Version space learning

Language for examples/hypotheses

 $L = \{ [A, B], A \in T_1, B \in T_2 \}.$

 T_1 – taxomomy of colors

 T_2 – taxomomy of planar geometric shapes.

Ordering relations

 $[A_1, B_1] \ge [A_2, B_2]$, if A_2 is a successor of A_1 in T_1 , and B_2 is a successor of B_1 in T_2 .

```
[red, polygon] \geq [red, triangle] \\ [any\_color, any\_shape] \text{ covers all possible examples in } L \text{ (how many?)}
```

Induction task

Given:

 $E_1^+ = [red, square]$ $E_2^+ = [blue, rectangle]$ $E_3^- = [orange, triangle]$

Find H, such that:

 $H \ge E_1^+, H \ge E_2^+$ $H \not > E^-$

Hypothesis space

- Generate all generalizations of E_1^+, E_2^+ . $S_H = \{[mono, 4 sided], [mono, polygon], ..., [any_color, any_shape]\}.$
- Remove from S_H all hypotheses that cover E_3^- . Version space, $VS = \{[mono, 4-sided], [mono, polygon], [mono, any_shape], [any_color, 4-sided]\}.$

Specific to general search (Find-S)

Maximally specific generalizations S: $H \in S$, if $H \in VS$ and for any $H' \in VS$, $H' \geq H$.

Begin Find-S

Initialize S to the first positive example

Initialize N to all negative examples seen so far

For each positive example E^+ do begin

Replace every $H \in S$, such that $H \not\geq E^+$, with all its generalizations that cover E^+

Delete from S all hypotheses that cover other hypotheses in S

Delete from S all hypotheses that cover any element from N

End

For every negative example E^- do begin

Delete all members of S that cover E^-

Add E^- to N

End

End

End Find-S

General to specific search (Find-G)

Maximally general hypotheses $G: H \in G$ if it covers none of the negative examples, and for any other hypothesis H' that covers no negative examples, $H \geq H'$.

```
Begin Find-G
```

Initialize G to the most general concept in the version space

Initialize P to all positive examples seen so far

For each negative example E^- do begin

Replace every $H \in G$, such that $H \geq E^-$, with all its specializations that do not cover E^-

Delete from G all hypotheses more specific (covered by) other hypotheses in G

Delete from G all hypotheses that fail to cover some example from P

End

For every positive example E^+ do begin

Delete all members of G that fail to cover E^+

Add E^+ to P

End

End

End Find-G

Combining Find-S and Find-G

Boundary set theorem (Genesereth and Nilsson, 1987): For every $H \in VS$, there exist $H' \in S$ and $H'' \in G$, such that $H \geq H'$ and $H'' \geq H$.

Candidate elimination algorithm (Mitchel, 82)

Put together Find-S and Find-G and:

- Replace "Delete from S all hypotheses that cover any element from N" with "Delete from S any hypothesis not more specific than some hypothesis in G"
- Replace "Delete from G all hypotheses that fail to cover some example from P" with "Delete from G any hypothesis more specific than some hypothesis in S"
- No need of maintaining P and N.

Stopping conditions

- If G = S and both are singletons, then stop. The algorithm has found a single hypothesis consistent with the examples.
- If G or S becomes empty then stop. Indicate that there is no hypothesis that covers all positive and none of the negative examples.

Experiment Generation, Interactive Learning

- 1. Ask for the first positive example
- 2. Calculate S and G using the candidate elimination algorithm
- 3. Find E, such that $G \geq E, \forall s \in S, E \not\geq s$ (E is not in the version space).
- 4. Ask about the classification of E
- 5. Go to 2