Languages for learning

Attribute-value languages

L={A1 =WV, A, =V,|V1 € Vy,,...., Vi, € Vy },
where Vy, is the set of possible values for 4;, ¢ =1, ..., n.

For example, e ={color = green, shape = rectangle}.

Predicate representation (propositional logic)

p1 = (color = green)

p2 = (shape = rectangle)

e =p1 Ap

Ordering examples/hypotheses

Generality (subsumption, covering) relation, >

Nominal attributes (no ordering between their values exists):
X >Y,if X CY. For example, {shape = rectangle} > {color =
green, shape = rectangle}.

Linear (numeric) attributes (a full order on the atribute values
exists): X = {Al = Xl,...,An = Xn}, Y = {Al = Yi, ,An = Yn}
Then X >V, if X; > Y, (relation between numbers) (i = 1,...,n).

Structural attributes (a partial order on the atribute values
exists): X > Y, if X; > Y, (i =1,...,n), where X; > Y, means that ¥;
is a successor of X; in a taxonomic tree.

Language of hypotheses

L + disjunction:

Ly={CiVvCyV..VC,|C; € L,i>1}.

H — FE, if there exists a conjunct C; € H, so that C; > E.

Semantic subsumption: H >, H, if H - E,H — E',E D F'.

Syntactic subsumption: H > H', if VC; € H,3C; € H' : C; > C;.

if H> H', then H >, H'. (What about the reverse?)
Representing hypotheses as rules

H={CivCyVv..VvC,}

if Cy then +,
if C5 then +,

if C), then +

Multi-concept learning
i~ problem = E* = E', E~ = E\E'

Rules: if C; then Class;

Least general generalization (lgg)

H = lgg(Hl,Hg) if:
e H> H; and H > Hy
eVH': H > H,,H >Hy,= H > H.

Examples

e Nominal attributes: lgg(Hy, Hy) = H1 N Ho.

e Linear attributes: minimal intervals including both attribute val-
ues.

e Structural attributes: closest common parents for both attribute
values in the taxonomy.

Relational languages

A sample from the MONK examples:

example(1,pos,[hs=octagon, bs=octagon, sm=no, ho=sword, je=red, ti=yes]).

example(2,pos,|hs=square, bs=round, sm=yes, ho=flag, jc=red, ti=no]).
example(3,pos,|hs=square, bs=square, sm=yes, ho=sword, jc=yellow, ti=yes]).
example(4,pos,|hs=round, bs=round, sm=no, ho=sword, jc=yellow, ti=yes]|).
example(5,pos,[hs=octagon, bs=octagon, sm=yes, ho=balloon, jc=blue, ti=no]).
example(6,neg,[hs=square, bs=round, sm=yes, ho=flag, jc=blue, ti=no]).
example(7,neg,[hs=round, bs=octagon, sm=no, ho=balloon, jc=Dblue, ti=yes]).

Propositional representation

if [hs=octagon, bs=octagon] then +
if [hs=square, bs=square] then +
if [hs=round, bs=round] then +

if [jc=red] then +

For class ”—" we need 18 rules (why?).

Relational rules

if [hs=bs] then +
if [jc=red] then +
if [hs#bs, jc#red] then -

First-Order Logic atoms for positive examples

monk(octagon, octagon, no, sword, red, yes)
(square, round, yes, flag, red, no)
(square, square, yes, sword, yellow, yes)
monk(round, round, no, sword, yellow, yes)

monk

First-Order Logic atoms for hypothesis ”+”

monk(A, A, B,C, D, E)
monk(A, B,C, D, red, E)

Prolog

cass(+,X) : —hs(X,Y), bs(X,Y).
class(+,X) : —jc(X, red).
class(—, X) : —not class(+, X).

First-Order Logic — alphabet
e Variables: alphanumerical strings beginning a capital — X, Y,

Varl.

e Constants: alphanumerical strings beginning with a lower case let-
ter (or just numbers) — a, b, ¢, constl, 125.

e Functions: f, g, h, or other constants.
e Predicates: p, q, v, father, mother, likes, or other constants.

e Logical connectives: A (congunction), V (disjunction), - (negation),
< or — (implication) and <> (equivalence).

e Quantifiers: V (universal) and 3 (ezistential)

e Punctuation symbols: (,) and ,

First-Order Logic — terms

e a variable is a term;
e a constant is a term;

e if f is a n-argument function (n > 0) and t1,to,...,t, are terms,
then f(t,to,...,t,) is a term.

First-Order Logic — formulas

e if p is an n-argument predicate (n > 0) and t1, 19, ..., t, are terms,
then p(ty,to, ..., t,) is a formula (called atomic formula or atom;)

e if F and GG are formulas, then —-F, FAG, FVG, F < G, F < G

are formulas too;

e if F'is a formula and X — a variable, then VX F and dX F' are also
formulas.

First-Order Logic — examples

”For every man there exists a woman that he loves.”
(classes of objects = variables):

VX3 (Yman(X) — woman(Y') A loves(X,Y))

” John loves Mary.” (concrete objects = constants):
loves(john, mary)

”Every student likes every professor.” :

VXVY (is(X, student) A is(Y, professor) — likes(X,Y))
Or (universal quantifiers may be skipped):

is(X, student) A is(Y, professor) — likes(X,Y)

Language of logic programming — Horn clauses

e Literal: an atom or its negation.

e Complementary literals: A and —A.

e Clause: a disjunction of literals.

e Horn clause: a clause with no more than one positive literal.

e Empty clause (O): a clause with no literals (logical constant ”false”).

Language of logic programming — Prolog notation

AV =B,V =B,V ..V =B,
(pqg=pV 9

A+ Bl, BQ, ceny Bm
Program clause (rule):
A: —Bl, Bg, ceey Bm

Goal:

. —Bl, BQ, ceey Bm

or

? _ By, B, ..., B,

Fact:

A (single atom)

Substitutions
0 ={Vi/t1,Va/to, ..., Vi /tn}
Vi£EViVi#5,ti#V;,i1=1,...,n
Example:
t1 = f(a,b,9(a,b)), t2 = f(4, B,g(C, D))
0 ={A/a,B/b,C/a, D/b}
t10 = t9, 126071 = ¢, (inverse substitution)

Term generality (covering, instance relation)

t1 >ty < 10 (9_1) (110 =ty (t20_1 = tl)

Term unification
ty = f(X,b,U), ts = f(a,Y,7)
Unifiers of ¢; and to: 6y = {X/a,Y/b,Z/c}, 0o ={X/a,Y/b,Z/U}
t161 = t201 = f(a,b,c)

t1602 = t90y = f(a,b,U) (most general unifier - mgu)

10

Term anti-unification, lgg

f(X,g(a, X),Y, Z) = lgg(f(aag(aa a)7b7 C), f(b,g(a, b)7a7 a’)

Anti-unification, lgg, lattice of terms

Vv
anti-unifiers of t1 and t2

lgg(tl,t2)
/\

\/
mgu(tl,t2)

unifiers of t1 and t2

(the lower part of the lattice may not exists)

11

Semanics of logic programs

Herbrand base (Bp): all ground atoms that can be built by pred-
icates from P with arguments — functions and constants from P.

Model of clause (M¢): Let C = A :- By, ..., B, (n > 0) belong to
P and Mg C Bp. Mg is a model of C, if for all ground instances C9,
either A8 € M or dB;, B;6 ¢ M.

Empty clause O has no model.

Least Herbrand model of logic program P (Mp): the intersec-
tion of all models of P.

Intuition:
e Express when a clause or a logic program is true?
e Depends on the model (the context where the clause appears).

e This model is represented by a set of facts.

12

Logical consequence

P, E Py, if every model of P is also a model of P.

P is satisfiable (consistent, true), if P has a model.
Otherwise P is unsatisfiable (inconsistent, false).

If P =0, then P is unsatisfiable.
Deduction theorem: P, = P, & P A-P, 0.
Majot result in LP: Mp = {A|A is a ground atom, P = A}

How to find Mp?
e Find all models of P.

e Use inference rules: procedures I for transforming one formula (pro-
gram, clause) P into another one @, denoted P - Q.

e [is correct and complete, if Py P < P, = P;.

13

Resolution (correct and complete inference rule)

e (] and O are clauses

e There exist L; € C1 and Ly € Cs that can be made complementary
by applying an mgu, i.e. Liyu = —Lopu.

e Then C = (C1\{L1} U Co\{Ly})p is called resolvent of Cy and Cs.
e Most importantly, C' follows from Cy and Cjy, i.e. C; A Csy = C.

Example:

C1 = grandfather(X,Y) : —parent(X, Z), father(Z,Y).
Cy = parent(A, B) : — father(A, B).

p=1{A/X,B/Z}, parent(A, B)u = —parent(X, Z)
Then, the resolvent of C; and Cj is:

C = grandfather(X,Y) : —father(X, Z), father(Z,Y),

14

Prolog

Question: Given logic program P and atom A, find if A logically follows
from P.

grandfather (X,Y) :- parent(X,Z), father(Z,Y).
parent (A,B) :- father(A,B).
father(john,bill).

father(bill,ann).

father(bill,mary) .

Is John a grandfather of Ann?

?7- grandfather(john,ann).

yes
‘?_

Who are the grandchildren of John?

?7- grandfather(john,X).
X=ann,;

X=mary,

no

'?_

15

