Logical Inference

1 Inference rules

- How to find what follows from a logic program $(M_P=?)$
 - Find all models of P (intractable)

 $-M_P = \{A | A \text{ is a ground atom}, P \models A\}$

- Use inference rules: procedures I for transforming one formula (program, clause) P into another one Q, denoted $P \vdash_I Q$.
- I is correct and complete, if $P \vdash_I P \Leftrightarrow P_1 \models P_2$.

2 Inference rules – examples

- And-introduction: $\frac{A B}{A \wedge B}$
- And-elimination: $\frac{A \wedge B}{A} \frac{A \wedge B}{B}$
- Modus ponens: $\frac{A \ A \rightarrow B}{B}$
- Clause subsumption:
 - $-C \succeq D$, if there exists a substitution θ , such that $C\theta \subseteq D$.
 - Correctness: If $C \succeq D$, then $C \models D$.
 - Incompleteness: $C \models D \not\Rightarrow C \succeq D$ (see counter example)
- Resolution: correct and complete inference rule

3 Clause subsumption – examples

Prolog:

$$C = \text{parent}(X, Y) := \text{son}(Y, X)$$

(or as a set: $C = \{ parent(X, Y), \neg son(Y, X) \}$)

D = parent(john, bob) := son(bob, john), male(john)(or $D = \{parent(john, bob), \neg son(bob, john), \neg male(john)\}$)

C subsumes D ($\theta = \{X/john, Y/bob\}$), because $C\theta \subseteq D$.

Incompleteness of clause subsumption (counter example):

$$C = p(f(X)) \leftarrow p(X)$$
$$D = p(f(f(X))) \leftarrow p(X)$$
$$C \models D, \text{ but } C \not\succeq D.$$

4 Resolution rule

- C_1 and C_2 are clauses *standartized apart* (not sharing variables).
- There exist $L_1 \in C_1$ and $L_2 \in C_2$ that can be made complementary by applying an mgu, i.e. $L_1\mu = \neg L_2\mu$.
- Then $C = (C_1 \setminus \{L_1\} \cup C_2 \setminus \{L_2\}) \mu$ is called *resolvent* of C_1 and C_2 .
- Most importantly, C follows from C_1 and C_2 , i.e. $C_1 \wedge C_2 \models C$.

Example 1 (Prolog):

 $C_1 = grandfather(X, Y) : -parent(X, Z), father(Z, Y)$ $C_2 = parent(A, B) : -father(A, B)$

$$\mu = \{A/X, B/Z\}, parent(A, B)\mu = \neg parent(X, Z)$$

Then, the resolvent of C_1 and C_2 is:

$$C = grandfather(X, Y) : -father(X, Z), father(Z, Y)$$

Example 2 (self-resolution, recursion):

$$C_1 = p(f(X)) \leftarrow p(X)$$

$$C_2 = p(f(Y)) \leftarrow p(Y)$$

$$\mu = \{Y/f(X)\}, \ \neg p(Y)\mu = p(f(X))$$

Then, the resolvent of C_1 and C_2 is: $C = p(f(f(X))) \leftarrow p(X)$

5 Resolution procedure (Robinson, 65)

- Refutation procedure (proving unsatisfiability). If S is a set of clauses $R^n(S)$ is defined as follows:
 - $-R^{0}(S) = S$ - $R^{i}(S) = R^{i-1}(S) \cup \{C | C \text{ is a resolvent of clauses from } R^{i-1}(S) \}.$
- Refutation completeness: S is unsatisfiable if and only if there exists n, such that $\Box \in R^n(S)$.
- *Resolution strategies*: How to pick the clauses to resolve? Differ in efficiency and completeness.
- Linear resolution with selection function (SLD-resolution).
 - Prolog inference: checks if an atom A logically follows from a program P, i.e. if $P \land \neg A$ is unsatisfiable. A is first resolved with a clause from P, then at each step the obtained resolvent is resolved with a clause from P.
 - Completeness of the SLD-resolution. If $P \models A$ then the SLD-refutation tree of $P \land \neg A$ has a path leading to the empty clause \Box .
- Incompleteness of Prolog (depth-first search strategy). Example:

$$\begin{array}{l} p(a,b) \\ p(c,b) \\ p(X,Y) \leftarrow p(X,Z), p(Z,Y) \\ p(X,Y) \leftarrow p(Y,X) \\ \leftarrow p(a,c) \end{array}$$

Prolog

Question: Given logic program P and atom A, find if A logically follows from P.

```
grandfather(X,Y) :- parent(X,Z), father(Z,Y).
parent(A,B) :- father(A,B).
father(john,bill).
father(bill,ann).
father(bill,mary).
```

Is John a grandfather of Ann?

```
?- grandfather(john,ann).
yes
?-
```

Who are the grandchildren of John?

```
?- grandfather(john,X).
X=ann;
X=mary;
no
?-
```

6 Theorem proving (automated reasoning)

- Extending Prolog to FOL
- Ignoring control (the Prolog procedural semantics)