Lecture Notes in Machine Learning — Chapter 5:
Induction of Decision Trees

Zdravko Markov
February 24, 2004

1 Representing disjunctive concepts

Consider the problem domain described by the attribute-value language L (discussed in Chap-
ter 2) and the following set of classified examples:

ET = {[red, circle], [blue, triangle], [blue, square] }
E~ ={[red, square], [red, triangle]}

The candidate elimination algorithm applied to these data cannot produce a correct hy-
pothesis. This is because there exist positive examples, whose least generalization covers
some negative examples. For example, there is no hypothesis covering both [red, circle], and
[blue, square] and at the same time not covering the negative example [red, square].

This problem is due to the very restricted language for the hypotheses we use in the can-
didate elimination algorithm. Clearly the above data require a concept description involving
a disjunction between two subdomains in the hypothesis space.

A description which can cope with such data is the decision tree. A decision tree can be
represented in various forms. Here is a decision tree for classification of the above training
set shown in two ways:

1. Tree. Each node represents an attribute (e.g. color), and the branches from the node are
the different choices of the attribute values. Clearly the branches represent disjunctive
relations between attribute values (the color can be blue OR red, and both branches
belong to the concept). The leaves of the tree actually represent the classification. Each
one is marked YES or NO, depending on whether the particular choice of values along
the path to this leaf specifies a positive or a negative example, correspondingly.

triangle square circle
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2. Set of rules. These rules actually represent the paths in the decision tree.

IF color = blue THEN YES

IF color = red AND shape = circle THEN YES
IF color = red AND shape = square THEN NO
IF color = red AND shape = triangle THEN NO

A natural question is "how can the decision tree generalize”. The above tree is a typical
example of generalization. The first left branch of the tree leads to a leaf, which is determined
by fixing only one of the attributes (color). Thus we allow the other one (shape) to have any
value and hence to cover a number of positive examples. Actually in the taxonomic language
L thiswould be the concept [blue, any_shape].

2 Building a decision tree

There are many algorithms for building decision trees. Many of them refer to the Quinlan’s
ID3 [3]. Actually it is a family of concept learning algorithms, called TDIDT (Top-Down
Induction of Decision Trees), which originated from the Concept Learning System (CLS) of

[2].
The basic algorithm is the following ([1]). Its input is a set of training instances E, and
its output is a decision tree.

1. If all instances in F are positive, then create a YES node and halt. If all instances in F
are negative, then create a NO node and halt. Otherwise, select (using some heuristic
criterion) an attribute, A, with values V;...V,, and create the decision node

2. Partition the training instances in F into subsets F1, Fs, ..., E,, according to the values
of A({V1,Va, ..., Vi })

3. Apply the algorithm recursively to each of the sets Ey, Es etc.

Here is an example how this algorithm works. Consider the following set E of 6 instances
(the positive are marker with ”+”, and the negative — with 7-"):

1. [red,circle] +

2. [red,square] -

3. [red,triangle] -
4. [blue,triangle] -
5. [blue,square] -

6. [blue,circle] -

Initially the set of instances E is just the complete sequence of instances. These are nei-
ther uniformly positive or uniformly negative so the algorithm selects an attribute A and
creates a decision node. Assume that the shape attribute is chosen. It has possible values



{triangle, square, circle}. Therefore a decision node is created which has a branch corre-
sponding to each value.

The set E is now partitioned into subsets E7, 5 etc. according to the possible values of
”shape”. Instances with shape = triangle all end up in one subset, instances with shape =
circle all end up in another and so on.

The algorithm is now applied recursively to the subsets E7, Fs etc. Two of these now
contain single instances. The set of instances with shape = triangle is just {3}, while the set
of instances with shape = square is just {2}. Thus two NO nodes are created at the end of
the corresponding branches.

The set of instances with shape = circle is {1,6}. It does not contain uniformly positive
or negative instances so a new feature is selected on which to further split the instances.
The only feature left now is color. Splitting the instances on this feature produces the final
two leaves (a YES node and a NO node) and the algorithm terminates, having produced the
following decision-tree:
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|
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3 Informaton-based heuristic for attribute selection

Clearly, we will want the algorithm to construct small, bushy trees, i.e. simple decision rules.
However, the degree to which it will do so depends to an extent on how clever it is at selecting
”good” attributes on which to split instances.

Selecting ”good” attributes means giving priority to attributes which will best sort the
instances out into uniform groups. So the question is, how can the algorithm be provided
with a criterion, which will enable it distinguish (and select) this sort of attribute.

Several approaches have been explored. The most well-known is Quinlan’s which involves
calculating the entropy of the distribution of the positive/negative instances resulting from
splitting on each of the remaining attributes and then using the attribute which achieves the
lowest entropy distribution.

The entropy measure is based on the information theory of Shannon. According to this
theory we can calculate the information content of the training set, and consequently, of any
decision tree that covers this set of examples.

If we assume that all the instances in the training set E (the example above) occur with
equal probability, then p(Y ES) = 1/6, p(NO) = 5/6. The information in F is:

1 1 5 5



We want to find a measure of ”goodness” (information gain) for each attribute chosen
as a root of the current tree. This could be the total information in the tree minus the
amount of information needed to complete the tree after choosing that attribute as a root.
The amount of information needed to complete the tree is defined as the weighted average
of the information in all its subtrees. The weighted average is computed by multiplying the
information content of each subtree by the percentage of the examples present in that subtree
and summing these products.

Assume that making attribute A, with n values, the root of the current tree, will partition
the set of training examples F into subsets Ei,..., E,. Then, the information needed to
complete that tree after making A the root is:

R(A) =3 1B

Then, the information gain of choosing attribute A is:

gain(A) = I(E) — R(A)

For the above example we can calculate the gain of choosing attributes color and shape.
For color we have two subsets Cq, = {1,2,3} and Cy = {4,5,6}.

1. 1.2 2
1(Ch) = —3loga(3) — 5loga(3) = 0.5383 + 0.3840 = 0.9723

3 3
0 0 3 3

3 3
gain(color) = I(E) — R(color) = 0.65 — (60.9723 + 60) =0.1638
For shape we have three subsets S1 = {1,6}, So = {2,5} and S5 = {3,4}.

1 1 1 1
I(Sl) = *51092(5) - 51092(5) =1

Clearly I(S2) =0, and I(S3) = 0, since they contain only one-class instances. Then

2
gain(shape) = I(E) — R(shape) = 0.65 — (61 +0+0)=0.3166

Because shape provides grater information gain the algorithm will select it first to partition
the tree (as it was shown in the examples above).

4 Learning multiple concepts

The algorithm described in Section 2 actually builds decision trees for classification of the
training instances into two classes (YES — belonging to the concept, and NO — not belonging
to the concept). This algorithm can be easily generalized to handle more than two classes
(concepts) as follows:

1. If all instances in E belong to a single class, then create a node marked with the class
name and halt. Otherwise, select an attribute A (e.g. using the information gain
heuristic), with values V;...V,, and create the decision node



2. Partition the training instances in F into subsets Fy, Fo, ..., E,, according to the values

of A({V1,Va, ..., Vi})

3. Apply the algorithm recursively to each of the sets E1, Es etc.

5 Learning from noisy data

In many situations the training data are imperfect. For example, the attribute or class values
for some instances could be incorrect, because of errors. We call such data noisy data. In case
of noise we usually abandon the requirement the hypothesis to cover all positive and none of
the negative examples. So, we allow the learning system to misclassify some instances and we
hope that the misclassified instances are those that contain errors.

Inducing decision trees from nosy data will cause basically two problems: first, the trees
misclassify new data, and second, the trees tend to become very large and thus hard to
understand and difficult to use.

Assume the following situation. At some step of the algorithm we have chosen an attribute
A partitioning the current set .S of 100 training instances into two classes — C7 and Cy, where
C1 contains 99 instances and Cy - one instance. Knowing that there is a noise in the training
data, we can assume that all instances from S belong to class C;. In this way we force the
algorithm to stop further exploring the decision tree, i.e. we prune the subtree rooted at
A. This technique is called forward pruning. There is another kind of pruning, called post-
pruning, where first the whole tree is explored completely, and then the subtrees are estimated
on their reliability with respect to possible errors. Then those of them with low estimates are
pruned. Both techniques for pruning are based on probability estimates of the classification
error in each node of the tree.
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