Propositional and First-Order Logic

1 Knowledge-Based Agents

- Knowledge representation (KR) language
- Knowledge base (KB) a set of sentences (written in the KR language) describing the agent's world.
- An inference mechanism
 - What follows (can be deduced) from the KB and the current agent perception.
 - What actions the agent should take.
- Background knowledge initial knowledge about the world (agent + environment).
- Levels of agent description
 - Knowledge level
 - Logical level knowledge written in the KR language
 - Implementation level the implementation of the KR language (compiling/running KR programs)
- Building a knowledge-based agent
 - Declarative approach
 - Learning approach

2 The Wumpus World – a simulation of a KB agent

• Environment

- 4X4 grid of rooms (cave). Doors between the adjacent (not diagonally) rooms.
- The agent starts in room (1,1) heading right.
- Gold in one of the rooms (chosen randomly). If the agent finds the gold it gets 1000 points.
- A beast (wumpus) in one of the rooms (chosen randomly). If the agent enters this room the beast eats the agent (-1000 points).
- Pits in some rooms that trap the agent.

• Actuators (agent actions)

- Move forward, turn 90% left and 90% right
- Grab the gold (only if in the room with gold)
- Exit the cave (only if in room (1,1)).

• Sensors (agent perception)

- In a square adjecent to the wumpus the agent perceives a stench.
- In a square adjecent to a pit the agent perceives a breeze.
- In the square where the gold is the agent perceives a glitter.
- If the agent walks into a wall it perceives a bump.
- In the initial room (1,1) the agent percives light.
- The agent also perceives the coordinates of the room in which it is currently located.
- Goal: grab the gold and exit the cave (the exit door is in room (1,1)).

Figure 1: Wumpus World

3 First-Order Logic – alphabet

- Variables: alphanumerical strings beginning with a capital -X, Y, Var1.
- Constants: alphanumerical strings beginning with a lower case letter (or just numbers) -a, b, c, const1, 125.
- Functions: f, g, h, or other constants (not numbers).
- Predicates: p, q, r, father, mother, likes, or other constants.
- Logical connectives: \land (conjunction), \lor (disjunction), \neg (negation), \leftarrow or \rightarrow (implication) and \leftrightarrow (equivalence).
- Quantifiers: $\forall (universal) \text{ and } \exists (existential)$
- Punctuation symbols: (,) and ,

4 First-Order Logic – terms

- a variable is a term;
- a constant is a term;
- if f is a n-argument function $(n \ge 0)$ and $t_1, t_2, ..., t_n$ are terms, then $f(t_1, t_2, ..., t_n)$ is a term.

${f 5}$ First-Order Logic - sentences (formulas)

- if p is an n-argument predicate $(n \ge 0)$ and $t_1, t_2, ..., t_n$ are terms, then $p(t_1, t_2, ..., t_n)$ is a formula (called $atomic\ formula\ or\ atom;$)
- if F and G are formulas, then $\neg F$, $F \land G$, $F \lor G$, $F \leftarrow G$, $F \leftrightarrow G$ are formulas too;
- if F is a formula and X a variable, then $\forall XF$ and $\exists XF$ are also formulas.
- A term/formula without variables is called ground term/formula.

6 Propositional Logic - a subset of FOL

- No variables
- No functions
- Predicates are constants (0-argument predicates)

7 Propositional Logic - examples

Represent assertions that may be true or false.

- $(B \lor A) \land (\neg B \lor \neg C)$ ("Bob is a truth-teller or Amy is a truth-teller. Bob is not a truth-teller or Cal is not a truth-teller.")
- $beast_{31} \rightarrow stench_{32}$
- $beast_{31}$
- $at_{22} \land \neg stench_{22} \land \neg breeze_{22} \rightarrow qo_forward$
- $at_{22} \wedge heading_east \wedge go_forward \rightarrow at_{23}$
- $x \wedge \neg y \vee \neg x \wedge y$ (XOR)

8 First-Order Logic – examples

Represent relations between individual objects or classes of objects.

```
"For every man there exists a woman that he loves." (classes of objects \Rightarrow variables): \forall X \exists (Y man(X) \rightarrow woman(Y) \land loves(X,Y))
"John loves Mary." (concrete objects \Rightarrow constants): loves(john, mary)
"Every student likes every professor.": \forall X \forall Y (is(X, student) \land is(Y, professor) \rightarrow likes(X,Y))
Or (universal quantifiers may be skipped):
```

 $is(X, student) \land is(Y, professor) \rightarrow likes(X, Y)$

9 Clausal form (CNF), Horn clauses

- Literal: an atom or its negation.
- Complementary literals: A and $\neg A$.
- Clause: a disjunction of literals.
- Conjunctive Normal Form (CNF): conjunction of clauses
- Horn clause: a clause with no more than one positive literal.
- Empty clause (\Box) : a clause with no literals (logical constant "false").

10 Translating FOL into clausal form (CNF)

- 1. $\forall X man(X) \rightarrow \exists Y woman(Y) \land loves(X, Y)$
- 2. $\forall X \neg man(X) \lor \exists Y woman(Y) \land loves(X, Y)$ (removing implications
- 3. $\forall X \neg man(X) \lor (woman(s(X) \land loves(X, s(X)))$ (removing the existential quantifiers skolemization)
- 4. $\neg man(X) \lor (woman(s(X)) \land loves(X, s(X)))$ (removing the universal quantifiers)
- 5. $(\neg man(X) \lor woman(s(X)) \land (\neg man(X) \lor loves(X, s(X)))$ (conjunctive normal form)

11 Prolog notation for Horn clauses

$$A \vee \neg B_1 \vee \neg B_2 \vee \dots \vee \neg B_m$$
$$(p \leftarrow q = p \vee \neg q)$$

$$A \leftarrow B_1, B_2, ..., B_m$$

Program clause (rule):

$$A:-B_1,B_2,...,B_m$$

Goal:

$$: -B_1, B_2, ..., B_m$$
 or $: -B_1, B_2, ..., B_m$

Fact:

A (single atom)

12 Semantics of Propositional Logic

- Logic constants: true, false (\Box)
- Model: truth value assignments to the predicates that make the sentence (formula) true
- Logical consequence (entailment): $P \models Q$, if every model of P is also a model of Q.
- Valid formula (tautology): true for any truth value assignment (in every model). Example: $P \vee \neg P$
- A formula is satisfiable (consistent) if it has a model
- A formula is unsatisfiable (inconsistent) if it has no model. Example: $P \wedge \neg P$
- If $P \models \Box$, then P is unsatisfiable.
- Deduction theorem: $P \models Q \Leftrightarrow P \land \neg Q \models \square$.
- Determining satisfiability is NP-complete

13 Substitutions

$$\theta = \{V_1/t_1, V_2/t_2, ..., V_n/t_n\}$$

$$V_i \neq V_i \ \forall i \neq j, \ t_i \neq V_i, \ i = 1, ..., n$$

Example:

$$t_1 = f(a, b, g(a, b)), t_2 = f(A, B, g(C, D))$$

 $\theta = \{A/a, B/b, C/a, D/b\}$
 $t_1\theta = t_2$

14 Term unification

$$t_1 = f(X, b, U), t_2 = f(a, Y, Z)$$
Unifiers of t_1 and t_2 : $\theta_1 = \{X/a, Y/b, Z/c, U/c\}, \ \theta_2 = \{X/a, Y/b, Z/U\}$
 $t_1\theta_1 = t_2\theta_1 = f(a, b, c)$
 $t_1\theta_2 = t_2\theta_2 = f(a, b, U)$

 $heta_2$ is most general unifier - mgu: $\exists \theta, \, (t_1\theta_2)\theta = t_1\theta_1$

$$\theta = ?$$

15 Semantics of FOL (Logic Programs)

Logic Program (LP): A set of Horn clauses.

Prolog Program: A logic program that also includes control and extra logical components: execution order and cut (!).

Herbrand base (B_S) : Let S be a set of clauses. B_S is the set of all ground atoms that can be built by using predicate symbols from S and arguments built by combinations of constants and functions from S.

Model of clause (M_C) : M_C is a *model* of clause C, if for all ground instances $C\theta$, there exists either a positive literal $P \in C$, such that $P\theta \in M_C$ or a negative literal $N \in C$, such that $N\theta \notin M_C$.

Empty clause \square has no model.

Least Herbrand model of a set of clauses S (M_S): the intersection of all models of S.

Intuition:

- Express when a clause or a Logic (Prolog) program is true.
- Depends on the model (the context where the clause appears).
- This model is represented by a set of facts.

Logical consequence (entailment)

 P_1 , P_2 – logic programs.

 $P_1 \models P_2$, if every model of P_1 is also a model of P_2 .

P is satisfiable (consistent, true), if P has a model. Otherwise P is unsatisfiable (inconsistent, false).

If $P \models \Box$, then P is unsatisfiable.

Deduction theorem: $P_1 \models P_2 \Leftrightarrow P_1 \land \neg P_2 \models \Box$.

Majot result in LP: $M_P = \{A | A \text{ is a ground atom}, P \models A\}$

Undecidability of FOL: The check for $P_1 \models P_2$ is an undesidable problem (semidecidable, i.e. not decidable only if $P_1 \not\models P_2$).

Decidability of Datalog: Logic programs without functions (datalog) are decidible.

Finite/initine models of PL/FOL/Datalog ($\{p(a), p(f(X)) \leftarrow p(X)\}$)

How to find M_P (Least Herbrand Model of P)?

- Find all models of P (intractable).
- Use inference rules: procedures I for transforming one formula (program, clause) P into another one Q, denoted $P \vdash_I Q$.
- I is correct and complete, if $P \vdash_I P \Leftrightarrow P_1 \models P_2$.