Planning

1 Problem setting
e A special case of the state space search problem, in which we use logical repre-
sentation of goals and operators.
e States have structure, which allows for more efficient planning.

e Example: blocks world (Figure 1)

2 Situation Calculus

e Using predicate calculus to formalize situations and actions (McCarthy& Hayes,
1969).

e Actions and facts are terms, for example: puton(A, B), on(A, B).

e The true facts in a situation are represented by the prediate holds. For example:
holds(on(A, B),S) means that object A is on object B in situation S.

e Situations are terms describing the state of the world. Given a situation s0,
other situations are obtained by applying the function result to it. For ex-
ample, result(puton(a,b), s0) is the situation obtained by applying the action
puton(a, b) to the situation sO0. More complex situations can be descrined too:
result(puton(c, a), result(puton(a,b), s0)).

e Convenient Prolog representation: applying action puton(A, B) in situation
S leads to situation [puton(A, B)|S]. Then starting with the initial situation
(empty list []), the curent situation is a list of the actions that have led to it (in
a reverse order).

e Azioms are represented by implications connecting preconditions and effects
described with holds. For example:

holds(clear(A), S)Aholds(clear(B), S) — holds(on(A, B), result(puton(A, B), S))

e It is important to represent also the facts that remain true in the new situation,
i.e. what does not change after applying an action. This is done through the so

a

a b

b c c
Initial state Goal state
on(a,b) on(a,b
on(b, table on(b, c
on(c, table on(c, table)
clear a} clear(a)
clear(c

Plan: puton(a,table), puton(b, c), puton(a, b)

Figure 1: Planning in the blocks world
called frame axioms. For example:
holds(clear(X),S) A meq(X, B) — holds(clear(X), result(puton(A, B), S))

e Frame problem: a frame axiom is needed for each fact used in the representation.

e Search is not efficient (due to the frame problem).

3 STRIPS approach to planning

e An attempt to solve the frame problem (Fikes&Nilsson, 1971).
e FEach action is represented by three components:
— Precondition: a formula that must be true in order to perform the action.

— Add list: formulas that become true after performing the action.

— Delete list: formulas that become false after performing the action.
e Example: puton(X,Y)

— Precondition: clear(X) A clear(Y') A on(X, Z)

— Add list: {on(X,Y),clear(Z)}

— Delete list: {clear(Y),on(X, Z)}

e Basic assumption: each formula that has been true before the action and does
not belong to the delete list is true after the action.

e Independent goals: goals that can be reached independently in any order. For
example:

— Initial sate: {on(a,table),on(b,table), on(c,table), on(d, table), clear(a), clear(b),
clear(c), clear(d)}

— Goals: {on(a,b),on(c,d)}.
e Dependent goals: depend on the order of execution. For example:

— Initial state: {on(a,table), on(b, table), on(c, table), clear(a), clear(b), clear(c)}
— Goals: {on(a,b),on(b,c)}.

o Sussman anomaly: Initial state = {on(a, table), on(b, table),on(c,a), clear(b), clear(c)};
Goal = {on(a,b),on(b, c)}. Noninterleaved planners (plans for subgoals are con-
catenated) cannot solve it.

e STRIPS algorithm (+ and — denote set operations):

strips_plan(State,Goals,NewState,Plan) :-

% [Goal|Rest_of_unsatisfied_goals] = Goals - State
planning_rule(Action,Precondition,Add_list,Delete_list),
member (Goal,Add_list),
strips_plan(State,Precondition,Statel,Planl),

% State2 = Statel + Add_list - Delete_list
strips_plan(State2,Rest_of _unsatisfied_goals,NewState,Plan2),

% Plan = Planl + [Action|Plan2]

strips_plan(State,_,State, []1).

e Satisfying dependent goals: Applying the STRIPS algorithm multiple times.
e Optimality (minimal number of actions) and efficiency of planning:

— Reordering goals.

— Choose a rule with Add_list that includes other goals. For example: Ini-
tial state = {on(a,table),on(b,table),on(c,a),clear(b),clear(c)}, Goal =
{on(a,c),on(c,b)}).

— Partial-Order Planning (POP): searching the space of partial plans (Figure
2):

* Planl < Plan3 (action of Planl provides precondition of plan3).
* Planl < Plan2 (action of Plan2 destroys precondition of planl).
* Plan2 < Plan3 (action of Plan3 destroys precondition of plan2).
* Then the optimal plan is: {Planl, Plan2, Plan3 }.

a ‘b‘ C

3 onT(a, b)

ton(a,b) | [2 on(p,
ﬁvonv({\) on(T C)

1 clear(a) tlear(b /puton(b, c)

utonic, table / élec& b)}ar(c
clear (c)e"]
Optimal plan: puton(c, table), puton(b, c), puton(a,b)

=

Figure 2: Partial-Order Planning

