Lecture Notes in Machine Learning - Chapter 3: Languages for learning

Zdravko Markov

February 9, 2004

1 Attribute-value language

The most popular way to represent examples and hypotheses is to use the so called attributevalue language. In this langauge the objects are represented as a set of pairs of an attribute (feature or characteristic) and its specific value. Formally this language can be defined as

$$
L=\left\{A_{1}=V_{1}, \ldots, A_{n}=V_{n} \mid V_{1} \in V_{A_{1}}, \ldots, V_{n} \in V_{A_{n}}\right\}
$$

where $V_{A_{i}}$ is a set of all possible values of attribute A_{i}. For example, the set $\{$ color $=$ green, shape $=$ rectangle $\}$ describes a green rectangular object.

The attribute-value pair can be considered as a predicate (statement which can have a truth value) and the set of these pairs - as a conjuction of the corresponding predicates. Thus, denoting $p_{1}=$ (color $=$ green) and $p_{2}=$ (shape $=$ rectangle), we get the formula $p_{1} \wedge p_{2}$ in the language of propositional calculus (also called propositional logic). The propositional logic is a subset of the first order logic (or predicate calculus) without variables.

The basic advantage of the attribute-value language is that it allows a straightforward definition of derivability (covering, subsumption) relation. Generally such a relation (denoted \geq and usually called subsumption) can be defined in three different ways depending of the type of the attributes:

- Attributes whose values cannot be ordered are called nominal. Using nominal attributes the subsumption relation is defined by dropping condition. For example, the class of objects defined by (shape $=$ rectangle) is more general (subsumes) the class of objects (color $=$ green) \wedge (shape $=$ rectangle). Formally, let $X \in L$ and $Y \in L$, then $X \geq Y$, if $X \subseteq Y$.
- If we have a full order on the atribute values, then the attributes are called linear. Most often these are numeric attributes with real or integer values. The subsumption relation in this case is defined as follows: let $X \in L$, i. e. $X=\left\{A_{1}=X_{1}, \ldots, A_{n}=X_{n}\right\}$ and $Y \in L$, i. e. $Y=\left\{A_{1}=Y_{1}, \ldots, A_{n}=Y_{n}\right\}$. Then $X \geq Y$, if $X_{i} \geq Y_{i}$ (the latter is a relation between numbers) $(i=1, \ldots, n)$.
- Attribute whose values can be partially ordered are called structural. The subsumption relation here is defined similarly to the case of linear attributes, i. e. $X \geq Y$, if $X_{i} \geq Y_{i}$ $(i=1, \ldots, n)$, where the relation $X_{i} \geq Y_{i}$ is usually defined by a taxonomic tree. Then, if X_{i} and Y_{i} are nodes in this tree, $X_{i} \geq Y_{i}$, when $X_{i}=Y_{i}, Y_{i}$ is immediate successor of X_{i} or, if not, there is a path from X_{i} to Y_{i}. (An example of taxonomy is shown in Figure ??.)

Using the above described language L as a basis we can define languages for describing examples, hypotheses and background knowledge. The examples are usually described directly in L, i.e. $L_{E}=L$. The language of hypotheses L_{H} is extended with a disjunction:

$$
L_{H}=\left\{C_{1} \vee C_{2} \vee \ldots \vee C_{n} \mid C_{i} \in L, i \geq 1\right\}
$$

A notational variant of this language is the so called internal disjunction, where the disjunction is applied to the values of a particular attribute. For example, $A_{i}=V_{i_{1}} \vee V_{i_{2}}$ means that attribute A_{i} has the value either of $V_{i_{1}}$ or of $V_{i_{2}}$.

The derivability relation in L_{H} is defined as follows: $H \rightarrow E$, if there exists a conjunct $C_{i} \in H$, so that $C_{i} \geq E$.

Similarly we define semantic subsumption: $H \geq \geq_{\text {sem }} H^{\prime}$, if $H \rightarrow E, H^{\prime} \rightarrow E^{\prime}$ and $E \supseteq E^{\prime}$.
The subsumption relation in L induces a syntactic partial order on hypotheses: $H \geq H^{\prime}$, if $\forall C_{i} \in H, \exists C_{j} \in H^{\prime}$, such that $C_{i} \geq C_{j}$. Obviously, if $H \geq H^{\prime}$, then $H \geq$ sem H^{\prime}. The reverse statement however is not true.

As the hypotheses are also supposed to explain the examples we need an easy-to-understand notation for L_{H}. For this purpose we usually use rules. For example, assuming that $H=$ $\left\{C_{1} \vee C_{2} \vee \ldots \vee C_{n}\right\}$ describes the positive examples (class +), it can be written as

```
if \(C_{1}\) then + ,
if \(C_{2}\) then + ,
if \(C_{n}\) then +
```

Often the induction task is solved for more than one concept. Then the set E is a union of more than two subsets, each one representing a different concept (category, class), i.e. $E=\cup_{i=1}^{k} E^{i}$. This multi-concept learning task can be represented as a series of two-class $(+$ and -) concept learning problems, where for i-th one the positive examples are E^{i}, and the negative ones are $E \backslash E^{i}$. In this case the hypothesis for Class $_{j}$ can be written as a set of rules of the following type:

if C_{i} then Class $_{j}$

To search the space of hypotheses we need constructive generalization/specialization operators. One such operator is the direct application of the subsumption relation. For nominal attributes generalization/specialization is achieved by dropping/adding attribute-value pairs. For structural attributes we need to move up and down the taxonomy of attribute values.

Another interesting generalization operator is the so called least general generalization (lgg), which in the lattice terminology is also called supremum (least upper bound).

Least general generalization (lgg). Let $H_{1}, H_{2} \in L . H$ is a least general generalization of H_{1} and H_{2}, denoted $H=\operatorname{lgg}\left(H_{1}, H_{2}\right)$, if H is a generalization of both H_{1} and $H_{2}\left(H \geq H_{1}\right.$ and $H \geq H_{2}$) and for any other H^{\prime}, which is also a generalization of both H_{1} and H_{2}, it follows that $H^{\prime} \geq H$.

Let $H_{1}=\left\{A_{1}=U_{1}, \ldots, A_{n}=U_{n}\right\}$ and $H_{2}=\left\{A_{1}=V_{1}, \ldots, A_{n}=V_{n}\right\}$. Then $\operatorname{lgg}\left(H_{1}, H_{2}\right)=$ $\left\{A_{1}=W_{1}, \ldots, A_{n}=W_{n}\right\}$, where W_{i} are computed differently for different attribute types:

- If A_{i} is nominal, $W_{i}=U_{i}=V_{1}$, when $U_{i}=V_{i}$. Otherwise A_{i} is skipped (i.e. it may take an arbitrary value). That is, $\operatorname{lgg}\left(H_{1}, H_{2}\right)=H_{1} \cap H_{2}$.
- If A_{i} is linear, then W_{i} is the minimal interval, that includes both U_{i} and V_{i}. The latter can be also intervals if we apply $l g g$ to hypotheses.
- If A_{i} is structural, W_{i} is the closest common parent of U_{i} and V_{i} in the taxonomy for A_{i}.

```
example(1,pos,[hs=octagon, bs=octagon, sm=no, ho=sword, jc=red, ti=yes]).
example(2,pos,[hs=square, bs=round, sm=yes, ho=flag, jc=red, ti=no]).
example(3,pos,[hs=square, bs=square, sm=yes, ho=sword, jc=yellow, ti=yes]).
example(4,pos,[hs=round, bs=round, sm=no, ho=sword, jc=yellow, ti=yes]).
example(5,pos,[hs=octagon, bs=octagon, sm=yes, ho=balloon, jc=blue, ti=no]).
example(6,neg,[hs=square, bs=round, sm=yes, ho=flag, jc=blue, ti=no]).
example(7,neg,[hs=round, bs=octagon, sm=no, ho=balloon, jc=blue, ti=yes]).
```

Figure 1: A sample from the MONK examples

In the attribute-value language we cannot represent background knowledge explicitly, so we assume that $B=\emptyset$. However, we still can use background knowledge in the form of taxonomies for structural attributes or sets (or intervals) of allowable values for the nominal (or linear) attributes. Explicit representation of the background knowledge is needed because this can allow the learning system to expand its knowledge by learning, that is, after every learning step we can add the hypotheses to B. This is possible with relational languages.

2 Relational languages

Figure 1 shows a sample from a set of examples describing a concept often used in ML, the so called MONKS concept [2]. The examples are shown as lists of attribute-value pairs with the following six attributes: $h s, b s, s m, h o, j c, t i$. The positive examples are denoted by pos, and the negative ones - by neg.

It is easy to find that the + concept includes objects that have the same value for attributes $h s$ and $b s$, or objects that have the value red for the $j c$ attribute. So, we can describe this as a set of rules:

```
if [hs=octagon, bs=octagon] then +
if [hs=square, bs=square] then +
if [hs=round, bs=round] then +
if [jc=red] then +
```

Similarly we can describe class -. For this purpose we need 18 rules - 6 (the number of $h s$-bs pairs with different values) times 3 (the number of values for $j c$).

Now assume that our language allows variables as well as equality and inequality relations. Then we can get a more concise representation for both classes + and - :

```
if [hs=bs] then +
if [jc=red] then +
if [hs=bs,jc\not=red] then -
```

Formally, we can use the language of First-Order Logic (FOL) or Predicate calculus as a representation language. Then the above examples can be represented as a set of first order atoms of the following type:

```
monk(round,round,no,sword,yellow,yes)
```

And the concept of + can be written as a set of two atoms (capital leters are variables, constant values start with lower case letters):

```
monk(A,A , B, C, D, E)
monk(A,B,C,D,red,E)
```

We can use even more expressive language - the language of Logic programming (or Prolog). Then we may have:

```
class(+,X) :- hs(X,Y),bs(X,Y).
class(+,X) :- jc(X,red).
class(-,X) :- not class(+,X).
```

Hereafter we introduce briefly the syntax and semantics of logic programs (for complete discussion of this topic see [1]). The use of logic programs as a representation language in machine leanring is discussed in the area of Inductive logic programming.

3 Language of logic programming

3.1 Syntax

Fisrtly, we shall define briefly the language of First-Order Logic (FOL) (or Predicate calculus). The alphabet of this language consists of the following types of symbols: variables, constants, functions, predicates, logical connectives, quantifiers and punctuation symbols. Let us denote variables with alphanumerical strings beginning with capitals, constants - with alphanumerical strings beginning with lower case letter (or just numbers). The functions are usually denotes as f, g and h (also indexed), and the predicates - as p, q, r or just simple words as father, mother, likes etc. As these types of symbols may overlap, the type of a paricular symbol depends on the context where it appears. The logical connectives are: \wedge (conjunction $), \vee($ disjunction $), \neg($ negation $), \leftarrow$ or $\rightarrow($ implication $)$ and \leftrightarrow (equivalence). The quantifiers are: \forall (universal) and $\exists+$ existential). The punctuation symbols are: "(", ")" and ",".

A basic element of FOL is called term, and is defined as follows:

- a variable is a term;
- a constant is a term;
- if f is a n-argument function $(n \geq 0)$ and $t_{1}, t_{2}, \ldots, t_{n}$ are terms, then $f\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ is a term.

The terms are used to construct formulas in the following way:

- if p is an n-argument predicate $(n \geq 0)$ and $t_{1}, t_{2}, \ldots, t_{n}$ are terms, then $p\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ is a formula (called atomic formula or just atom;)
- if F and G are formulas, then $\neg F, F \wedge G, F \vee G, F \leftarrow G, F \leftrightarrow G$ are formulas too;
- if F is a formula and X - a variable, then $\forall X F$ and $\exists X F$ are also formulas.

Given the alphabet, the language of FOL consists of all formulas obtained by applying the above rules.

One of the purpose of FOL is to describe the meaning of natural language sentences. For example, having the sentence "For every man there exists a woman that he loves", we may construct the following FOL formula:

$$
\forall X \exists Y \operatorname{man}(X) \rightarrow \operatorname{woman}(Y) \wedge \operatorname{loves}(X, Y)
$$

Or, "John loves Mary" can be written as a formula (in fact, an atom) without variables (here we use lower case letters for John and Mary, because they are constants):
loves(john, mary)

Terms/formulas without variables are called ground terms/formulas.
If a formula has only universaly quantified variables we may skip the quantifiers. For example, "Every student likes every professor" can be written as:

$$
\forall X \forall Y i s(X, \text { student }) \wedge i s(Y, \text { professor }) \rightarrow \operatorname{likes}(X, Y)
$$

and also as:

$$
i s(X, \text { student }) \wedge i s(Y, \text { professor }) \rightarrow \operatorname{likes}(X, Y)
$$

Note that the formulas do not have to be always true (as the sentences they represent). Hereafter we define a subset of FOL that is used in logic programming.

- An atom or its negation is called literal.
- If A is an atom, then the literals A and $\neg A$ are called complementary.
- A disjunction of literals is called clause.
- A clause with no more than one positive literal (atom without negation) is called Horn clause.
- A clause with no literals is called empty clause (ロ) and denotes the logical constant "false".

There is another notation for Horn clauses that is used in Prolog (a programming language that uses the syntax and implement the semantics of logic programs). Consider a Horn clause of the following type:

$$
A \vee \neg B_{1} \vee \neg B_{2} \vee \ldots \vee \neg B_{m}
$$

where $A, B_{1}, \ldots, B_{m}(m \geq 0)$ are atoms. Then using the simple transformation $p \leftarrow q=p \vee \neg q$ we can write down the above clause as an implication:

$$
A \leftarrow B_{1}, B_{2}, \ldots, B_{m}
$$

In Prolog, instead of \leftarrow we use $:-$. So, the Prolog syntax for this clause is:

$$
A:-B_{1}, B_{2}, \ldots, B_{m}
$$

Such a clause is called program clause (or rule), where A is the clause head, and $B_{1}, B_{2}, \ldots, B_{m}$ - the clause body. According to the definition of Horn clauses we may have a clause with no positive literals, i.e.

$$
:-B_{1}, B_{2}, \ldots, B_{m}
$$

that may be written also as

$$
?-B_{1}, B_{2}, \ldots, B_{m}
$$

Such a clause is called goal. Also, if $m=0$, then we get just A, which is another specific form of a Horn clause called fact.

A conjunction (or set) of program clauses (rules), facts, or goals is called logic program.

3.2 Substitutions and unification

A set of the type $\theta=\left\{V_{1} / t_{1}, V_{2} / t_{2}, \ldots, V_{n} / t_{n}\right\}$, where V_{i} are all different variables $\left(V_{i} \neq V_{j} \forall i \neq\right.$ $j)$ and t_{i} - terms $\left(t_{i} \neq V_{i}, i=1, \ldots, n\right)$, is called substitution.

Let t is a term or a clause. Substitution θ is applied to t by replacing each variable V_{i} that appears in t with t_{i}. The result of this application is denoted by $t \theta . t \theta$ is also called an instance of t. The transformation that replaces terms with variables is called inverse substitution, denoted by θ^{-1}. For example, let $t_{1}=f(a, b, g(a, b)), t_{2}=f(A, B, g(C, D))$ and $\theta=\{A / a, B / b, C / a, D / b\}$. Then $t_{1} \theta=t_{2}$ and $t_{2} \theta^{-1}=t_{1}$.

Let t_{1} and t_{2} be terms. t_{1} is more general than t_{2}, denoted $t_{1} \geq t_{2}$ (t_{2} is more specific than t_{1}), if there is a substitution θ (inverse substitution θ^{-1}), such that $t_{1} \theta=t_{2}\left(t_{2} \theta^{-1}=t_{1}\right)$.

The term generalization relation induces a lattice for every term, where the lowemost element is the term itself and the uppermost element is a variable.

A substitution, such that, when applied to two different terms make them identical, is called unifier. The process of finding such a substitution is called unification. For example, let $t_{1}=f(X, b, U)$ and $t_{2}=f(a, Y, Z)$. Then $\theta_{1}=\{X / a, Y / b, Z / c\}$ and $\theta_{2}=\{X / a, Y / b, Z / U\}$ and both unifiers of t_{1} and t_{2}, because $t_{1} \theta_{1}=t_{2} \theta_{1}=f(a, b, c)$ and $t_{1} \theta_{2}=t_{2} \theta_{2}=f(a, b, U)$. Two thers may have more than one unifier as well as no unifiers at all. If they have at least one unifier, they also must have a most general unifier (mgu). In the above example t_{1} and t_{2} have many unifiers, but θ_{2} is the most general one, because $f(a, b, U)$ is more general than $f(a, b, c)$ and all terms obtained by applying other unifiers to t_{1} and t_{2}.

An inverse substitution, such that, when applied to two different terms makes them identical, is called anti-unifier. In contrast to the unifiers, two terms have always an anti-unifier. In fact, any two terms t_{1} and t_{2} can be made identical by applying the inverse substitution $\left\{t_{1} / X, t_{2} / X\right\}$. Consequently, for any two terms, there exists a least general anti-unifier, which in the ML terminology we usually call least general generalization (lgg).

For example, $f(X, g(a, X), Y, Z)=\operatorname{lgg}(f(a, g(a, a), b, c), f(b, g(a, b), a, a)$ and all the other anti-unifiers of these terms are more general than $f(X, g(a, X), Y, Z)$, including the most general one - a variable.

Graphically, all term operations defined above can be shown in a lattice (note that the lower part of this lattice does not always exist).

3.3 Semanics of logic programs and Prolog

Let P be a logic program. The set of all ground atoms that can be built by using predicates from P with arguments - functions and constants also from P, is called Herbrand base of P, denoted B_{P}.

Let M is a subset of B_{P}, and $C=A:-B_{1}, \ldots, B_{n}(n \geq 0)-$ a clause from $P . M$ is a model of C, if for all ground instances $C \theta$ of C, either $A \theta \in M$ or $\exists B_{j}, B_{j} \theta \notin M$. Obviously the empty clause \square has no model. That is way we usually use the symbol \square to represent the logic constant "false".
M is a model of a logic program P, if M is a model of any clause from P. The intersection of all models of P is called least Herbrand model, denoted M_{P}. The intuition behind the notion of model is to show when a clause or a logic program is true. This, of course depends on the context where the clause appears, and this context is represented by its model (a set of ground atoms, i.e. facts).

Let P_{1} and P_{2} are logic programs (sets of clauses). P_{2} is a logical consequence of P_{1}, denoted $P_{1} \mid=P_{2}$, if every model of P_{1} is also a model of P_{2}.

A logic program P is called satisfiable (intuitively, consistent or true), if P has a model. Otherwise P is unsatisfiable (intuitively, inconsistent or false). Obviously, P is unsatisfiable, when $P \models \square$. Further, the deduction theorem says that $P_{1} \models P_{2}$ is equivalent to $P_{1} \wedge \neg P_{2} \models \square$.

An important result in logic programming is that the least Herbrand model of a program P is unique and consists of all ground atoms that are logical consequences of P, i.e.

$$
M_{P}=\{A \mid A \text { is a ground atom, } P \models A\}
$$

In particular, this applies to clauses too. We say that a clause C covers a ground atom A, if $C \models A$, i.e. A belongs to all models of C.

It is interesting to find out the logical consequences of a logic program P, i.e. what follows from a logic program. However, according to the above definition this requires an exhaustive search through all possible models of P, which is computationally very expensive. Fortunately, there is another approach, called inference rules, that may be used for this purpose.

An inference rule is a procedure I for transforming one formula (program, clause) P into another one Q, denoted $P \vdash_{I} Q$. A rule I is correct and complete, if $P \vdash_{I} P$ only when $P_{1} \models P_{2}$.

Hereafter we briefly discuss a correct and complete inference rule, called resolution. Let C_{1} and C_{2} be clauses, such that there exist a pair of literals $L_{1} \in C_{1}$ and $L_{2} \in C_{2}$ that can be made complementary by applying a most general unifier μ, i.e. $L_{1} \mu=\neg L_{2} \mu$. Then the clause $C=\left(C_{1} \backslash\left\{L_{1}\right\} \cup C_{2} \backslash\left\{L_{2}\right\}\right) \mu$ is called resolvent of C_{1} and C_{2}. Most importantly, $C_{1} \wedge C_{2} \vDash C$.

For example, consider the following two clauses:

$$
\begin{aligned}
& C_{1}=\operatorname{grandfather}(X, Y):-\operatorname{parent}(X, Z), \text { father }(Z, Y) . \\
& C_{2}=\operatorname{parent}(A, B):-\operatorname{father}(A, B) .
\end{aligned}
$$

The resolvent of C_{1} and C_{2} is:

$$
C_{1}=\text { grandfather }(X, Y):- \text { father }(X, Z), \text { father }(Z, Y),
$$

where the literals $\neg \operatorname{parent}(X, Z)$ in C_{1} and $\operatorname{parent}(A, B)$ in C_{2} have been made complementary by the substitution $\mu=\{A / X, B / Z\}$.

By using the resolution rule we can check, if an atom A or a conjunction of atoms $A_{1}, A_{2}, \ldots, A_{n}$ logically follows from a logic program P. This can be done by applying a specific type of the resolution rule, that is implemented in Prolog. After loading the logic program P
in the Prolog database, we can execute queries in the form of $?-A$. or $?-A_{1}, A_{2}, \ldots, A_{n}$. (in fact, goals in the language of logic programming). The Prolog system answers these queries by printing "yes" or "no" along with the substitutions for the variables in the atoms (in case of yes). For example, assume that the following program has been loaded in the database:

```
grandfather(X,Y) :- parent(X,Z), father(Z,Y).
parent(A,B) :- father(A,B).
father(john,bill).
father(bill,ann).
father(bill,mary).
```

Then we may ask Prolog, if grandfather(john,ann) is true:

```
?- grandfather(jihn,ann).
yes
?-
```

Another query may be "Who are the grandchildren of John?", specified by the following goal (by typing; after the Prolog answer we ask for alternative solutions):
?- grandfather (john, X).
X=ann;
$\mathrm{X}=$ mary;
no
?-

References

[1] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1984.
[2] S. B. Thrun et al. The MONK's problems - a performance comparison of different learning algorithms. Technical Report CS-CMU-91-197, Carnegie Mellon University, Dec. 1991.

