1

Searching Game Trees

Game Playing and AI

Well-defined problems requiring intelligence
Difficult problems:

— High degree of uncertainty

— Huge search space (chess: branching factor 35, depth 50, 35100

states)
Humans play games easily

Suitable area for studying search methods

Formal setting

Special case of state space search
Terminal nodes
Utility function assigns values to the terminal nodes (win=1, loss=-1, draw=0)

Game tree: MAX nodes (maximizing the utility function) MIN nodes (minimizing the utility
function)

Minimax Algorithm

Generate the complete game tree (Figure 1).

Compute the utility at each node starting from the terminals

For MAX nodes the utility is the maximum of the successor node utilities
For MIN nodes the utility is the minimum of the successor node utilities

Example: Figure 2

Improvements of Minimax

Minimax works only for simple (small) game trees (e.g. tic-tac-toe)
Cut the tree at some depth and use an heuristic function for computing utility

The ideal heuristic should compute the probability that MAX wins (MIN loses) given a game
position

Chess: weighted sum of the pieces (deficiency: does not take into account the position)
Learning heuristic functions (feature representation)

Depth bound search (the heuristic function at deeper levels is easier to compute and more
accurate)

— Specifying a depth

— Using iterative deepening given a specified time limit

— Applying the heuristic function only for ”non-critical” positions (where the function does
not change too much after the next move)

— Horizon effect (e.g. queening move in chess)

MAX(x)

MIN (o)

MAX(x)

MIN (o)

Terminals

Utility

X X X
X X X
X|O X (6] X
o
X|0|X X|0 X|O
X X

xX|o|x X£X X(‘)X
0|x X |x
X|x|0 x|o|o0
-1 0 1

Figure 1: The game tree for tic-tac-toe

Figure 2: A simple game tree (the winning path for MAX is shown in bold)

5

Figure 3: Alpha-Beta Pruning

Efficient implementation of Minimax: Alpha-Beta Pruning

Approximate computation of utility (note the differences between Figure 2 and Figure 3)
Returns the same move as minimax

Depth-first search

Two parameters:

— a = maximal value of MAX achieved so far

— [= minimal value of MIN achieved so far

If MIN gets a value greater than 3, then its siblings are skipped (the left successor of e gets 5,
which is greater than § =4 and the right one is skipped)

If MAX gets a value less than «, then its siblings are skipped (f gets 2, which is less than
a =4 and ¢ is skipped)

Drawback: dependence on the search order

If the best moves are evaluated first time complexity decreases from O(b%) to O(b%).

Games with an element of chance

Example: backgammon

Adding one more level in the game tree - chance nodes (MAX-CHANCE-MIN-CHANCE-
MAX-...).

Chance nodes have as many successors as outcomes of the random element (e.g. 21 in backgam-
mon).

Minimax with element of chance

—d; (i =1,...,n) — outcomes from the chance nodes

— P(d;) — probability of d;;

— S(N,d;) — moves from position N for outcome d;

— If N is MAX: wtility(N) = Y1, p(d;) maxges(n,q,) utility(s)
If N is MIN: utility(N) = Y1, p(d;) minge g(n,q;) utility(s)

The utility is computed by using not only the terminal values. Therefore values assigned to
win, loss and draw affect the choice of moves.

Time complexity increases (n outcomes from the chance nodes) to O(b%n?).

Alpha-Beta pruning is more complicated.

