First-Order Logic

Zdravko Markov
March 8, 2005

1 Syntax

Fisrtly, we shall define briefly the language of First-Order Logic (FOL) (or Predicate cal-
culus). The alphabet of this language consists of the following types of symbols: wariables,
constants, functions, predicates, logical connectives, quantifiers and punctuation symbols. Let
us denote variables with alphanumerical strings beginning with capitals, constants — with
alphanumerical strings beginning with lower case letter (or just numbers). The functions are
usually denotes as f, g and h (also indexed), and the predicates — as p, ¢, r or just simple
words as father, mother, likes etc. As these types of symbols may overlap, the type of a
paricular symbol depends on the context where it appears. The logical connectives are: A
(conjunction), V (disjunction), = (negation), < or — (implication) and < (equivalence). The
quantifiers are: ¥ (universal) and 3 +ezistential). The punctuation symbols are: ”(”,”)” and

” N
y .

A basic element of FOL is called term, and is defined as follows:
e a variable is a term;
e a constant is a term;

e if f is a n-argument function (n > 0) and ¢, s, ..., ¢, are terms, then f(¢1,t2,...,t,) is
a term.

The terms are used to construct formulas in the following way:

e if p is an n-argument predicate (n > 0) and ty, o, ..., t, are terms, then p(ty,to, ..., t,)
is a formula (called atomic formula or just atom;)

e if F" and G are formulas, then -F, FAG, FV G, F < G, F + G are formulas too;
e if F'is a formula and X — a variable, then VX F and 93X F are also formulas.

Given the alphabet, the language of FOL consists of all formulas obtained by applying the
above rules.

One of the purpose of FOL is to describe the meaning of natural language sentences. For
example, having the sentence ”For every man there exists a woman that he loves”, we may
construct the following FOL formula:

VX3V man(X) = woman(Y) Aloves(X,Y)

9

Or, ”John loves Mary” can be written as a formula (in fact, an atom) without variables (here
we use lower case letters for John and Mary, because they are constants):

loves(john, mary)

Terms/formulas without variables are called ground terms/formulas.
If a formula has only universaly quantified variables we may skip the quantifiers. For
example, ”Every student likes every professor” can be written as:

VXVYis(X, student) Nis(Y,professor) — likes(X,Y)
and also as:

is(X, student) A is(Y, professor) — likes(X,Y)

Note that the formulas do not have to be always true (as the sentences they represent).
Hereafter we define a subset of FOL that is used in logic programming.

e An atom or its negation is called literal.
e If A is an atom, then the literals A and = A are called complementary.
e A disjunction of literals is called clause.

e A clause with no more than one positive literal (atom without negation) is called Horn
clause.

A clause with no literals is called empty clause (O) and denotes the logical constant
" false”.

There is another notation for Horn clauses that is used in Prolog (a programming language
that uses the syntax and implement the semantics of logic programs). Consider a Horn clause
of the following type:

AV -B;V-ByV..V-B,,

where A, By, ..., B, (m > 0) are atoms. Then using the simple transformation p < ¢ = pV —q
we can write down the above clause as an implication:

A+ Bl,B2, ,Bm

In Prolog, instead of < we use : —. So, the Prolog syntax for this clause is:

A: _Bl,B2, ,Bm

Such a clause is called program clause (or rule), where A is the clause head, and By, B, ..., By,
— the clause body. According to the definition of Horn clauses we may have a clause with no
positive literals, i.e.

: _BlaB27 "'7Bm7

that may be written also as

?— B13B27 "'7Bma

Such a clause is called goal. Also, if m = 0, then we get just A, which is another specific
form of a Horn clause called fact.
A conjunction (or set) of program clauses (rules), facts, or goals is called logic program.

2 Substitutions and unification

A set of the type 6 = {Vi/t1,Va/ta, ..., Vi [tn}, where V; are all different variables (V; # V;Vi #
j) and t; — terms (¢; # Vi, i = 1,...,n), is called substitution.

Let ¢ is a term or a clause. Substitution € is applied to ¢ by replacing each variable V;
that appears in ¢t with ¢;. The result of this application is denoted by tf. tf is also called
an instance of t. The transformation that replaces terms with variables is called inwverse
substitution, denoted by §~!. For example, let t; = f(a,b, g(a,b)), ta = f(A, B,g(C, D)) and
0= {A/G,B/b, C/G,D/b} Then ¢,0 = t> and t29_1 =1t1.

Let t; and t2 be terms. t; is more general than ts, denoted t; > t2 (t2 is more specific than
t1), if there is a substitution @ (inverse substitution #1), such that #;6 = t5 (t26~! = t;).

The term generalization relation induces a lattice for every term, where the lowemost
element is the term itself and the uppermost element is a variable.

A substitution, such that, when applied to two different terms make them identical, is
called unifier. The process of finding such a substitution is called unification. For exam-
ple, let t; = f(X,b,U) and t2 = f(a,Y,Z). Then 6, = {X/a,Y/b,Z/c,U/c} and 8> =
{X/a,Y/b,Z/U} and both unifiers of ¢; and t2, because t10; = t26, = f(a,b,c) and t,05 =
t20> = f(a,b,U). Two thers may have more than one unifier as well as no unifiers at all. If
they have at least one unifier, they also must have a most general unifier (mgu). In the above
example t; and t» have many unifiers, but 2 is the most general one, because f(a,b,U) is
more general than f(a,b,c) and all terms obtained by applying other unifiers to ¢; and 5.

An inverse substitution, such that, when applied to two different terms makes them iden-
tical, is called anti-unifier. In contrast to the unifiers, two terms have always an anti-unifier.
In fact, any two terms ¢; and t» can be made identical by applying the inverse substitution
{t1/X,t2/ X }. Consequently, for any two terms, there exists a least general anti-unifier, which
in the ML terminology we usually call least general generalization (lgg).

For example, f(X,g(a,X),Y,Z) =1g9(f(a,g(a,a),b,c), f(b,g(a,b),a,a) and all the other
anti-unifiers of these terms are more general than f(X,g(a,X),Y, Z), including the most
general one — a variable.

Graphically, all term operations defined above can be shown in a lattice (note that the
lower part of this lattice does not always exist).

')
anti-unifiers of t1 and t2

1gg&£i,t2)
/\

\/
mgu(tl,t2)

unifiers of tl1 and t2

3 Semanics of logic programs and Prolog

Let P be a logic program. The set of all ground atoms that can be built by using predicates
from P with arguments — functions and constants also from P, is called Herbrand base of P,
denoted Bp.

Let M is a subset of Bp, and C = A :- By,...,B, (n > 0) — a clause from P. M is a
model of C, if for all ground instances C8 of C, either A € M or 4B;, B;0 ¢ M. Obviously
the empty clause O has no model. That is way we usually use the symbol O to represent the
logic constant ”false”.

M is a model of a logic program P, if M is a model of any clause from P. The intersection
of all models of P is called least Herbrand model, denoted Mp. The intuition behind the
notion of model is to show when a clause or a logic program is true. This, of course depends
on the context where the clause appears, and this context is represented by its model (a set
of ground atoms, i.e. facts).

Let P, and P, are logic programs (sets of clauses). P> is a logical consequence of Py,
denoted P, = Py, if every model of P; is also a model of Ps.

A logic program P is called satisfiable (intuitively, consistent or true), if P has a model.
Otherwise P is unsatisfiable (intuitively, inconsistent or false). Obviously, P is unsatisfiable,
when P |= O. Further, the deduction theorem says that Py |= Ps is equivalent to Py A—Ps |= 0.

An important result in logic programming is that the least Herbrand model of a program
P is unique and consists of all ground atoms that are logical consequences of P, i.e.

Mp = {A|A is a ground atom, P = A}

In particular, this applies to clauses too. We say that a clause C covers a ground atom A,
if C = A, i.e. A belongs to all models of C.

It is interesting to find out the logical consequences of a logic program P, i.e. what follows
from a logic program. However, according to the above definition this requires an exhaustive
search through all possible models of P, which is computationally very expensive. Fortunately,
there is another approach, called inference rules, that may be used for this purpose.

An inference rule is a procedure I for transforming one formula (program, clause) P into
another one (), denoted P F;). A rule I is correct and complete, if P -y P only when
P E P

Hereafter we briefly discuss a correct and complete inference rule, called resolution. Let
C: and C5 be clauses, such that there exist a pair of literals Ly € C; and Ly € Cs that can be
made complementary by applying a most general unifier u, i.e. L1y = —Laou. Then the clause
C = (Ci\{L1}UC2\{L2})p is called resolvent of Cy and Cy. Most importantly, C1 ACy = C.

For example, consider the following two clauses:

Cy = grandfather(X,Y) : —parent(X, Z), father(Z,Y).
Cy = parent(A, B) : — father(A, B).

The resolvent of C; and C5 is:
Cy = grandfather(X,Y) : —father(X, Z), father(Z,Y),

where the literals —parent(X, Z) in C; and parent(A, B) in Cy have been made complemen-
tary by the substitution u = {A/X, B/Z}.

By using the resolution rule we can check, if an atom A or a conjunction of atoms
Ay, As, ..., Ay logically follows from a logic program P. This can be done by applying a specific
type of the resolution rule, that is implemented in Prolog. After loading the logic program P

in the Prolog database, we can execute queries in the form of 7 — A. or ? — Ay, As, ..., A,. (in
fact, goals in the language of logic programming). The Prolog system answers these queries
by printing ”yes” or "no” along with the substitutions for the variables in the atoms (in case
of yes). For example, assume that the following program has been loaded in the database:

grandfather(X,Y) :- parent(X,Z), father(Z,Y).
parent(A,B) :- father(A,B).
father(john,bill).

father(bill,ann).

father(bill,mary) .

Then we may ask Prolog, if grandfather(john,ann) is true:

?7- grandfather(jihn,ann).
yes
?_

Another query may be ”Who are the grandchildren of John?” | specified by the following goal
(by typing ; after the Prolog answer we ask for alternative solutions):

?7- grandfather(john,X).
X=ann;

X=mary;

no

?_

