
Lecture Notes in Machine Learning – Chapter 8:

Relational Learning and Inductive Logic Programming

Zdravko Markov

March 14, 2004

1 Language of logic programming

1.1 Syntax

Fisrtly, we shall define briefly the language of First-Order Logic (FOL) (or Predicate cal-
culus). The alphabet of this language consists of the following types of symbols: variables,
constants, functions, predicates, logical connectives, quantifiers and punctuation symbols. Let
us denote variables with alphanumerical strings beginning with capitals, constants – with
alphanumerical strings beginning with lower case letter (or just numbers). The functions are
usually denotes as f , g and h (also indexed), and the predicates – as p, q, r or just simple
words as father, mother, likes etc. As these types of symbols may overlap, the type of a
paricular symbol depends on the context where it appears. The logical connectives are: ∧
(conjunction), ∨ (disjunction), ¬ (negation), ← or→ (implication) and↔ (equivalence). The
quantifiers are: ∀ (universal) and ∃ +existential). The punctuation symbols are: ”(”, ”)” and
”,”.

A basic element of FOL is called term, and is defined as follows:

• a variable is a term;

• a constant is a term;

• if f is a n-argument function (n ≥ 0) and t1, t2, ..., tn are terms, then f(t1, t2, ..., tn) is
a term.

The terms are used to construct formulas in the following way:

• if p is an n-argument predicate (n ≥ 0) and t1, t2, ..., tn are terms, then p(t1, t2, ..., tn)
is a formula (called atomic formula or just atom;)

• if F and G are formulas, then ¬F , F ∧G, F ∨G, F ← G, F ↔ G are formulas too;

• if F is a formula and X – a variable, then ∀XF and ∃XF are also formulas.

Given the alphabet, the language of FOL consists of all formulas obtained by applying the
above rules.

One of the purpose of FOL is to describe the meaning of natural language sentences. For
example, having the sentence ”For every man there exists a woman that he loves”, we may
construct the following FOL formula:

∀X∃Y man(X)→ woman(Y) ∧ loves(X, Y)

1

Or, ”John loves Mary” can be written as a formula (in fact, an atom) without variables (here
we use lower case letters for John and Mary, because they are constants):

loves(john, mary)

Terms/formulas without variables are called ground terms/formulas.
If a formula has only universaly quantified variables we may skip the quantifiers. For

example, ”Every student likes every professor” can be written as:

∀X∀Y is(X, student) ∧ is(Y, professor)→ likes(X, Y)

and also as:

is(X, student) ∧ is(Y, professor)→ likes(X, Y)

Note that the formulas do not have to be always true (as the sentences they represent).
Hereafter we define a subset of FOL that is used in logic programming.

• An atom or its negation is called literal.

• If A is an atom, then the literals A and ¬A are called complementary.

• A disjunction of literals is called clause.

• A clause with no more than one positive literal (atom without negation) is called Horn
clause.

• A clause with no literals is called empty clause (2) and denotes the logical constant
”false”.

There is another notation for Horn clauses that is used in Prolog (a programming language
that uses the syntax and implement the semantics of logic programs). Consider a Horn clause
of the following type:

A ∨ ¬B1 ∨ ¬B2 ∨ ... ∨ ¬Bm,

where A,B1, ..., Bm (m ≥ 0) are atoms. Then using the simple transformation p← q = p∨¬q
we can write down the above clause as an implication:

A← B1, B2, ..., Bm

.
In Prolog, instead of ← we use : −. So, the Prolog syntax for this clause is:

A : −B1, B2, ..., Bm

.
Such a clause is called program clause (or rule), where A is the clause head, and B1, B2, ..., Bm

– the clause body. According to the definition of Horn clauses we may have a clause with no
positive literals, i.e.

: −B1, B2, ..., Bm,

.
that may be written also as

?−B1, B2, ..., Bm,

2

.
Such a clause is called goal. Also, if m = 0, then we get just A, which is another specific

form of a Horn clause called fact.
A conjunction (or set) of program clauses (rules), facts, or goals is called logic program.

1.2 Substitutions and unification

A set of the type θ = {V1/t1, V2/t2, ..., Vn/tn}, where Vi are all different variables (Vi 6= Vj∀i 6=
j) and ti – terms (ti 6= Vi, i = 1, ..., n), is called substitution.

Let t is a term or a clause. Substitution θ is applied to t by replacing each variable Vi

that appears in t with ti. The result of this application is denoted by tθ. tθ is also called
an instance of t. The transformation that replaces terms with variables is called inverse
substitution, denoted by θ−1. For example, let t1 = f(a, b, g(a, b)), t2 = f(A,B, g(C,D)) and
θ = {A/a,B/b, C/a, D/b}. Then t1θ = t2 and t2θ

−1 = t1.
Let t1 and t2 be terms. t1 is more general than t2, denoted t1 ≥ t2 (t2 is more specific than

t1), if there is a substitution θ (inverse substitution θ−1), such that t1θ = t2 (t2θ−1 = t1).
The term generalization relation induces a lattice for every term, where the lowemost

element is the term itself and the uppermost element is a variable.
A substitution, such that, when applied to two different terms make them identical, is

called unifier. The process of finding such a substitution is called unification. For example,
let t1 = f(X, b, U) and t2 = f(a, Y, Z). Then θ1 = {X/a, Y/b, Z/c} and θ2 = {X/a, Y/b, Z/U}
and both unifiers of t1 and t2, because t1θ1 = t2θ1 = f(a, b, c) and t1θ2 = t2θ2 = f(a, b, U).
Two thers may have more than one unifier as well as no unifiers at all. If they have at least
one unifier, they also must have a most general unifier (mgu). In the above example t1 and
t2 have many unifiers, but θ2 is the most general one, because f(a, b, U) is more general than
f(a, b, c) and all terms obtained by applying other unifiers to t1 and t2.

An inverse substitution, such that, when applied to two different terms makes them iden-
tical, is called anti-unifier. In contrast to the unifiers, two terms have always an anti-unifier.
In fact, any two terms t1 and t2 can be made identical by applying the inverse substitution
{t1/X, t2/X}. Consequently, for any two terms, there exists a least general anti-unifier, which
in the ML terminology we usually call least general generalization (lgg).

For example, f(X, g(a,X), Y, Z) = lgg(f(a, g(a, a), b, c), f(b, g(a, b), a, a) and all the other
anti-unifiers of these terms are more general than f(X, g(a,X), Y, Z), including the most
general one – a variable.

Graphically, all term operations defined above can be shown in a lattice (note that the
lower part of this lattice does not always exist).

V
...

anti-unifiers of t1 and t2
...

lgg(t1,t2)
/\
/ \
/ \

/ \
t1 t2
\ /
\ /
\ /
\/

mgu(t1,t2)

3

...
unifiers of t1 and t2

...

1.3 Semanics of logic programs and Prolog

Let P be a logic program. The set of all ground atoms that can be built by using predicates
from P with arguments – functions and constants also from P , is called Herbrand base of P ,
denoted BP .

Let M is a subset of BP , and C = A :- B1, ..., Bn (n ≥ 0) – a clause from P . M is a
model of C, if for all ground instances Cθ of C, either Aθ ∈ M or ∃Bj , Bjθ 6∈ M . Obviously
the empty clause 2 has no model. That is way we usually use the symbol 2 to represent the
logic constant ”false”.

M is a model of a logic program P , if M is a model of any clause from P . The intersection
of all models of P is called least Herbrand model, denoted MP . The intuition behind the
notion of model is to show when a clause or a logic program is true. This, of course depends
on the context where the clause appears, and this context is represented by its model (a set
of ground atoms, i.e. facts).

Let P1 and P2 are logic programs (sets of clauses). P2 is a logical consequence of P1,
denoted P1 |= P2, if every model of P1 is also a model of P2.

A logic program P is called satisfiable (intuitively, consistent or true), if P has a model.
Otherwise P is unsatisfiable (intuitively, inconsistent or false). Obviously, P is unsatisfiable,
when P |= 2. Further, the deduction theorem says that P1 |= P2 is equivalent to P1∧¬P2 |= 2.

An important result in logic programming is that the least Herbrand model of a program
P is unique and consists of all ground atoms that are logical consequences of P , i.e.

MP = {A|A is a ground atom,P |= A}

.
In particular, this applies to clauses too. We say that a clause C covers a ground atom A,

if C |= A, i.e. A belongs to all models of C.
It is interesting to find out the logical consequences of a logic program P , i.e. what follows

from a logic program. However, according to the above definition this requires an exhaustive
search through all possible models of P , which is computationally very expensive. Fortunately,
there is another approach, called inference rules, that may be used for this purpose.

An inference rule is a procedure I for transforming one formula (program, clause) P into
another one Q, denoted P `I Q. A rule I is correct and complete, if P `I P only when
P1 |= P2.

Hereafter we briefly discuss a correct and complete inference rule, called resolution. Let
C1 and C2 be clauses, such that there exist a pair of literals L1 ∈ C1 and L2 ∈ C2 that can be
made complementary by applying a most general unifier µ, i.e. L1µ = ¬L2µ. Then the clause
C = (C1\{L1}∪C2\{L2})µ is called resolvent of C1 and C2. Most importantly, C1∧C2 |= C.

For example, consider the following two clauses:

C1 = grandfather(X, Y) : −parent(X, Z), father(Z, Y).
C2 = parent(A,B) : −father(A,B).

The resolvent of C1 and C2 is:

C1 = grandfather(X, Y) : −father(X, Z), father(Z, Y),

4

where the literals ¬parent(X, Z) in C1 and parent(A,B) in C2 have been made complemen-
tary by the substitution µ = {A/X, B/Z}.

By using the resolution rule we can check, if an atom A or a conjunction of atoms
A1, A2, ..., An logically follows from a logic program P . This can be done by applying a specific
type of the resolution rule, that is implemented in Prolog. After loading the logic program P
in the Prolog database, we can execute queries in the form of ?−A. or ?−A1, A2, ..., An. (in
fact, goals in the language of logic programming). The Prolog system answers these queries
by printing ”yes” or ”no” along with the substitutions for the variables in the atoms (in case
of yes). For example, assume that the following program has been loaded in the database:

grandfather(X,Y) :- parent(X,Z), father(Z,Y).
parent(A,B) :- father(A,B).
father(john,bill).
father(bill,ann).
father(bill,mary).

Then we may ask Prolog, if grandfather(john, ann) is true:

?- grandfather(jihn,ann).
yes
?-

Another query may be ”Who are the grandchildren of John?”, specified by the following goal
(by typing ; after the Prolog answer we ask for alternative solutions):

?- grandfather(john,X).
X=ann;
X=mary;
no
?-

2 Lgg-based relational induction

θ-subsumption. Given two clauses C and D, we say that C subsumes D (or C is a general-
ization of D), if there is a substitution θ, such that Cθ ⊆ D. For example,

parent(X,Y):-son(Y,X)

θ-subsumes (θ = {X/john, Y/bob})

parent(john,bob):- son(bob,john),male(john)

because
{parent(X, Y),¬son(Y, X)}θ ⊆ {parent(john, bob),¬son(bob, john),¬male(john)}.

The θ-subsumption relation can be used to define an lgg of two clauses.
lgg under θ-subsumption (lggθ). The clause C is an lggθ of the clauses C1 and C2 if C
θ-subsumes C1 and C2, and for any other clause D, which θ-subsumes C1 and C2, D also
θ-subsumes C. Here is an example:

C1 = parent(john, peter) : −son(peter, john),male(john)
C2 = parent(mary, john) : −son(john, mary)
lgg(C1, C2) = parent(A,B) : −son(B,A)

5

The lgg under θ-subsumption can be calculated by using the lgg on terms. lgg(C1, C2) can
be found by collecting all lgg’s of one literal from C1 and one literal from C2. Thus we have

lgg(C1, C2) = {L|L = lgg(L1, L2), L1 ∈ C1, L2 ∈ C2}

Note that we have to include in the result all literals L, because any clause even with one
literal L will θ-subsume C1 and C2, however it will not be the least general one, i.e. an lgg.

When background knowledge BK is used a special form of relative lgg (or rlgg) can be
defined on atoms. Assume BK is a set of facts, and A and B are facts too (i.e. clauses
without negative literals). Then

rlgg(A,B, BK) = lgg(A : −BK,B : −BK)

The relative lgg (rlgg) can be used to implement an inductive learning algorithm that
induces Horn clauses given examples and background knowledge as first order atoms (facts).
Below we illustrate this algorithm with an example.

Consider the following set of facts (desribing a directed acyclic graph): BK = {link(1, 2),
link(2, 3), link(3, 4), link(3, 5)}, positive examples E+ = {path(1, 2), path(3, 4), path(2, 4),
path(1, 3)} and negative examples E− – the set of all instances of path(X, Y), such that
there is not path between X and Y in BK. Let us now apply an rlgg-based version of the
covering algorithm desribed in the previous section:

1. Select the first two positive examples path(1, 2), path(3, 4) and find their rlgg, i.e. the
lgg of the following two clauses (note that the bodies of these clauses include also all
positive examples, because they are part of BK):

path(1, 2) : −link(1, 2), link(2, 3), link(3, 4), link(3, 5),
path(1, 2), path(3, 4), path(2, 4), path(1, 3)

path(3, 4) : −link(1, 2), link(2, 3), link(3, 4), link(3, 5),
path(1, 2), path(3, 4), path(2, 4), path(1, 3)

According to the above-mentioned algorithm this is the clause:
path(A,B) : −path(1, 3), path(C,D), path(A,D), path(C, 3),

path(E,F), path(2, 4), path(G, 4), path(2, F), path(H,F), path(I, 4),
path(3, 4), path(I, F), path(E, 3), path(2, D), path(G, D), path(2, 3),
link(3, 5), link(3,−), link(I,−), link(H,−), link(3,−), link(3, 4),
link(I, F), link(H,−), link(G,−), link(G, D), link(2, 3), link(E, I),
link(A,−), link(A,B), link(C,G), link(1, 2).

2. Here we perform an additional step, called reduction, to simplify the above clause. For
this purpose we remove from the clause body:

• all ground literals;

• all literals that are not connected with the clause head (none of the head variables
A and B appears in them);

• all literals that make the clause tautology (a clause that is always true), i.e. body
literals same as the clause head;

• all literals that when removed do not reduce the clause coverage of positive exam-
ples and do not make the clause incorrect (covering negative examples).

After the reduction step the clause is path(A,B) : −link(A,B).

3. Now we remove from E+ the examples that the above clause covers and then E+ =
{path(2, 4), path(1, 3)}.

6

4. Since E+ is not empty, we further select two examples (path(2, 4), path(1, 3)) and find
their rlgg, i.e. the lgg of the following two clauses:

path(2, 4) : −link(1, 2), link(2, 3), link(3, 4), link(3, 5),
path(1, 2), path(3, 4), path(2, 4), path(1, 3)

path(1, 3) : −link(1, 2), link(2, 3), link(3, 4), link(3, 5),
path(1, 2), path(3, 4), path(2, 4), path(1, 3)

which is:
path(A,B) : −path(1, 3), path(C,D), path(E,D), path(C, 3),

path(A,B), path(2, 4), path(F, 4), path(2, B), path(G, B), path(H, 4),
path(3, 4), path(H,B), path(A, 3), path(2, D), path(F,D), path(2, 3),
link(3, 5), link(3,−), link(H,−), link(G,−), link(3,−), link(3, 4),
link(H,B), link(G,−), link(F,−), link(F,D), link(2, 3), link(A,H),
link(E,−), link(C,F), link(1, 2).

After reduction we get path(A,B) : −link(A,H), link(H,B).

The last two clauses form the sandard definition of a procedure to find a path in a graph.

3 Searching the space of relational hypotheses

In this section we shall discuss a basic algorithm for learning Horn clauses from examples
(ground facts), based on general to specific search embeded in a covering strategy. At each
pass of the outermost loop of the algorithm a new clause is generated by θ-subsumption
specialization of the most general hypothesis >. Then the examples covered by this clause
are removed and the process continues until no uncovered exampes are left. The negative
examples are used in the inner loop that finds individual clauses to determine when the
current clause needs further specialization. Two types of specialization operators are applied:

1. Replacing a variable with a term.

2. Adding a literal to the clause body.

These operators are minimal with respect to θ-subsumption and thus they ensure an exhaus-
tive search in the θ-subsumption hierarchy.

There are two stopping conditions for the inner loop (terminal nodes in the hierarchy):

• Correct clauses, i.e. clauses covering at least one positive example and no negative
examples. These are used as components of the final hypothesis.

• Clauses not covering any positive examples. These are just omitted.

Let us consider an illustration of the above algorithm. The target predicate is member(X, L)
(returning true when X is a member of the list L). The examples are

E+ = {member(a, [a, b]),member(b, [b]),member(b, [a, b])},
E− = {member(x, [a, b])}.

The most general hypothesis is> = member(X, L). A part of the generalization/specialization
graph is shown in Figure 1. The terminal nodes of this graph:

member(X, [X|Z])
member(X, [Y |Z]) : −member(X, Z)

are correct clauses and jointly cover all positive examples. So, the goal of the algorithm is to
reach these leaves.

A key issue in the above algorithm is the search stategy. A possible approach to this is the
so called iterative deepening, where the graph is searched iteratively at depths 1, 2, 3,..., etc.
until no more specializations are needed. Another appraoch is a depth-first search with an
evaluation function (hill climbing). This is the approach taken in the popular system FOIL
that is briefly described in the next section.

7

member(X, L)

member(X, X)

member(X, [Y |Z])

member(L,L)

member(X, L):-member(L,X)

������������

�
�

�
�

�
�

��

�
�
�
�

@
@

@
@

@
@@

member(X, [X|Z]) member(X, [Y |Z]):-member(X, Z)

�
�

�
��

aaaaaaaaa

Figure 1: A generalization/specialization graph for member(X, L)

4 Heuristic search – FOIL

4.1 Setting of the problem

Consider the simple relational domain also discussed elsewhere – the link and path relations
in a directed acyclic graph. The background knowledge and the positive examples are:

BK = {link(1, 2), link(2, 3), link(3, 4), link(3, 5)}
E+ = {path(1, 2), path(1, 3), path(1, 4), path(1, 5),

path(2, 3), path(2, 4), path(2, 5), path(3, 4), path(3, 5)}

The negative examples can be specified explicitly. If we assume however, that our domain
is closed (as the particular link and path domain) the negative examples can be generated
automatically using the Closed World Assumption (CWA). In our case these are all ground
instances of the path predicate with arguments – constants from E+. Thus

E− = {path(1, 1), path(2, 1), path(2, 2), path(3, 1), path(3, 2), path(3, 3),
path(4, 1), path(4, 2), path(4, 3), path(4, 4), path(4, 5), path(5, 1), path(5, 2),
path(5, 3), path(5, 4), path(5, 5)}

The problem is to find a hypothesis H, i.e. a Prolog definition of path, which satisfies the
necessity and strong consistency requirements of the induction task. In other words we require
that BK ∧H ` E+ and BK ∧H 6` E−. To check these condition we use logical consequence
(called also cover).

4.2 Illustrative example

We start from the most general hypothesis

H1 = path(X, Y)

Obviously this hypothesis covers all positive examples E+, however many negative ones
too. Therefore we have to specialize it by adding body literals. Thus the next hypothesis is

H2 = path(X, Y) : −L.

The problem now is to find a proper literal L. Possible candidates are literals containing
only variables with predicate symbols and number of arguments taken from the set E+, i.e.

8

L ∈ {link(V1, V2), path(V1, V2)}.
Clearly if the variables V1, V2 are both different from the head variables X and Y , the new

clause H2 will not be more specific, i.e. it will cover the same set of negatives as H1. Therefore
we impose a restriction on the choice of variables, based on the notion of old variables. Old
variables are those appearing in the previous clause. In our case X and Y are old variables.
So, we require at least one of of V1 and V2 to be an old variable.

Further, we need a criterion to choose the best literal L. The system described here, FOIL
uses an information gain measure based on the ratio between the number of positive and
negative examples covered. Actually, each newly added literal has to decrease the number of
covered negatives maximizing at the same time the number of uncovered positives. Using this
criterion it may be shown that the best candidate is L = link(X, Y). That is

H2 = path(X, Y) : −link(X, Y)

This hypothesis does not cover any negative examples, hence we can stop further special-
ization of the clause. However there are still uncovered positive examples. So, we save H2 as
a part of the final hypothesis and continue the search for a new clause.

To find the next clause belonging to the hypothesis we exclude the positive examples
covered by H2 and apply the same algorithm for building a clause using the rest of positive
examples. This leads to the clause path(X, Y) : −link(X, Z), path(Y, Z), which covers these
examples and is also correct. Thus the final hypothesis H3 is the usual definition of path:

path(X,Y):-link(X,Y).
path(X,Y):-link(X,Z),path(Z,Y).

4.3 Algorithm FOIL

An algorithm based on the above ideas is implemented in the system called FOIL (First Order
Inductive Learning) [1]. Generally the algorithm consists of two nested loops. The inner loop
constructs a clause and the outer one adds the clause to the predicate definition and calls the
inner loop with the positive examples still uncovered by the current predicate.

The algorithm has several critical points, which are important for its efficiency and also
can be explored for further improvements: +

• The algorithm performs a search strategy by choosing the locally best branch in the
search tree and further exploring it without backtracking. This actually is a hill climbing
strategy which may drive the search in a local maximum and prevent it from finding
the best global solution. Particularly, this means that in the inner loop there might
be a situation when there are still uncovered negative examples and there is no proper
literal literal to be added. In such a situation we can allow the algorithm to add a
new literal without requiring an increase of the information gain and then to proceed
in the usual way. This means to force a further step in the search tree hopping to
escape from the local maximum. This further step however should not lead to decrease
of the information gain and also should not complicate the search space (increase the
branching). Both requirements are met if we choose determinate literals for this purpose.

Using determinate literals however does not guarantee that the best solution can be
found. Furthermore, this can complicate the clauses without actually improving the
hypothesis with respect to the sufficiency and strong consistency.

• When dealing with noise the strong consistency condition can be weakened by allowing
the inner loop to terminate even when the current clause covers some of the negative
examples. In other words these examples are considered as noise.

9

• If the set of positive examples is incomplete, then CWA will add the missing positive
examples to the set of negative ones. Then if we require strong consistency, the con-
structed hypothesis will be specialized to exclude the examples, which actually we want
to generalize. A proper stopping condition for the inner loop would cope with this too.

5 Inductive Logic Programming

5.1 ILP task

Generally Inductive Logic Programming (ILP) is an area integrating Machine Learning and
Logic Programming. In particular this is a version of the induction problem, where all lan-
guages are subsets of Horn clause logic or Prolog.

The setting for ILP is as follows. B and H are logic programs, and E+ and E− – usually
sets of ground facts. The conditions for construction of H are:

• Necessity: B 6` E+

• Sufficiency: B ∧H ` E+

• Weak consistency: B ∧H 6` []

• Strong consistency: B ∧H ∧ E− 6` []

The strong consistency is not always required, especially for systems which deal with
noise. The necessity and consistency condition can be checked by a theorem prover (e.g. a
Prolog interpreter). Further, applying Deduction theorem to the sufficiency condition we can
transform it into

B ∧ ¬E+ ` ¬H (1)

This condition actually allows to infer deductively the hypothesis from the background knowl-
edge and the examples. In most of the cases however, the number of hypotheses satisfying (1)
is too large. In order to limit this number and to find only useful hypotheses some additional
criteria should be used, such as:

• Extralogical restrictions on the background knowledge and the hypothesis language.

• Generality of the hypothesis. The simplest hypothesis is just E+. However, it is too
specific and hardly can be seen as a generalization of the examples.

• Decidability and tractability of the hypothesis. Extending the background knowledge
with the hypothesis should not make the resulting program indecidable or intractable,
though logically correct. The point here is that such hypotheses cannot be tested for
validity (applying the sufficiency and consistency conditions). Furthermore the aim of
ILP is to construct real working logic programs, rather than just elegant logical formulae.

In other words condition (1) can be used to generate a number of initial approximations
of the searched hypothesis, or to evaluate the correctness of a currently generated hypothesis.
Thus the problem of ILP comes to construction of correct hypotheses and moving in the space
of possible hypotheses (e.g. by generalization or specialization). For this purpose a number of
techniques and algorithms are developed.

5.2 Ordering Horn clauses

A logic program can be viewed in two ways: as a set of clauses (implicitly conjoined), where
each clause is a set of literals (implicitly disjoined), and as a logical formula in conjunctive
normal form (conjunction of disjunction of literals). The first interpretation allows us to
define a clause ordering based on the subset operation, called θ - subsumption.

10

5.2.1 θ-subsumption

θ-subsumption. Given two clauses C and D, we say that C subsumes D (or C is a general-
ization of D), iff there is a substitution θ, such that Cθ ⊆ D.

For example,

parent(X,Y):-son(Y,X)

θ-subsumes (θ = {X/john, Y/bob})

parent(john,bob):- son(bob,john),male(john)

since
{parent(X, Y),¬son(Y,X)}θ ⊆ {parent(john, bob),¬son(bob, john),¬male(john)}.
θ-subsumption can be used to define an lgg of two clauses.
lgg under θ-subsumption (lggθ). The clause C is an lggθ of the clauses C1 and C2 iff

C θ-subsumes C1 and C2, and for any other clause D, which θ-subsumes C1 and C2, D also
θ-subsumes C.

Consider for example the clauses C1 = p(a) ← q(a), q(f(a)) and C2 = p(b) ← q(f(b)).
The clause C = p(X)← a(f(X)) is an lggθ of C1 and C2.

The lgg under θ-subsumption can be calculated by using the lgg on terms. Consider clauses
C1 and C2. lgg(C1, C2) can be found by collecting all lgg’s of one literal from C1 and one
literal from C2. Thus we have

lgg(C1, C2) = {L|L = lgg(L1, L2), L1 ∈ C1, L2 ∈ C2}

Note that we have to include in the result all such literals L, because any clause even with
one literal L will θ-subsume C1 and C2, however it will not be the least general one, i.e. an
lgg.

5.2.2 Subsumption under implication

When viewing clauses as logical formulae we can define another type of ordering using logical
consequence (implication).

Subsumption under implication. The clause C1 is more general than clause C2, (C1

subsumes under implication C2), iff C1 ` C2. For example, (P : −Q) is more general than
(P : −Q,R), since (P : −Q) ` (P : −Q, R).

The above definition can be further extended by involving a theory (a logic program).
Subsumption relative to a theory. We say that C1 subsumes C2 w.r.t. theory T , iff

P ∧ C1 ` C2.
For example, consider the clause:

cuddly_pet(X) :- small(X), fluffy(X), pet(X) (C)

and the theory:

pet(X) :- cat(X) (T)
pet(X) :- dog(X)
small(X) :- cat(X)

Then C is more general than the following two clauses w.r.t. T :

cuddly_pet(X) :- small(X), fluffy(X), dog(X) (C1)
cuddly_pet(X) :- fluffy(X), cat(X) (C2)

11

Similarly to the terms, the ordering among clauses defines a lattice and clearly the most
interesting question is to find the least general generalization of two clauses. It is defined as
follows. C = lgg(C1, C2), iff C ≥ C1, C ≥ C2, and any other clause, which subsumes both
C1 and C2, subsumes also C. If we use a relative subsumption we can define a relative least
general generalization (rlgg).

The subsumption under implication can be tested using Herbrand’s theorem. It says
that F1 ` F2, iff for every substitution σ, (F1 ∧ ¬F2)σ is false ([]). Practically this can be
done in the following way. Let F be a clause or a conjunction of clauses (a theory), and
C = A : −B1, ..., Bn - a clause. We want to test whether F ∧ ¬C is always false for any
substitution. We can check that by skolemizing C, adding its body literals as facts to F and
testing whether A follows from the obtained formula. That is, F ∧ ¬C ` [] is equivalent to
F ∧¬A∧B1∧ ...∧Bn ` [], which in turn is equivalent to F ∧B1∧ ...∧Bn ` A. The latter can
be checked easily by Prolog resolution, since A is a ground literal (goal) and F ∧B1 ∧ ...∧Bn

is a logic program.

5.2.3 Relation between θ-subsumption and subsumption under implication

Let C and D be clauses. Clearly, if Cθ-subsumes D, then C ` D (this can be shown by the
fact that all models of C are also models of D, because D has just more disjuncts than C).
However, the opposite is not true, i.e. from C ` D does not follow that C θ-subsumes D.
The latter can be shown by the following example.

Let C = p(X) ← q(f(X)) and D = p(X) ← q(f(f(X))). Then C ` D, however C does
not θ-subsume D.

5.3 Inverse Resolution

A more constructive way of dealing with clause ordering is by using the resolution principle.
The idea is that the resolvent of two clauses is subsumed by their conjunction. For example,
(P ∨¬Q∨¬R)∧Q) is more general than P ∨¬R, since (P ∨¬Q∨¬R)∧Q) ` (P ∨¬R). The
clauses C1 and C2 from the above example are resolvents of C and clauses from T .

The resolution principle is an effective way of deriving logical consequences, i.e. spe-
cializations. However when building hypothesis we often need an algorithm for inferring
generalizations of clauses. So, this could be done by an inverted resolution procedure. This
idea is discussed in the next section.

Consider two clauses C1 and C2 and its resolvent C. Assume that the resolved literal
appears positive in C1 and negative in C2. The three clauses can be drawn at the edges of a
”V” – C1 and C2 at the arms and C – at the base of the ”V”.

C1 C2
\ /
\ /
\/
C

A resolution step derives the clause at the base of the ”V”, given the two clauses of the
arms. In the ILP framework we are interested to infer the clauses at the arms, given the
clause at the base. Such an operation is called ”V” operator. There are two possibilities.

A ”V” operator which given C1 and C constructs C2 is called absorption. The construction
of C1 from C2 and C is called identification.

The ”V” operator can be derived from the equation of resolution:

C = (C1 − {L1})θ1 ∪ (C2 − {L2})θ2

12

where L1 is a positive literal in C1, L2 is a negative literal in C2 and θ1θ2 is the mgu of
¬L1 and L2.

Let C = C ′
1∪C ′

2, where C ′
1 = (C1−{L1})θ1 and C ′

2 = (C2−{L2})θ2. Also let D = C ′
1−C ′

2.
Thus C ′

2 = C −D, or (C2 − {L2})θ2 = C −D. Hence:

C2 = (C −D)θ−1
2 ∪ {L2}

Since θ1θ2 is the mgu of ¬L1 and L2, we get L2 = ¬L1θ1θ
−1
2 . By θ−1

2 we denote an inverse
substitution. It replaces terms with variables and uses places to select the term arguments to
be replaced by variables. The places are defined as n-tuples of natural numbers as follows.
The term at place <i> within f(t0, .., tm) is ti and the term at place <i0, i1, .., in> within
f(t0, .., tm) is the term at place <i1, .., in> within ti0 . For example, let E = f(a, b, g(a, b)),
Q = f(A,B, g(C,D)). Then Qσ = E, where σ = {A/a,B/b, C/a, D/b}. The inverse sub-
stitution of σ is σ−1 = {<a,<0>>/A,<b,<1>>/B,<a,<2, 0>>/C,<b,<2, 1> /D}. Thus
Eσ−1 = Q. Clearly σσ−1 = {}.

Further, substituting L2 into the above equation we get

C2 = ((C −D) ∪ {¬L1}θ1)θ−1
2

The choice of L1 is unique, because as a positive literal, L1 is the head of C1. However the
above equation is still not well defined. Depending on the choice of D it give a whole range
of solutions, i.e. � ∩D ∩ C ′

1. Since we need the most specific C2, D should be �. Then we
have

C2 = (C ∪ {¬L1}θ1)θ−1
2

Further we have to determine θ1 and θ−1
2 . Again, the choice of most specific solution gives

that θ−1
2 has to be empty. Thus finally we get the most specific solution of the absorption

operation as follows:

C2 = C ∪ {¬L1}θ1

The substitution θ1 can be partly determined from C and C1. From the resolution equation
we can see that C1 − {L1}) θ-subsumes C with θ1. Thus a part of θ1 can be constructed by
matching literals from C1 and C, correspondingly. However for the rest of θ there is a free
choice, since θ1 is a part of the mgu ¬L1 and L2 and L2 is unknown. This problem can be
avoided by assuming that every variable within L1 also appear in C1. In this case θ can be
fully determined by matching all literals within (C1 − {L1}) with literals in C. Actually this
is a constraint that all variables in a head (L1) of a clause (C1) have to be found in its body
(C1−{L1}). Such clauses are called generative clauses and are often used in the ILP systems.

For example, given the following two clauses

mother(A,B) :- sex(A,female),daughter(B,A) (C1)
grandfather(a,c) :- father(a,m),sex(m,female),daughter(c,m) (C)

the absorption ”V” operator as derived above will construct

grandfather(a,c) :- mother(m,c),father(a,m),
sex(m,female),daughter(c,m) (C2)

Note how the substitution θ1 was found. This was done by unifying a literal from C –
daughter(c,m) with a literal from C1 – daughter(B,A). Thus θ1 = {A/m,B/c} and L1θ1 =
mother(m,c). (The clause C1 is generative.)

The clause C2 can be reduced by removing the literals sex(m,female) and daughter(c,m).
This can be done since these two literals are redundant (C2 without them resolved with C1
will give the same result, C). Thus the result of the absorption ”V” operator is finally

13

grandfather(a,c) :- mother(m,c),father(a,m) (C2)

5.4 Predicate Invention

By combining two resolution V’s back-to-back we get a ”W” operator.

C1 A C2
\ /\ /
\ / \ /
\/ \/
B1 B2

Assume that C1 and C2 resolve on a common literal L in A and produce B1 and B2

respectively. The ”W” operator constructs A, C1 and C2, given B1 and B2. It is important
to note that the literal L does not appear in B1 and B2. So, the ”W” operator has to introduce
a new predicate symbol. In this sense this predicate is invented by the ”W” operator.

The literal L can appear as negative or as positive in A. Consequently there are to types
of ”W” operators - intra-construction and inter-construction correspondingly.

Consider the two resolution equations involved in the ”W” operator.

Bi = (A− {L})θAi
∪ (Ci − {Li})θCi

where i ∈ {1, 2}, L is negative in A, and positive in Ci, and θAi
θCi

is the mgu of ¬L and
Li. Thus (A − {L}) θ-subsumes each clause Bi, which in turn gives one possible solution
(A− {L}) = lgg(B1, B2), i.e.

A = lgg(B1, B2) ∪ {L}

Then θAi
can be constructed by matching (A− {L}) with literals of Bi.

Then substituting A in the resolution equation and assuming that θCi is empty (similarly
to the ”V” operator) we get

Ci = (Bi − lgg(B1, B2)θAi
) ∪ {Li}

Since Li = ¬LθAi
θ−1

Ci
, we obtain finally

Ci = (Bi − lgg(B1, B2)θAi
) ∪ {¬L}θAi

For example the intra-construction ”W” operator given the clauses

grandfather(X,Y) :- father(X,Z), mother(Z,Y) (B1)
grandfather(A,B) :- father(A,C), father(C,B) (B2)

constructs the following three clauses (the arms of the ”W”).

p1(_1,_2) :- mother(_1,_2) (C1)
p1(_3,_4) :- father(_3,_4) (C2)
grandfather(_5,_6) :- p1(_7,_6), father(_5,_7) (A)

The ”invented” predicate here is p1, which obviously has the meaning of ”parent”.

14

5.5 Extralogical restrictions

The background knowledge is often restricted to ground facts. This simplifies substantially all
the operations discussed so far. Furthermore, this allows all ground hypotheses to be derived
directly, i.e. in that case B ∧ ¬E+ is a set of positive and negative literals.

The hypotheses satisfying all logical conditions can be still too many and thus difficult
to construct and generate. Therefore extralogical constraints are often imposed. Basically
all such constraint restrict the language of the hypothesis to a smaller subset of Horn clause
logic. The most often used subsets of Horn clauses are:

• Function-free clauses (Datalog). These simplifies all operations discussed above. Ac-
tually each clause can be transformed into a function-free form by introducing new
predicate symbols.

• Generative clauses. These clauses require all variables in the clause head to appear in
the clause body. This is not a very strong requirement, however it reduces substantially
the space of possible clauses.

• Determinate literals. This restriction concerns the body literals in the clauses. Let P
be a logic program, M(P) – its model, E+ – positive examples and A : −B1, ..., Bm,
Bm+1, ..., Bn – a clause from P . The literal Bm+1 is determinate, iff for any substitution
θ, such that Aθ ∈ E+, and {B1, ..., Bm}θ ⊆ M(P), there is a unique substitution δ,
such that Bm+1θδ ∈M(P).

For example, consider the program

p(A,D):-a(A,B),b(B,C),c(C,D).
a(1,2).
b(2,3).
c(3,4).
c(3,5).

Literals a(A,B) and b(B,C) are determinate, but c(C,D) is not determinate.

5.6 Illustrative examples

In this section we shall discuss three simple examples of solving ILP problems.
Example 1. Single example, single hypothesis.
Consider the background knowledge B

haswings(X):-bird(X)
bird(X):-vulture(X)

and the example E+ = {haswings(tweety)}. The ground unit clauses, which are logical
consequences of B ∧ ¬E+ are the following:

C = ¬bird(tweety) ∧ ¬vulture(tweety) ∧ ¬haswings(tweety)
This gives three most specific clauses for the hypothesis. So, the hypothesis could be any

one of the following facts:

bird(tweety)
vulture(tweety)
haswings(tweety)

15

Example 2.
Suppose that E+ = E1 ∧E2 ∧ ...∧En is a set of ground atoms, and C is the set of ground

unit positive consequences of B ∧ ¬E+. It is clear that

B ∧ ¬E+ ` ¬E+ ∧ C

Substituting for E+ we obtain

B ∧ ¬E+ ` (¬E1 ∧ C) ∨ (¬E2 ∧ C) ∨ ... ∨ (¬En ∧ C)

Therefore H = (E1 ∨ ¬C) ∧ (E1 ∨ ¬C) ∧ ... ∧ (En ∨ ¬C), which is a set of clauses (logic
program).

Consider an example.
B = {father(harry, john), father(john, fred), uncle(harry, jill)}
E+ = {parent(harry, john), parent(john, fred)}
The ground unit positive consequences of B ∧ ¬E+ are
C = father(harry, john) ∧ father(john, fred) ∧ uncle(harry, jill)
Then the most specific clauses for the hypothesis are E1 ∨ ¬C and E2 ∨ ¬C:

parent(harry,john):-father(harry,john),
father(john,fred),
uncle(harry,jill)

parent(john,fred):-father(harry,john),
father(john,fred),
uncle(harry,jill)

Then lgg(E1 ∨ ¬C,E2 ∨ ¬C) is

parent(A,B):-father(A,B),father(C,D),uncle(E,F)

This clause however contains redundant literals, which can be easily removed if we restrict
the language to determinate literals. Then the final hypothesis is:

parent(A,B):-father(A,B)

Example 3. Predicate Invention.
B = {min(X, [X]), 3 > 2}
E+ = {min(2, [3, 2]),min(2, [2, 2])}
The ground unit-positive consequences of B ∧ ¬E+ are the following:
C = min(2, [2]) ∧min(3, [3]) ∧ 3 > 2
As before we get the two most specific hypotheses:

min(2,[3,2]):-min(2,[2]),min(3,[3]),3>2
min(2,[2,2]):-min(2,[2]),min(3,[3]),3>2

We can now generalize and simplify these clauses, applying the restriction of determinate
literals.

min(X,[Y|Z]):-min(X,Z),Y>X
min(X,[X|Y]):-min(X,Y)

Then we can apply the ”W”-operator in the following way (the corresponding substitutions
are shown at the arms of the ”W”):

16

p(B,A):-B>A min(A,[B|C]):-min(A,C),p(B,A) p(B,B)
\ /\ /
\ / \ /
\ / \ /
\ / \ /

{B/Y,A/Y} / {A/X,B/X,C/Y} {B/X}
\ / \ /
\ {A/X,B/Y,C/Z} \ /
\ / \ /
\ / \ /
\ / \ /
\ / \ /
\/ \/

min(X,[Y|Z]):-min(X,Z),Y>X min(X,[X|Y]):-min(X,Y)

Obviously the semantics of the ”invented” predicate p is ”≥” (greater than or equal to).

5.7 Basic strategies for solving the ILP problem

Generally two strategies can be explored:

• Specific to general search. This is the approach suggested by condition (1) allowing
deductive inference of the hypothesis. First, a number of most specific clauses are
constructed and then using ”V”, ”W”, lgg or other generalization operators this set
is converged in one of several generalized clauses. If the problem involves negative
examples, then the currently generated clauses are tested for correctness using the strong
consistency condition. This approach was illustrated by the examples.

• General to specific search. This approach is mostly used when some heuristic techniques
are applied. The search starts with the most general clause covering E+. Then this
clause is further specialized (e.g. by adding body literals) in order to avoid covering
of E−. For example, the predicate parent(X, Y) covers E+ from example 2, however
it is too general and thus coves many other irrelevant examples too. So, it should be
specialized by adding body literals. Such literals can be constructed using predicate
symbols from B and E+. This approach is explored in the system FOIL [1].

References

[1] J. R. Quinlan. Learning logical definitions from relations. Machine Learning, 5:239–266,
1990.

17

