
Lecture Notes in Machine Learning – Chapter 4: Version

space learning

Zdravko Markov

February 17, 2004

Let us consider an example. We shall use an attribute-value language for both the examples
and the hypotheses L = {[A,B], A ∈ T1, B ∈ T2}. T1 and T2 are taxonomic trees of attribute
values. Let’s consider the taxonomies of colors (T1) and planar geometric shapes (T2), defined
by the relation son.

Taxonomy of Colors: Taxonomy of Shapes:

son(primary_color,any_color). son(polygon,any_shape).
son(composite_color,any_color). son(oval,any_shape).
son(red,primary_color). son(triangle,polygon).
son(blue,primary_color). son(quadrangle,polygon).
son(green,primary_color). son(rectangle,quadrangle).
son(orange,composite_color). son(square,quadrangle).
son(pink,composite_color). son(trapezoid,quadrangle).
son(yellow,composite_color). son(circle,oval).
son(grey,composite_color). son(ellipse,oval).

Using the hierarchically ordered attribute values in taxonomies we can define the derivabil-
ity relation (→) by the cover relation (≥), as follows: [A1, B1] ≥ [A2, B2], if A2 is a successor
of A1 in T1, and B2 is a successor of B1 in T2. For example, [red, polygon] ≥ [red, triangle],
and [any−color, any−shape] covers all possible examples expressed in the language L.

Let P ∈ L,Q ∈ L, and P ≥ Q. Then P is a generalization of Q, and Q is a specialization
of P .

Let E+ = {E+
1 , E+

2 }, E
+
1 = [red, square], E+

2 = [blue, rectangle],
E− = [orange, triangle], and B = �.

Then the problem is to find such a hypothesis H, that H ≥ E+
1 , H ≥ E+

2 , i.e. H is a
generalization of E+.

Clearly there are a number of such generalizations, i.e. we have a hypothesis space
SH = {[primary−color, quadrangle], [primary−color, polygon], ...,

[any−color, any−shape]}.
However not all hypotheses from SH satisfy the consistency requirement, (H 6≥ E−), i.e.

some of them are overgeneralized. So, the elements H ∈ S, such that H ≥ E−, have to be
excluded, i.e they have to be specialized, so that not to cover any more the negative example.
Thus we obtain a set of correct (consistent with the examples) hypotheses, which is called
version space, V S = {[primary−color, quadrangle], [any−color, quadrangle]}.

Now we can add the obtained hypotheses to the background knowledge and further process
other positive and negative examples. Learning systems which process a sequence of examples
one at a time and at each step maintain a consistent hypotheses are called incremental learning
systems. Clearly the basic task of these systems is to search through the version space. As

1



we have shown above this search can be directed in two ways – specific to general and general
to specific.

1 Search strategies in version space

To solve the induction problem the version space have to be searched through in order to find
the best hypothesis. The simplest algorithm for this search could be the generate-and-test
algorithm, where the generator produces all generalizations of the positive examples and the
tester filters out those of them which cover the negative examples. Since the version space
could be very large such an algorithm is obviously unsuitable. Hence the version space has
to be structured and some directed search strategies have to be applied.

1.1 Specific to general search

This search strategy maintains a set S (a part of the version space) of maximally specific
generalizations. The aim here is to avoid overgeneralization. A hypothesis H is maximally
specific if it covers all positive examples, none of the negative examples, and for any other
hypothesis H ′ that covers the positive examples, H ′ ≥ H. The algorithm is the following:

Begin

Initialize S to the first positive example

Initialize N to all negative examples seen so far

For each positive example E+ do begin

Replace every H ∈ S, such that H 6≥ E+, with all its generalizations that cover E+

Delete from S all hypotheses that cover other hypotheses in S

Delete from S all hypotheses that cover any element from N

End

For every negative example E− do begin

Delete all members of S that cover E−

Add E− to N

End

End

1.2 General to specific search

This strategy maintains a set G (a part of the version space) of maximally general hypotheses.
A hypothesis H is maximally general if it covers none of the negative examples, and for any
other hypothesis H ′ that covers no negative examples, H ≥ H ′. The algorithm is the following:

Begin

Initialize G to the most general concept in the version space

Initialize P to all positive examples seen so far

2



For each negative example E− do begin

Replace every H ∈ G, such that H ≥ E−, with all its specializations that do not cover
E−

Delete from G all hypotheses more specific (covered by) other hypotheses in G

Delete from G all hypotheses that fail to cover some example from P

End

For every positive example E+ do begin

Delete all members of G that fail to cover E+

Add E+ to P

End

End

2 Candidate Elimination Algorithm

The algorithms shown above generate a number of plausible hypotheses. Actually the sets
S and G can be seen as boundary sets defining all hypotheses in the version space. This
is expressed by the boundary set theorem [1], which says that for every element H from
the version space there exist H ′ ∈ S and H ′′ ∈ G, such that H ≥ H ′ and H ′′ ≥ H. In
other words the boundary sets S and G allows us to generate every possible hypothesis by
generalization and specialization of their elements, i.e. every element in the version space
can be found along the generalization/specialization links between elements of G and S.
This suggests an algorithm combining the two search strategies of the version space, called
candidate elimination algorithm [2].

The candidate elimination algorithm uses bi-directional search of the version space. It can
be easily obtained by putting together the algorithms from section 2.1 and 2.2 and replacing
the following items from them:

1. Replace ”Delete from S all hypotheses that cover any element from N” with ”Delete
from S any hypothesis not more specific than some hypothesis in G”

2. Replace ”Delete from G all hypotheses that fail to cover some example from P” with
”Delete from G any hypothesis more specific than some hypothesis in S”

These alterations are possible since each one of them implies what it alters. Thus collecting
all positive and negative examples in the sets P and N becomes unnecessary. Clearly this
makes the bi-directional algorithm more efficient. Furthermore using the boundary sets two
stopping conditions can be imposed:

1. If G = S and both are singletons, then stop. The algorithm has found a single
hypothesis consistent with the examples.

2. If G or S becomes empty then stop. Indicate that there is no hypothesis that covers
all positive and none of the negative examples.

3 Experiment Generation, Interactive Learning

The standard definition of the inductive learning problem assumes that the training examples
age given by an independent agent and the learner has no control over them. In many
cases, however, it is possible to select an example and then to acquire information about its
classification. Learning systems exploring this strategy are called interactive learning systems.
Such a system use an agent (called oracle) which provides the classification of any example

3



Example space

Hypothesis space

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
AA�

�
�
�
�
�
�A

A
A
A
A
A
A

G

S

− − − − − −+ + +? ?

Figure 1: Graphical representation of version space. Question marsk denote the areas from
where new examples are chosen

the systems asks for. Clearly the basic problem here is to ask in such a way that the number
of further questions is minimal.

A common strategy in such situations is to select an example which halves the number of
hypotheses, i.e. one that satisfies one halve of the hypotheses and does not satisfy the other
halve.

Within the framework of the version space algorithm the halving strategy would be to find
an example that does not belong to the current version space (otherwise its classification is
known - it has to be positive) and to check it against all other hypotheses outside the version
space. Clearly this could be very costly. Therefore a simple strategy is the following (this is
actually and interactive version of the candidate elimination algorithm):

1. Ask for the first positive example

2. Calculate S and G using the candidate elimination algorithm

3. Find E, such that G ≥ E,∀s ∈ S, E 6≥ s (E is not in the version space).

4. Ask about the classification of E

5. Go to 2

The exit from this loop is through the stopping conditions of the candidate elimination
algorithm (item 2). A graphical illustration of the experiment generation algorithm is shown
in Figure 1

4



References

[1] M. Genesereth and N. Nilsson. Logical Foundations of Artificial Intelligence. Morgan
Kaufmann, 1987.

[2] T. M. Mitchell. Generalization as search. Artificial Intelligence, 18:203–226, 1982.

5


