements of G).
The algorithm hereafter referred to as MBI (Metric-based Bottom-up Induction)
is as follows:

. Initialization: G = GA, C' = GA4;

. If |C] =1 then exit;

T = {hlh =lgg(a1,az2) : a1,a2 € C and d(a1, az) = min{d(b,c)|b,c € C}};
. DC = {hh € C and Fhmin € T : honin <o h};

C=C\DC;

.G=GUT,C=CUT, go to step 2.

O U W

There is a possible modification of this algorithm. In Step 3 instead of all, only
one minimal element A from T can be used. With this modification the algorithm
has a polynomial time complexity O(n?). A disadvantage of this modification
is that some useful generalizations can be missed. Therefore in the practical
implementations we augment the algorithm with another distance or heuristic
measure used to select one of all minimal elements of 7" which possibly leads to
the most useful generalizations.

Further in this section we discuss some experiments with the MBI algorithm
with two different representation languages — atomic formulae and Horn clauses.

4.1 Atomic formulae

The algebraic properties of the language of first order atomic formulae are stud-
ied by Reynolds in [8], where he shows that the set of atoms with the same



functors and arity form a join semi-lattice (or complete lattice when the lan-
guage is augmented by adding a ’universal atom’ and a ’'null atom’). In this
framework we use <;==<>= 6-subsumption and by Corollary 2 we have that
#-subsumption is coupled with itself.

Figure 1 shows the top portion of the lattice G built by the algorithm,
where GA consists of the 61 positive examples of the well-known MONKI1 [9]
database (the training sample) represented as atoms. Note that the produced
lattice can be used both for concept learning (it contains the target hypothesis
monk(A,A,_,_,_,_) or monk(.,_,_,_red,.) ) and for conceptual clustering since the
classifications of the examples are not used (the negative examples are skipped).

monk(A,A,__yellow,_)
monk(A A, _blue, )
monk(A A, _green,)

monk(A7A7_7_7_7_)
mOl’lk(_,_,_,_,_,_)

monk(square,_,_,_,red,yes)

4
\
/

\

monk(_’_7_’_7red7_)
monk(_square,_,_,red,_)

Fig. 1. Hypotheses for the MONK1 problem built by the MBI algorithm.

In more complex domains however the standard version of the algorithm
performs poorly with small sets of randomly selected examples. In these cases
we use the augmented version of the algorithm with a syntactic distance measure
to choose one element of T in Step 3. In this way we avoid the random choice
and allow ”cautious” generalizations only. Further heuristics can be used for this
purpose, especially in the case of background knowledge.

4.2 Horn clauses

Within the language of Horn clauses the MBI algorithm can be used with the
0-subsumption-based lgg (the constructive relation <;) and logical implication for
the semantic relation <5. Under #-subsumption as partial order the set of Horn
clauses with same head predicates forms a semi-lattice. Furthermore, it can be
shown that logical implication is coupled with #-subsumption which makes the
use of our algorithm well founded. Figure 2 shows the complete lattice build by
the algorithm with 10 instances of the member predicate.

A major problem in bottom-up algorithms dealing with lggy of clauses is the
clause reduction, because although finite the length of the [ggy of n clauses can
grow exponentially with n. Some well-known techniques of avoiding this problem
are discussed in [3]. By placing certain restrictions on the hypothesis language
the number of literals in the lggy clause can be limited by a polynomial function
independent on n. Currently we use ij-determinate clauses in our experiments
(actually 22-determinate).



memb(1,[3,1])

memb(A [B,CIDI} - memb(1,[2,3,1])
[memb(A,[A]),
memb(A.[CID]).
memb(A[3A])] memb(2[3.2])

membi(a[b,abl)
memb(A,[B,CID]) :- me['?nlﬁb[(i?/g) T
[Tnee”;:’é@\v[a?)]])' memb(alalCl).  —— ennbch))
B , memb(A,[A|C])] o
memb(2,[2])
memb(A,[BIC]) - [] -
_ memb(A ,[A]) :- [memb(A,[3,A])]
memb(A,[A[B]) :- [] — memb(A [A]) -[] — " memb(1,[1])
memi y
~_ \
memb(b,[b])
memb(a,[a,b])
memb(a,[a])

Fig. 2. ILP hypotheses for the instances of the member predicate.

5 Conclusion

The algebraic approach to inductive learning is a very natural way to study the
generalization and specialization hierarchies. These hierarchies represent hypoth-
esis spaces which in most cases are partially ordered sets under some generality
ordering. In most cases however the oredirings used are based on syntactical re-
lations, which do not account for the background knowledge and for the coverage
of positive/negative examples. We propose an approach that explores naturally
the semantic ordering over the hypotheses. This is because although based on
syntactic lgg it uses a semantic evaluation function (the height function) for
the hypotheses. Furthermore this is implemented in a consistent way through a
height-based semi-distance defined on the hypothesis space.

As in fact we define a new distance measure our approach can be also com-
pared to other metric-based approaches in ML. Most of them are based on
attribute-value (or feature-value) languages. Consequently most of the similarity
measures used stem from well known distances in feature spaces (e.g. Euclidean
distance, Hamming distance etc.) and vary basically in the way the weights are
computed. Recently a lot of attention has been paid to studying distance mea-
sures in first order languages. The basic idea is to apply the highly successful
instance based algorithms to relational data using first order logic descriptions.
Various approaches have been proposed in this area. Some of the most recent
ones are [1, 4,6, 7]. These approaches as well as most of the others define a simple
metric on atoms and then extend it to sets of atoms (clauses or models) using



the Hausdorff metric or other similarity functions. Because of the complexity
of the functions involved and the problems with the computability of the mod-
els these approaches are usually computationally hard. Compared to the other
approaches our approach has two basic advantages. First, it is language indepen-
dent, i.e. it can be applied both within propositional (attribute-value) languages
and within first order languages and second, it allows consistent integration of
generalization operators with a semantic distance measure.

We consider the following directions for future work. Firstly, particular at-
tention should be paid to the clause reduction problem when using the language
of Horn clauses. Other lgg operators, not based on f-subsumption should be
considered too.

The practical learning data often involve numeric attributes. In this respect
proper relations, 1gg’s and covering functions should be investigated in order to
extend the approach for handling numeric data.

Though the algorithm is well founded it still uses heuristics. This is because
building the complete lattice is exponential and we avoid this by employing a
hill-climbing strategy. It is based on additional distance measures or heuristics
used to select the best lgg among all minimal ones (Step 3 of the algorithm).
Obviously this leads to incompleteness. Therefore other strategies should be
investigated or perhaps the semantic relation should be refined to incorporate
these additional heuristics.

Finally, more experimental work needs to be done to investigate the behavior
of the algorithm in noisy domains.
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