Propositional and First-Order Logic

1 Knowledge-Based Agents

- Knowledge representation (KR) language
- Knowledge base (KB) – a set of sentences (written in the KR language) describing the agent’s world.
- An inference mechanism
 - What follows (can be deduced) from the KB and the current agent perception.
 - What actions the agent should take.
- Background knowledge – initial knowledge about the world (agent + environment).
- Levels of agent description
 - Knowledge level
 - Logical level – knowledge written in the KR language
 - Implementation level – the implementation of the KR language (compiling/running KR programs)
- Building a knowledge-based agent
 - Declarative approach
 - Learning approach
2 The Wumpus World – a simulation of a KB agent

• Environment
 – 4X4 grid of rooms (cave). Doors between the adjacent (not diagonally) rooms.
 – The agent starts in room (1,1) heading right.
 – Gold in one of the rooms (chosen randomly). If the agent finds the gold it gets 1000 points.
 – A beast (wumpus) in one of the rooms (chosen randomly). If the agent enters this room the beast eats the agent (-1000 points).
 – Pits in some rooms that trap the agent.

• Actuators (agent actions)
 – Move forward, turn 90% left and 90% right
 – Grab the gold (only if in the room with gold)
 – Exit the cave (only if in room (1,1)).

• Sensors (agent perception)
 – In a square adjacent to the wumpus the agent perceives a stench.
 – In a square adjacent to a pit the agent perceives a breeze.
 – In the square where the gold is the agent perceives a glitter.
 – If the agent walks into a wall it perceives a bump.
 – In the initial room (1,1) the agent perceives light.
 – The agent also perceives the coordinates of the room in which it is currently located.

• Goal: grab the gold and exit the cave (the exit door is in room (1,1)).
Figure 1: Wumpus World
3 First-Order Logic – alphabet

- Constants: alphanumerical strings beginning with a lower case letter (or just numbers) – a, b, c, $const1$, 125.
- Functions: f, g, h, or other constants (not numbers).
- Predicates: p, q, r, $father$, $mother$, $likes$, or other constants.
- Logical connectives: \land (conjunction), \lor (disjunction), \neg (negation), \leftrightarrow or \rightarrow (implication) and \leftrightarrow (equivalence).
- Quantifiers: \forall (universal) and \exists (existential).
- Punctuation symbols: (,) and ,

4 First-Order Logic – terms

- a variable is a term;
- a constant is a term;
- if f is a n-argument function ($n \geq 0$) and $t_1, t_2, ..., t_n$ are terms, then $f(t_1, t_2, ..., t_n)$ is a term.
5 First-Order Logic – sentences (formulas)

- if \(p \) is an \(n \)-argument predicate \((n \geq 0) \) and \(t_1, t_2, ..., t_n \) are terms, then \(p(t_1, t_2, ..., t_n) \) is a formula (called atomic formula or atom);
- if \(F \) and \(G \) are formulas, then \(\neg F, F \land G, F \lor G, F \iff G \) are formulas too;
- if \(F \) is a formula and \(X \) – a variable, then \(\forall X F \) and \(\exists X F \) are also formulas.
- A term/formula without variables is called ground term/formula.

6 Propositional Logic - a subset of FOL

- No variables
- No functions
- Predicates are constants (0-argument predicates)

7 Propositional Logic - examples

Represent assertions that may be true or false.

- \((B \lor A) \land (\neg B \lor \neg C)\) (”Bob is a truth-teller or Amy is a truth-teller. Bob is not a truth-teller or Cal is not a truth-teller.”)
- \(\text{beast}_{31} \rightarrow \text{stench}_{32}\)
- \(\text{beast}_{31}\)
- \(at_{22} \land \neg \text{stench}_{22} \land \neg \text{breeze}_{22} \rightarrow \text{go}_-\text{forward}\)
- \(at_{22} \land \text{heading}_-\text{east} \land \text{go}_-\text{forward} \rightarrow at_{23}\)
- \(x \land \neg y \lor \neg x \land y\) (XOR)
8 First-Order Logic – examples

Represent relations between individual objects or classes of objects.

"For every man there exists a woman that he loves."
(classes of objects ⇒ variables):

∀X∃(Y \text{man}(X) \rightarrow \text{woman}(Y) \land \text{loves}(X,Y))

"John loves Mary." (concrete objects ⇒ constants):

\text{loves}(\text{john}, \text{mary})

"Every student likes every professor."

∀X∀Y(\text{is}(X, \text{student}) \land \text{is}(Y, \text{professor}) \rightarrow \text{likes}(X,Y))

Or (universal quantifiers may be skipped):

\text{is}(X, \text{student}) \land \text{is}(Y, \text{professor}) \rightarrow \text{likes}(X,Y)
9 Clausal form (CNF), Horn clauses

- Literal: an atom or its negation.
- Complementary literals: A and $\neg A$.
- Clause: a disjunction of literals.
- Conjunctive Normal Form (CNF): conjunction of clauses
- Horn clause: a clause with no more than one positive literal.
- Empty clause (\square): a clause with no literals (logical constant "false").

10 Translating FOL into clausal form (CNF)

1. $\forall X man(X) \rightarrow \exists Y woman(Y) \land loves(X, Y)$
2. $\forall X \neg man(X) \lor \exists Y woman(Y) \land loves(X, Y)$ (removing implications)
3. $\forall X \neg man(X) \lor (woman(s(X) \land loves(X, s(X))))$ (removing the existential quantifiers – skolemization)
4. $\neg man(X) \lor (woman(s(X)) \land loves(X, s(X)))$ (removing the universal quantifiers)
5. $(\neg man(X) \lor woman(s(X)) \land (\neg man(X) \lor loves(X, s(X)))$ (conjunctive normal form)
11 Prolog notation for Horn clauses

\[A \lor \neg B_1 \lor \neg B_2 \lor \ldots \lor \neg B_m \]
\[(p \leftarrow q = p \lor \neg q)\]

\[A \leftarrow B_1, B_2, \ldots, B_m \]

Program clause (rule):

\[A : -B_1, B_2, \ldots, B_m \]

Goal:

\[: -B_1, B_2, \ldots, B_m \]

or

\[? - B_1, B_2, \ldots, B_m \]

Fact:

\[A \ (\text{single atom}) \]
12 Semantics of Propositional Logic

- Logic constants: true, false (\Box)
- Model: truth value assignments to the predicates that make the sentence (formula) true
- Logical consequence (entailment): $P \models Q$, if every model of P is also a model of Q.
- Valid formula (tautology): true for any truth value assignment (in every model). Example: $P \lor \neg P$
- A formula is satisfiable (consistent) if it has a model
- A formula is unsatisfiable (inconsistent) if it has no model. Example: $P \land \neg P$
- If $P \models \Box$, then P is unsatisfiable.
- Deduction theorem: $P \models Q \iff P \land \neg Q \models \Box$.
- Determining satisfiability is NP-complete
13 Substitutions

\[\theta = \{ V_1/t_1, V_2/t_2, \ldots, V_n/t_n \} \]

\[V_i \neq V_j \; \forall i \neq j, \; t_i \neq V_i, \; i = 1, \ldots, n \]

Example:

\[t_1 = f(a, b, g(a, b)), \; t_2 = f(A, B, g(C, D)) \]

\[\theta = \{ A/a, B/b, C/a, D/b \} \]

\[t_1\theta = t_2 \]

14 Term unification

\[t_1 = f(X, b, U), \; t_2 = f(a, Y, Z) \]

Unifiers of \(t_1 \) and \(t_2 \): \(\theta_1 = \{ X/a, Y/b, Z/c, U/c \} \), \(\theta_2 = \{ X/a, Y/b, Z/U \} \)

\[t_1\theta_1 = t_2\theta_1 = f(a, b, c) \]

\[t_1\theta_2 = t_2\theta_2 = f(a, b, U) \]

\(\theta_2 \) is most general unifier - mgu: \(\exists \theta, \; (t_1\theta_2)\theta = t_1\theta_1 \)

\(\theta = ? \)
15 Semantics of FOL (Logic Programs)

Logic Program (LP): A set of Horn clauses.

Prolog Program: A logic program that also includes control and extra logical components: execution order and cut (!).

Herbrand base (B_S): Let S be a set of clauses. B_S is the set of all ground atoms that can be built by using predicate symbols from S and arguments built by combinations of constants and functions from S.

Model of clause (M_C): M_C is a model of clause C, if for all ground instances $C\theta$, there exists either a positive literal $P \in C$, such that $P\theta \in M_C$ or a negative literal $N \in C$, such that $N\theta \notin M_C$.

Empty clause □ has no model.

Least Herbrand model of a set of clauses S (M_S): the intersection of all models of S.

Intuition:

- Express when a clause or a Logic (Prolog) program is true.
- Depends on the model (the context where the clause appears).
- This model is represented by a set of facts.
Logical consequence (entailment)

P_1, P_2 – logic programs.

$P_1 \models P_2$, if every model of P_1 is also a model of P_2.

P is satisfiable (consistent, true), if P has a model. Otherwise P is unsatisfiable (inconsistent, false).

If $P \models \Box$, then P is unsatisfiable.

Deduction theorem: $P_1 \models P_2 \iff P_1 \land \neg P_2 \models \Box$.

Majot result in LP: $M_P = \{ A | A$ is a ground atom, $P \models A \}$

Undecidability of FOL: The check for $P_1 \models P_2$ is an undesirable problem (semidecidable, i.e. not decidable only if $P_1 \not\models P_2$).

Decidability of Datalog: Logic programs without functions (datalog) are decidable.

Finite/initial models of PL/FOL/Datalog ($\{p(a), p(f(X)) \leftarrow p(X)\}$)

How to find M_P (Least Herbrand Model of P)?

- Find all models of P (intractable).
- Use inference rules: procedures I for transforming one formula (program, clause) P into another one Q, denoted $P \vdash_I Q$.
- I is correct and complete, if $P \vdash_I P \iff P_1 \models P_2$.

12