
Concept Learning

1 Learning the concept of arch

Examples

b
b

bb"
"

"" b
b

bb"
"

""

Example1 Example2 Near−arch

Background knowledge

block1 block2 block3 pyramid1 pyramid2

pyramidblock

polygon

!!!!!!aaaaaa �
�

��Q
Q

QQ

��������PPPPPPPP
isa isa

isa isa isa isa isa

1



2 Using semantic nets

Example1 =
{partof(block1, arch), partof(block2, arch), partof(block3, arch),
supports(block1, block3), supports(block2, block3)}

Example2 =
{partof(block1, arch), partof(block2, arch), partof(pyramid1, arch),
supports(block1, pyramid1), supports(block2, pyramid1)}

Apriori−knowledge =
{isa(block1, block), isa(block2, block), isa(block3, block),
isa(block, polygon), isa(pyramid1, pyramid), isa(pyramid, polygon)}

2



3 Generalization

Example1 + Example2 ⇒ Hypothesis1

Hypothesis1 =
{partof(block1, arch), partof(block2, arch), partof(polygon, arch),
supports(block1, polygon), supports(block2, polygon)}

4 Specialization

Hypothesis1 + Near−miss ⇒ Hypothesis2

Near−miss =
{partof(block1, arch), partof(block2, arch), partof(polygon, arch),
supports(block1, polygon), supports(block2, polygon),
touches(block1, block2)}

Hypothesis2 =
{partof(block1, arch), partof(block2, arch), partof(polygon, arch),
supports(block1, polygon), supports(block2, polygon),
doesnottouches(block1, block2)}

5 Issues

• First concept learning system (Winston, 1975)

• Incremental learning

• Order of examples is important

3



6 Induction task

Formal system: language L (with three subsets – LB (language of
background knowledge), LE (language of examples) and LH (language
of hypotheses), and a derivibilty relation ”→” – a mapping between
elements from L. Example: First-Order Logic (Predicate calculus).

Induction task: Given background knowledge B ∈ LB, positive ex-
amples E+ ∈ LE and negative examples E− ∈ LE, find a hypothesis
H ∈ LH , such that:

1. B 6→ E+ (nessecity);

2. B 6→ E− (consistency of B);

3. B ∪H → E+ (sufficiency);

4. B ∪H 6→ E− (consistency of H).

Straightforward solution: H = E+, however:

• No new examples accepted (no induction step).

• No explanation of E+ in terms of B.

Anyway, H = E+ is useful for searching the hypothesis space.
H = E+ is called most specific hypothesis, denoted ⊥.

4



7 Generality/specificity

Generality (subsumption, coverage) of hypotheses. Let H and
H ′ be hypotheses, where H → E and H ′ → E ′. H is more general
than (subsumes, covers) H ′, denoted H ≥ H ′, if E ⊇ E ′.

Semantic ordering. Ordering of hypotheses is based on coverage of
examples.

Most general hypothesis >. A hypothesis that covers all examples
from LE.

• Easy to find for any particular language.

• However, ⊥ does not satisfy the conditions of the induction task
(covers E−).

• Even if E− = ∅, > is not suitable either, because it is not construc-
tive.

Hypothesis space. All hypotheses H, such that > ≥ H ≥ ⊥.

Generalization/specialization operators. Procedures (algorithms)
that given a hypothesis H genarate a new hypothesis H ′ that is more
general/specific than H.

5



Example of a hypotesis space. Power set of E (2E).

• Lattice structure induced by the subset (⊆) relation (for every two
elements a least upper bound exists).

• Assume that a hypothesis can be identified for every subset of E.

• Then the hypothesis space can be easily searched (lattices are well
studied algebraic structures with a lot of nice properties).

However,

• Every hypothesis can be associated with a set of examples, but the
reverse is not generally true.

• In more complex languages (e.g. First-Order Logic) constructive
operators for generalization/specialization cannot be found or, if
found, are non-computable.

Therefore we mostly use

Syntactic orderings. Orderings that are determined directly by the
representation language.

• Syntactic orderings are usually stronger (i.e. they hold for fewer
objects) than the semantic ones.

• Consequently syntactic orderings are incomplete – they do not guar-
antee exhaustive search in the hypothesis space.

• This, in turn, may cause to skip over the desired hypothesis and
generate a hypothesis that is either too specific or too general.
These problems are known as overspecialization and overgerenal-
ization.

6



8 Criteria for choosing generalization/specialization opera-
tors

• The languages of examples and hypotheses (the so called syntactic
or language bias);

• The strategy for searching the hypothesis space (search bias);

• The criteria for hypothesis evaluation and selection.

7



9 Annotated example

Language (used both for examples and hypotheses): all subsets of
{a, b, c, d}

Generality ordering (covering): subset (⊆) relation. That is, H ≥ H ′,
if H ⊆ H ′.

Generalization operation: dropping element.

• For example, let H = {a, b}. If we drop b from this set, we get
H ′ = {a}, which is more general, because {a} ⊆ {a, b}.

• The most general element in this language (>) is the empty set {}
(it’s subset of all other sets).

• The most specific element ⊥ = {a, b, c, d}, because all other sets
are subsets of {a, b, c, d}.

Assume we have:

• Two positive examples, E+ = {{a, b, c}, {a, b, d}}.
• One negative example, E− = {c}.

Let’s consier the following two hypoteses: H1 = {a, b}, H2 = {d}
• H1 is a good hypothesis, because it covers all positives and none

negatives.

• H2 is not as good as H1, because it covers just one positive ({a, b, d}),
i.e. it is incomplete. Still, H2 is correct as it does not cover the neg-
ative example {c}.

• Semantically H1 is more general than H2, because H1 covers two
examples (it’s subset of both {a, b, c} and {a, b, d}) and H2 covers
one.

8



• However, there is no syntactic relation between H1 and H2. That
is, there is no subset relation between them. Consequently, if we
are searching the hypothesis space by applying generalization op-
erations (dropping elements) and start from H2 (which is more
specific) we cannot reach H1 (the more general one).

• If we generalize H2, we get > = {}, which covers all examples,
i.e. it’s both syntactically and semantically more general and H2.
However, this is not a good hypothesis, because along with the
positives, it covers negatives too ({c}). This is an example of over-
generalization.

Despite the problems with the syntactic ordering, we still can use it to
find the best hypothesis. For example:

• Starting the search from > = {} we have to follow the paths:
{} → {a} → {a, b} or {} → {b} → {a, b}.

• Starting the search from ⊥ = {a, b, c, d} we have to follow the path:
{a, b, c, d} → {a, b, c} → {a, b}.

9


