Languages for learning

Attribute-value languages

$$L = \{A_1 = V_1, ..., A_n = V_n | V_1 \in V_{A_1}, ..., V_n \in V_{A_n}\},\$$

where V_{A_1} is the set of possible values for A_i , i = 1, ..., n.

For example, $e = \{ color = green, shape = rectangle \}.$

Predicate representation (propositional logic)

$$p_1 = (color = green)$$

$$p_2 = ({\tt shape = rectangle})$$

$$e = p_1 \wedge p_2$$

Ordering examples/hypotheses

Generality (subsumption, covering) relation, \geq

Nominal attributes (no ordering between their values exists): $X \ge Y$, if $X \subseteq Y$. For example, {shape = rectangle} \ge {color = green, shape = rectangle}.

Linear (numeric) attributes (a full order on the atribute values exists): $X = \{A_1 = X_1, ..., A_n = X_n\}, Y = \{A_1 = Y_1, ..., A_n = Y_n\}.$ Then $X \geq Y$, if $X_i \geq Y_i$ (relation between numbers) (i = 1, ..., n).

Structural attributes (a partial order on the atribute values exists): $X \ge Y$, if $X_i \ge Y_i$ (i = 1, ..., n), where $X_i \ge Y_i$ means that Y_i is a successor of X_i in a taxonomic tree.

Language of hypotheses

L + disjunction:

$$L_H = \{C_1 \vee C_2 \vee ... \vee C_n | C_i \in L, i \geq 1\}.$$

 $H \to E$, if there exists a conjunct $C_i \in H$, so that $C_i \geq E$.

Semantic subsumption: $H \geq_{sem} H'$, if $H \rightarrow E, H' \rightarrow E', E \supseteq E'$.

Syntactic subsumption: $H \geq H'$, if $\forall C_i \in H, \exists C_j \in H' : C_i \geq C_j$.

if $H \geq H'$, then $H \geq_{sem} H'$. (What about the reverse?)

Representing hypotheses as rules

$$H = \{C_1 \lor C_2 \lor ... \lor C_n\}$$

if
$$C_1$$
 then $+$,

if
$$C_2$$
 then $+$,

. . .

if
$$C_n$$
 then $+$

Multi-concept learning

$$E = \cup_{i=1}^k E^i$$

$$i^{-th}$$
 problem $\Rightarrow E^+ = E^i, E^- = E \backslash E^i$

Rules: if C_i then $Class_j$

Least general generalization (lgg)

 $H = lgg(H_1, H_2)$ if:

- $H \geq H_1$ and $H \geq H_2$
- $\forall H'$: $H' \geq H_1$, $H' \geq H_2 \Rightarrow H' \geq H$.

Examples

- Nominal attributes: $lgg(H_1, H_2) = H_1 \cap H_2$.
- Linear attributes: minimal intervals including both attribute values.
- Structural attributes: closest common parents for both attribute values in the taxonomy.

Relational languages

A sample from the MONK examples:

```
example(1,pos,[hs=octagon, bs=octagon, sm=no, ho=sword, jc=red, ti=yes]). example(2,pos,[hs=square, bs=round, sm=yes, ho=flag, jc=red, ti=no]). example(3,pos,[hs=square, bs=square, sm=yes, ho=sword, jc=yellow, ti=yes]). example(4,pos,[hs=round, bs=round, sm=no, ho=sword, jc=yellow, ti=yes]). example(5,pos,[hs=octagon, bs=octagon, sm=yes, ho=balloon, jc=blue, ti=no]). example(6,neg,[hs=square, bs=round, sm=yes, ho=flag, jc=blue, ti=no]). example(7,neg,[hs=round, bs=octagon, sm=no, ho=balloon, jc=blue, ti=yes]).
```

Propositional representation

```
if [hs=octagon, bs=octagon] then +
if [hs=square, bs=square] then +
if [hs=round, bs=round] then +
if [jc=red] then +
For class "-" we need 18 rules (why?).
```

Relational rules

```
if [hs=bs] then +
if [jc=red] then +
if [hs≠bs,jc≠red] then -
```

First-Order Logic atoms for positive examples

```
monk(octagon, octagon, no, sword, red, yes) \\ monk(square, round, yes, flag, red, no) \\ monk(square, square, yes, sword, yellow, yes) \\ monk(round, round, no, sword, yellow, yes) \\ ...
```

First-Order Logic atoms for hypothesis "+"

$$monk(A, A, B, C, D, E)$$

 $monk(A, B, C, D, red, E)$

Prolog

$$\begin{aligned} & class(+,X): -hs(X,Y), bs(X,Y).\\ & class(+,X): -jc(X,red).\\ & class(-,X): -not\ class(+,X). \end{aligned}$$

First-Order Logic - alphabet

- Variables: alphanumerical strings beginning a capital -X, Y, Var1.
- Constants: alphanumerical strings beginning with a lower case letter (or just numbers) -a, b, c, const1, 125.
- ullet Functions: f, g, h, or other constants.
- Predicates: p, q, r, father, mother, likes, or other constants.
- Logical connectives: \land (conjunction), \lor (disjunction), \neg (negation), \leftarrow or \rightarrow (implication) and \leftrightarrow (equivalence).
- Quantifiers: $\forall (universal) \text{ and } \exists (existential)$
- Punctuation symbols: (,) and ,

First-Order Logic – terms

- a variable is a term;
- a constant is a term;
- if f is a n-argument function $(n \ge 0)$ and $t_1, t_2, ..., t_n$ are terms, then $f(t_1, t_2, ..., t_n)$ is a term.

First-Order Logic – formulas

- if p is an n-argument predicate $(n \ge 0)$ and $t_1, t_2, ..., t_n$ are terms, then $p(t_1, t_2, ..., t_n)$ is a formula (called $atomic\ formula\ or\ atom;$)
- if F and G are formulas, then $\neg F$, $F \land G$, $F \lor G$, $F \leftarrow G$, $F \leftrightarrow G$ are formulas too;
- if F is a formula and X a variable, then $\forall XF$ and $\exists XF$ are also formulas.

First-Order Logic – examples

```
"For every man there exists a woman that he loves." (classes of objects \Rightarrow variables):
```

$$\forall X \exists (Y man(X) \rightarrow woman(Y) \land loves(X, Y))$$

"John loves Mary." (concrete objects \Rightarrow constants):

```
loves(john, mary) \\
```

"Every student likes every professor.":

$$\forall X \forall Y (is(X, student) \land is(Y, professor) \rightarrow likes(X, Y))$$

Or (universal quantifiers may be skipped):

$$is(X, student) \land is(Y, professor) \rightarrow likes(X, Y)$$

Language of logic programming - Horn clauses

- Literal: an atom or its negation.
- Complementary literals: A and $\neg A$.
- Clause: a disjunction of literals.
- Horn clause: a clause with no more than one positive literal.
- Empty clause (\Box) : a clause with no literals (logical constant "false").

Language of logic programming - Prolog notation

$$A \vee \neg B_1 \vee \neg B_2 \vee \dots \vee \neg B_m$$
$$(p \leftarrow q = p \vee \neg q)$$

$$A \leftarrow B_1, B_2, ..., B_m$$

Program clause (rule):

$$A: -B_1, B_2, ..., B_m$$

Goal:

$$: -B_1, B_2, ..., B_m$$
 or $? -B_1, B_2, ..., B_m$

Fact:

$$A$$
 (single atom)

Substitutions

$$\theta = \{V_1/t_1, V_2/t_2, ..., V_n/t_n\}$$

$$V_i \neq V_i \ \forall i \neq j, \ t_i \neq V_i, \ i = 1, ..., n$$

Example:

$$t_1 = f(a, b, g(a, b)), t_2 = f(A, B, g(C, D))$$

$$\theta = \{A/a, B/b, C/a, D/b\}$$

$$t_1\theta = t_2, t_2\theta^{-1} = t_1$$
 (inverse substitution)

Term generality (covering, instance relation)

$$t_1 \ge t_2 \Leftrightarrow \exists \theta \ (\theta^{-1}) : t_1 \theta = t_2 \ (t_2 \theta^{-1} = t_1)$$

Term unification

$$t_1 = f(X, b, U), t_2 = f(a, Y, Z)$$

Unifiers of t_1 and t_2 : $\theta_1 = \{X/a, Y/b, Z/c\}, \ \theta_2 = \{X/a, Y/b, Z/U\}$

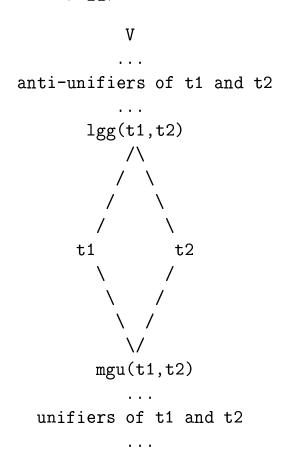
$$t_1\theta_1 = t_2\theta_1 = f(a, b, c)$$

$$t_1\theta_2 = t_2\theta_2 = f(a, b, U)$$
 (most general unifier - mgu)

Term anti-unification, lgg

$$f(X,g(a,X),Y,Z) = lgg(f(a,g(a,a),b,c),f(b,g(a,b),a,a)$$

Anti-unification, lgg, lattice of terms



(the lower part of the lattice may not exists)

Semanics of logic programs

Herbrand base (B_P) : all ground atoms that can be built by predicates from P with arguments – functions and constants from P.

Model of clause (M_C) : Let $C = A : \neg B_1, ..., B_n \ (n \ge 0)$ belong to P and $M_C \subseteq B_P$. M_C is a model of C, if for all ground instances $C\theta$, either $A\theta \in M$ or $\exists B_j, B_j\theta \notin M$.

Empty clause \square has no model.

Least Herbrand model of logic program $P(M_P)$: the intersection of all models of P.

Intuition:

- Express when a clause or a logic program is true?
- Depends on the model (the context where the clause appears).
- This model is represented by a set of facts.

Logical consequence

 $P_1 \models P_2$, if every model of P_1 is also a model of P_2 .

P is satisfiable (consistent, true), if P has a model. Otherwise P is unsatisfiable (inconsistent, false).

If $P \models \Box$, then P is unsatisfiable.

Deduction theorem: $P_1 \models P_2 \Leftrightarrow P_1 \land \neg P_2 \models \Box$.

Majot result in LP: $M_P = \{A | A \text{ is a ground atom}, P \models A\}$

How to find M_P ?

- \bullet Find all models of P.
- Use inference rules: procedures I for transforming one formula (program, clause) P into another one Q, denoted $P \vdash_I Q$.
- I is correct and complete, if $P \vdash_I P \Leftrightarrow P_1 \models P_2$.

Resolution (correct and complete inference rule)

- C_1 and C_2 are clauses
- There exist $L_1 \in C_1$ and $L_2 \in C_2$ that can be made complementary by applying an mgu, i.e. $L_1\mu = \neg L_2\mu$.
- Then $C = (C_1 \setminus \{L_1\} \cup C_2 \setminus \{L_2\}) \mu$ is called resolvent of C_1 and C_2 .
- Most importantly, C follows from C_1 and C_2 , i.e. $C_1 \wedge C_2 \models C$.

Example:

$$C_1 = grandfather(X, Y) : -parent(X, Z), father(Z, Y).$$

 $C_2 = parent(A, B) : -father(A, B).$

$$\mu = \{A/X, B/Z\}, \ parent(A, B)\mu = \neg parent(X, Z)$$

Then, the resolvent of C_1 and C_2 is:

$$C = grandfather(X,Y): -father(X,Z), father(Z,Y), \\$$

Prolog

Question: Given logic program P and atom A, find if A logically follows from P.