
Lecture Notes in Machine Learning – Chapter 3:

Languages for learning

Zdravko Markov

February 9, 2004

1 Attribute-value language

The most popular way to represent examples and hypotheses is to use the so called attribute-
value language. In this langauge the objects are represented as a set of pairs of an attribute
(feature or characteristic) and its specific value. Formally this language can be defined as

L = {A1 = V1, ..., An = Vn|V1 ∈ VA1 , ..., Vn ∈ VAn
},

where VAi
is a set of all possible values of attribute Ai. For example, the set {color = green,

shape = rectangle} describes a green rectangular object.
The attribute-value pair can be considered as a predicate (statement which can have a

truth value) and the set of these pairs – as a conjuction of the corresponding predicates. Thus,
denoting p1 = (color = green) and p2 = (shape = rectangle), we get the formula p1∧p2

in the language of propositional calculus (also called propositional logic). The propositional
logic is a subset of the first order logic (or predicate calculus) without variables.

The basic advantage of the attribute-value language is that it allows a straightforward
definition of derivability (covering, subsumption) relation. Generally such a relation (denoted
≥ and usually called subsumption) can be defined in three different ways depending of the
type of the attributes:

• Attributes whose values cannot be ordered are called nominal. Using nominal attributes
the subsumption relation is defined by dropping condition. For example, the class of
objects defined by (shape = rectangle) is more general (subsumes) the class of objects
(color = green) ∧ (shape = rectangle). Formally, let X ∈ L and Y ∈ L, then
X ≥ Y , if X ⊆ Y .

• If we have a full order on the atribute values, then the attributes are called linear. Most
often these are numeric attributes with real or integer values. The subsumption relation
in this case is defined as follows: let X ∈ L, i. e. X = {A1 = X1, ..., An = Xn} and
Y ∈ L, i. e. Y = {A1 = Y1, ..., An = Yn}. Then X ≥ Y , if Xi ≥ Yi (the latter is a
relation between numbers) (i = 1, ..., n).

• Attribute whose values can be partially ordered are called structural. The subsumption
relation here is defined similarly to the case of linear attributes, i. e. X ≥ Y , if Xi ≥ Yi

(i = 1, ..., n), where the relation Xi ≥ Yi is usually defined by a taxonomic tree. Then,
if Xi and Yi are nodes in this tree, Xi ≥ Yi, when Xi = Yi, Yi is immediate successor
of Xi or, if not, there is a path from Xi to Yi. (An example of taxonomy is shown in
Figure ??.)

1

Using the above described language L as a basis we can define languages for describing
examples, hypotheses and background knowledge. The examples are usually described directly
in L, i.e. LE = L. The language of hypotheses LH is extended with a disjunction:

LH = {C1 ∨ C2 ∨ ... ∨ Cn|Ci ∈ L, i ≥ 1}.

A notational variant of this language is the so called internal disjunction, where the dis-
junction is applied to the values of a particular attribute. For example, Ai = Vi1 ∨ Vi2 means
that attribute Ai has the value either of Vi1 or of Vi2 .

The derivability relation in LH is defined as follows: H → E, if there exists a conjunct
Ci ∈ H, so that Ci ≥ E.

Similarly we define semantic subsumption: H ≥sem H ′, if H → E, H ′ → E′ and E ⊇ E′.
The subsumption relation in L induces a syntactic partial order on hypotheses: H ≥ H ′,

if ∀Ci ∈ H,∃Cj ∈ H ′, such that Ci ≥ Cj . Obviously, if H ≥ H ′, then H ≥sem H ′. The
reverse statement however is not true.

As the hypotheses are also supposed to explain the examples we need an easy-to-understand
notation for LH . For this purpose we usually use rules. For example, assuming that H =
{C1 ∨ C2 ∨ ... ∨ Cn} describes the positive examples (class +), it can be written as

if C1 then +,
if C2 then +,
...
if Cn then +

Often the induction task is solved for more than one concept. Then the set E is a union
of more than two subsets, each one representing a different concept (category, class), i.e.
E = ∪k

i=1E
i. This multi-concept learning task can be represented as a series of two-class (+

and −) concept learning problems, where for i-th one the positive examples are Ei, and the
negative ones are E\Ei. In this case the hypothesis for Classj can be written as a set of rules
of the following type:

if Ci then Classj

To search the space of hypotheses we need constructive generalization/specialization op-
erators. One such operator is the direct application of the subsumption relation. For nominal
attributes generalization/specialization is achieved by dropping/adding attribute-value pairs.
For structural attributes we need to move up and down the taxonomy of attribute values.

Another interesting generalization operator is the so called least general generalization
(lgg), which in the lattice terminology is also called supremum (least upper bound).

Least general generalization (lgg). Let H1,H2 ∈ L. H is a least general generalization
of H1 and H2, denoted H = lgg(H1,H2), if H is a generalization of both H1 and H2 (H ≥ H1

and H ≥ H2) and for any other H ′, which is also a generalization of both H1 and H2, it
follows that H ′ ≥ H.

Let H1 = {A1 = U1, ..., An = Un} and H2 = {A1 = V1, ..., An = Vn}. Then lgg(H1,H2) =
{A1 = W1, ..., An = Wn}, where Wi are computed differently for different attribute types:

• If Ai is nominal, Wi = Ui = V1, when Ui = Vi. Otherwise Ai is skipped (i.e. it may
take an arbitrary value). That is, lgg(H1,H2) = H1 ∩H2.

• If Ai is linear, then Wi is the minimal interval, that includes both Ui and Vi. The latter
can be also intervals if we apply lgg to hypotheses.

• If Ai is structural, Wi is the closest common parent of Ui and Vi in the taxonomy for
Ai.

2

example(1,pos,[hs=octagon, bs=octagon, sm=no, ho=sword, jc=red, ti=yes]).
example(2,pos,[hs=square, bs=round, sm=yes, ho=flag, jc=red, ti=no]).
example(3,pos,[hs=square, bs=square, sm=yes, ho=sword, jc=yellow, ti=yes]).
example(4,pos,[hs=round, bs=round, sm=no, ho=sword, jc=yellow, ti=yes]).
example(5,pos,[hs=octagon, bs=octagon, sm=yes, ho=balloon, jc=blue, ti=no]).
example(6,neg,[hs=square, bs=round, sm=yes, ho=flag, jc=blue, ti=no]).
example(7,neg,[hs=round, bs=octagon, sm=no, ho=balloon, jc=blue, ti=yes]).

Figure 1: A sample from the MONK examples

In the attribute-value language we cannot represent background knowledge explicitly, so
we assume that B = ∅. However, we still can use background knowledge in the form of
taxonomies for structural attributes or sets (or intervals) of allowable values for the nominal
(or linear) attributes. Explicit representation of the background knowledge is needed because
this can allow the learning system to expand its knowledge by learning, that is, after every
learning step we can add the hypotheses to B. This is possible with relational languages.

2 Relational languages

Figure 1 shows a sample from a set of examples describing a concept often used in ML, the
so called MONKS concept [2]. The examples are shown as lists of attribute-value pairs with
the following six attributes: hs, bs, sm, ho, jc, ti. The positive examples are denoted by pos,
and the negative ones – by neg.

It is easy to find that the + concept includes objects that have the same value for attributes
hs and bs, or objects that have the value red for the jc attribute. So, we can describe this as
a set of rules:

if [hs=octagon, bs=octagon] then +
if [hs=square, bs=square] then +
if [hs=round, bs=round] then +
if [jc=red] then +

Similarly we can describe class −. For this purpose we need 18 rules – 6 (the number of
hs-bs pairs with different values) times 3 (the number of values for jc).

Now assume that our language allows variables as well as equality and inequality relations.
Then we can get a more concise representation for both classes + and −:

if [hs=bs] then +
if [jc=red] then +
if [hs6=bs,jc6=red] then -

Formally, we can use the language of First-Order Logic (FOL) or Predicate calculus as a
representation language. Then the above examples can be represented as a set of first order
atoms of the following type:

monk(round,round,no,sword,yellow,yes)

And the concept of + can be written as a set of two atoms (capital leters are variables,
constant values start with lower case letters):

monk(A,A,B,C,D,E)
monk(A,B,C,D,red,E)

3

We can use even more expressive language – the language of Logic programming (or Prolog).
Then we may have:

class(+,X) :- hs(X,Y),bs(X,Y).
class(+,X) :- jc(X,red).
class(-,X) :- not class(+,X).

Hereafter we introduce briefly the syntax and semantics of logic programs (for complete
discussion of this topic see [1]). The use of logic programs as a representation language in
machine leanring is discussed in the area of Inductive logic programming.

3 Language of logic programming

3.1 Syntax

Fisrtly, we shall define briefly the language of First-Order Logic (FOL) (or Predicate cal-
culus). The alphabet of this language consists of the following types of symbols: variables,
constants, functions, predicates, logical connectives, quantifiers and punctuation symbols. Let
us denote variables with alphanumerical strings beginning with capitals, constants – with
alphanumerical strings beginning with lower case letter (or just numbers). The functions are
usually denotes as f , g and h (also indexed), and the predicates – as p, q, r or just simple
words as father, mother, likes etc. As these types of symbols may overlap, the type of a
paricular symbol depends on the context where it appears. The logical connectives are: ∧
(conjunction), ∨ (disjunction), ¬ (negation), ← or→ (implication) and↔ (equivalence). The
quantifiers are: ∀ (universal) and ∃ +existential). The punctuation symbols are: ”(”, ”)” and
”,”.

A basic element of FOL is called term, and is defined as follows:

• a variable is a term;

• a constant is a term;

• if f is a n-argument function (n ≥ 0) and t1, t2, ..., tn are terms, then f(t1, t2, ..., tn) is
a term.

The terms are used to construct formulas in the following way:

• if p is an n-argument predicate (n ≥ 0) and t1, t2, ..., tn are terms, then p(t1, t2, ..., tn)
is a formula (called atomic formula or just atom;)

• if F and G are formulas, then ¬F , F ∧G, F ∨G, F ← G, F ↔ G are formulas too;

• if F is a formula and X – a variable, then ∀XF and ∃XF are also formulas.

Given the alphabet, the language of FOL consists of all formulas obtained by applying the
above rules.

One of the purpose of FOL is to describe the meaning of natural language sentences. For
example, having the sentence ”For every man there exists a woman that he loves”, we may
construct the following FOL formula:

∀X∃Y man(X)→ woman(Y) ∧ loves(X, Y)

Or, ”John loves Mary” can be written as a formula (in fact, an atom) without variables (here
we use lower case letters for John and Mary, because they are constants):

loves(john, mary)

4

Terms/formulas without variables are called ground terms/formulas.
If a formula has only universaly quantified variables we may skip the quantifiers. For

example, ”Every student likes every professor” can be written as:

∀X∀Y is(X, student) ∧ is(Y, professor)→ likes(X, Y)

and also as:

is(X, student) ∧ is(Y, professor)→ likes(X, Y)

Note that the formulas do not have to be always true (as the sentences they represent).
Hereafter we define a subset of FOL that is used in logic programming.

• An atom or its negation is called literal.

• If A is an atom, then the literals A and ¬A are called complementary.

• A disjunction of literals is called clause.

• A clause with no more than one positive literal (atom without negation) is called Horn
clause.

• A clause with no literals is called empty clause (2) and denotes the logical constant
”false”.

There is another notation for Horn clauses that is used in Prolog (a programming language
that uses the syntax and implement the semantics of logic programs). Consider a Horn clause
of the following type:

A ∨ ¬B1 ∨ ¬B2 ∨ ... ∨ ¬Bm,

where A,B1, ..., Bm (m ≥ 0) are atoms. Then using the simple transformation p← q = p∨¬q
we can write down the above clause as an implication:

A← B1, B2, ..., Bm

.
In Prolog, instead of ← we use : −. So, the Prolog syntax for this clause is:

A : −B1, B2, ..., Bm

.
Such a clause is called program clause (or rule), where A is the clause head, and B1, B2, ..., Bm

– the clause body. According to the definition of Horn clauses we may have a clause with no
positive literals, i.e.

: −B1, B2, ..., Bm,

.
that may be written also as

?−B1, B2, ..., Bm,

.
Such a clause is called goal. Also, if m = 0, then we get just A, which is another specific

form of a Horn clause called fact.
A conjunction (or set) of program clauses (rules), facts, or goals is called logic program.

5

3.2 Substitutions and unification

A set of the type θ = {V1/t1, V2/t2, ..., Vn/tn}, where Vi are all different variables (Vi 6= Vj∀i 6=
j) and ti – terms (ti 6= Vi, i = 1, ..., n), is called substitution.

Let t is a term or a clause. Substitution θ is applied to t by replacing each variable Vi

that appears in t with ti. The result of this application is denoted by tθ. tθ is also called
an instance of t. The transformation that replaces terms with variables is called inverse
substitution, denoted by θ−1. For example, let t1 = f(a, b, g(a, b)), t2 = f(A,B, g(C,D)) and
θ = {A/a,B/b, C/a, D/b}. Then t1θ = t2 and t2θ

−1 = t1.
Let t1 and t2 be terms. t1 is more general than t2, denoted t1 ≥ t2 (t2 is more specific than

t1), if there is a substitution θ (inverse substitution θ−1), such that t1θ = t2 (t2θ−1 = t1).
The term generalization relation induces a lattice for every term, where the lowemost

element is the term itself and the uppermost element is a variable.
A substitution, such that, when applied to two different terms make them identical, is

called unifier. The process of finding such a substitution is called unification. For example,
let t1 = f(X, b, U) and t2 = f(a, Y, Z). Then θ1 = {X/a, Y/b, Z/c} and θ2 = {X/a, Y/b, Z/U}
and both unifiers of t1 and t2, because t1θ1 = t2θ1 = f(a, b, c) and t1θ2 = t2θ2 = f(a, b, U).
Two thers may have more than one unifier as well as no unifiers at all. If they have at least
one unifier, they also must have a most general unifier (mgu). In the above example t1 and
t2 have many unifiers, but θ2 is the most general one, because f(a, b, U) is more general than
f(a, b, c) and all terms obtained by applying other unifiers to t1 and t2.

An inverse substitution, such that, when applied to two different terms makes them iden-
tical, is called anti-unifier. In contrast to the unifiers, two terms have always an anti-unifier.
In fact, any two terms t1 and t2 can be made identical by applying the inverse substitution
{t1/X, t2/X}. Consequently, for any two terms, there exists a least general anti-unifier, which
in the ML terminology we usually call least general generalization (lgg).

For example, f(X, g(a,X), Y, Z) = lgg(f(a, g(a, a), b, c), f(b, g(a, b), a, a) and all the other
anti-unifiers of these terms are more general than f(X, g(a,X), Y, Z), including the most
general one – a variable.

Graphically, all term operations defined above can be shown in a lattice (note that the
lower part of this lattice does not always exist).

V
...

anti-unifiers of t1 and t2
...

lgg(t1,t2)
/\
/ \

/ \
/ \

t1 t2
\ /
\ /
\ /
\/

mgu(t1,t2)
...

unifiers of t1 and t2
...

6

3.3 Semanics of logic programs and Prolog

Let P be a logic program. The set of all ground atoms that can be built by using predicates
from P with arguments – functions and constants also from P , is called Herbrand base of P ,
denoted BP .

Let M is a subset of BP , and C = A :- B1, ..., Bn (n ≥ 0) – a clause from P . M is a
model of C, if for all ground instances Cθ of C, either Aθ ∈ M or ∃Bj , Bjθ 6∈ M . Obviously
the empty clause 2 has no model. That is way we usually use the symbol 2 to represent the
logic constant ”false”.

M is a model of a logic program P , if M is a model of any clause from P . The intersection
of all models of P is called least Herbrand model, denoted MP . The intuition behind the
notion of model is to show when a clause or a logic program is true. This, of course depends
on the context where the clause appears, and this context is represented by its model (a set
of ground atoms, i.e. facts).

Let P1 and P2 are logic programs (sets of clauses). P2 is a logical consequence of P1,
denoted P1 |= P2, if every model of P1 is also a model of P2.

A logic program P is called satisfiable (intuitively, consistent or true), if P has a model.
Otherwise P is unsatisfiable (intuitively, inconsistent or false). Obviously, P is unsatisfiable,
when P |= 2. Further, the deduction theorem says that P1 |= P2 is equivalent to P1∧¬P2 |= 2.

An important result in logic programming is that the least Herbrand model of a program
P is unique and consists of all ground atoms that are logical consequences of P , i.e.

MP = {A|A is a ground atom,P |= A}

.
In particular, this applies to clauses too. We say that a clause C covers a ground atom A,

if C |= A, i.e. A belongs to all models of C.
It is interesting to find out the logical consequences of a logic program P , i.e. what follows

from a logic program. However, according to the above definition this requires an exhaustive
search through all possible models of P , which is computationally very expensive. Fortunately,
there is another approach, called inference rules, that may be used for this purpose.

An inference rule is a procedure I for transforming one formula (program, clause) P into
another one Q, denoted P `I Q. A rule I is correct and complete, if P `I P only when
P1 |= P2.

Hereafter we briefly discuss a correct and complete inference rule, called resolution. Let
C1 and C2 be clauses, such that there exist a pair of literals L1 ∈ C1 and L2 ∈ C2 that can be
made complementary by applying a most general unifier µ, i.e. L1µ = ¬L2µ. Then the clause
C = (C1\{L1}∪C2\{L2})µ is called resolvent of C1 and C2. Most importantly, C1∧C2 |= C.

For example, consider the following two clauses:

C1 = grandfather(X, Y) : −parent(X, Z), father(Z, Y).
C2 = parent(A,B) : −father(A,B).

The resolvent of C1 and C2 is:

C1 = grandfather(X, Y) : −father(X, Z), father(Z, Y),

where the literals ¬parent(X, Z) in C1 and parent(A,B) in C2 have been made complemen-
tary by the substitution µ = {A/X, B/Z}.

By using the resolution rule we can check, if an atom A or a conjunction of atoms
A1, A2, ..., An logically follows from a logic program P . This can be done by applying a specific
type of the resolution rule, that is implemented in Prolog. After loading the logic program P

7

in the Prolog database, we can execute queries in the form of ?−A. or ?−A1, A2, ..., An. (in
fact, goals in the language of logic programming). The Prolog system answers these queries
by printing ”yes” or ”no” along with the substitutions for the variables in the atoms (in case
of yes). For example, assume that the following program has been loaded in the database:

grandfather(X,Y) :- parent(X,Z), father(Z,Y).
parent(A,B) :- father(A,B).
father(john,bill).
father(bill,ann).
father(bill,mary).

Then we may ask Prolog, if grandfather(john, ann) is true:

?- grandfather(jihn,ann).
yes
?-

Another query may be ”Who are the grandchildren of John?”, specified by the following goal
(by typing ; after the Prolog answer we ask for alternative solutions):

?- grandfather(john,X).
X=ann;
X=mary;
no
?-

References

[1] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1984.

[2] S. B. Thrun et al. The MONK’s problems - a performance comparison of different learning
algorithms. Technical Report CS-CMU-91-197, Carnegie Mellon University, Dec. 1991.

8

