
Feature Selection

1 General Approaches

• Finding a minimal subset of features that separate all vectors (class-
independent).

• Searching the lattice of subsets of the set of features to find the
subset that best represents the class distribution (computationaly
intractable).

• Ranking: order features by their class discrimination power (for
each term independently of the other terms, i.e. greedy search)

• Scheme-specific methods (e.g. attribute selection used in ID3)

2 Similarity-based attribute selection

2.1 Similarity (distance) measures

• Euclidean distance:
D(X, Y ) =

√
(x1 − y1)2 + (x2 − y2)2 + ... + (xn − yn)2

• Cosine similarity (dot product when normalized to unit length):
Sim(X, Y ) = x1.y1 + x2.y2 + ... + xn.yn

• Number of differences for nominal (boolean) attributes:
D(X, Y ) =

∑n
1 d(xi, yi),

where d(xi, yi) = 0 if xi = yi and 1 otherwise.
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2.2 Similarity-based attribute selection algorithm

• For each vector find the nearest neighbors (the closest vectors ac-
cording to the distance measure) of the same and different classes
– ”near hits” and ”near misses”.

• If a near hit has a different value for a certain attribute then that at-
tribute appears to be irrelevant and its weight should be decreased.

• For near misses, the attributes with different values are relevant
and their weights should be increased.

• Algorithm: Start with equal weights for all attributes and do the
weight adjustment, as explained above. This allows ordering at-
tributes by relevance.
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2.3 Example

Day Outlook Temperature Humidity Wind PlayTennis
X x1 x2 x3 x4 y
X1 sunny hot high weak no
X2 sunny hot high strong no
X3 overcast hot high weak yes
X4 rain mild high weak yes
X5 rain cool normal weak yes
X6 rain cool normal strong no
X7 overcast cool normal strong yes
X8 sunny mild high weak no
X9 sunny cool normal weak yes
X10 rain mild normal weak yes
X11 sunny mild normal strong yes
X12 overcast mild high strong yes
X13 overcast hot normal weak yes
X14 rain mild high strong no

• The nearest neighbors of X1 in its class ”no” (near hits) are X2 and X8 (ig-
noring the class y we have: D(X1, X2) = 1, D(X1, X6) = 4, D(X1, X8) = 1,
D(X1, X14) = 3).

• Attribute x4 (wind) has different values in X1 and X2, so we decrease its rele-
vance.

• Attribute x2 (temperature) has different values in X1 and X8, so we decrease its
relevance too.

• The nearest neighbor of X1 in the opposite class ”yes” (near miss) is X3 (D(X1, X3) =
1).

• Attribute x1 (outlook) has different values in X1 and X3, so we increase its
relevance.
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3 Entropy-based attribute selection

• Let S be a set of vectors from m classes – C1, C2, ..., Cm. Then the
number of vectors in S is |S| = |S1|+ |S2|+ ... + |Sm|, where Si is
the set of vectors from class Ci.

• The entropy of the class distribution in S (or the average informa-
tion needed to classify an arbitrary vector) is

I(S) = −P (C1)×log2P (C1)−P (C2)×log2P (C2)−...−P (Cn)×log2P (Cn),

where P (Ci) = |Si|
|S| .

• Assume that attribute A splits S into k subsets – A1, A2, ..., Ak

(each Ai having the same value for A).

• Then the information in the split, based on the values of A is

I(A) =
|A1|
|S|

× I(A1) +
|A2|
|S|

× I(A2) + ... +
|Ak|
|S|

× I(Ak))

• Then, the information gain is

gain(A) = I(S)− I(A)

• The most relevant attribute (the one with the highest discriminant
power) is the attribute with maximal information gain.
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Example

Day Outlook Temperature Humidity Wind PlayTennis
X x1 x2 x3 x4 y
X1 sunny hot high weak no
X2 sunny hot high strong no
X3 overcast hot high weak yes
X4 rain mild high weak yes
X5 rain cool normal weak yes
X6 rain cool normal strong no
X7 overcast cool normal strong yes
X8 sunny mild high weak no
X9 sunny cool normal weak yes
X10 rain mild normal weak yes
X11 sunny mild normal strong yes
X12 overcast mild high strong yes
X13 overcast hot normal weak yes
X14 rain mild high strong no

• I(S) = −P (yes)× log2P (yes)− P (no)× log2P (no) =
− 5

14 × log2
5
14 −

9
14 × log2

9
14

• A = outlook, A1 = {1, 2, 8, 9, 11} (sunny),
A2 = {3, 7, 12, 13} (overcast),
A3 = {4, 5, 6, 10, 14} (rainy).

• I(outlook) = 5
14 × I(A1) + 4

14 × I(A2) + 5
14 × I(A3)

• I(A1) = I({no, no, no, yes, yes}) = −3
5 × log2

3
5 −

2
5 × log2

2
5

• I(A2) = I({yes, yes, yes, yes}) = 0

• I(A3) = I({yes, yes, no, yes, no}) = −3
5 × log2

3
5 −

2
5 × log2

2
5

• Best attribute ⇒ outlook
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4 Statistical measures

4.1 Bacis measures

• Measuring central tendency

– Arithmetic mean (average) of all values of an attribute:

µ =
1

n

n∑
1

xi

– Median: the middle value in an ordered sequence.

• Measuring dispersion: variance (σ) and standard deviation (σ2)

σ2 =
1

n

n∑
1

(xi − µ)2

• Measuring probability (density function)

f(x; µ, σ) =
1√
2πσ

e
−(x−µ)2

2σ2
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4.2 Correlation analysis

Correlation between occurrences of A and B:

corr(A, B) =
P (A, B)

P (A)P (B)

• corr(A, B) < 1 ⇒ A and B are negatively correlated.

• corr(A, B) > 1 ⇒ A and B are positively correlated.

• corr(A, B) = 1 ⇒ A and B are independent.

Contingency table (weather data)

outlook=sunny outlook6=sunny Row total

play=yes 2 7 9

play=no 3 2 5

Column total 5 9 14

corr(outlook = sunny, play = yes) =
2
14

5
14 ×

9
14

= 0.62 < 1

⇒ negaive correlation

corr(outlook = sunny, play = no) =
3
14

5
14 ×

5
14

= 1.68 > 1

⇒ positive correlation
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4.3 The χ2 test

Assume term t with values {0, 1} and class C with values {0, 1} are two
random variables with n observations (e.g. document vectors, where t

appears or not). To find out whether t and C are independent or not
we use the following test.

χ2 =
∑
l,m

(P (C = l, t = m)− nP (C = l)P (t = m))2

nP (C = l)P (t = m)

The higher the value of χ2, the lower is our belief that these variables
are independent given the observed data. We may compute χ2 using
the contingency matrix.

t = 0 t = 1 Row total

C = 0 k00 k01 k00 + k01

C = 1 k10 k11 k10 + k11

Column total k00 + k10 k01 + k11 n

χ2 =
(k00 − n(k00 + k01)(k00 + k10))

2

n(k00 + k01)(k00 + k10)
+

(k01 − n(k00 + k01)(k01 + k11))
2

n(k00 + k01)(k01 + k11)
+

(k10 − n(k10 + k11)(k00 + k10))
2

n(k10 + k11)(k00 + k10)
+

(k11 − n(k10 + k11)(k01 + k11))
2

n(k10 + k11)(k01 + k11)

For the purposes of feature selection we prefer terms with higher χ2

values (higher dependence between the term and the class variable).
To rank features we order them by their χ2 values in decreasing order.
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4.4 Mutual Information

Assume X and Y are discrete random variable taking values denoted
by x and y. The mutual information between X and Y is defined as
follows:

M(X, Y ) =
∑
x

∑
y

P (x, y) log
P (x, y)

P (x)P (y)

• M is similar to entropy (information): H(X) =
∑

x P (x) log P (x).
M(X, Y ) is the reduction in the entropy of X if the value of Y is
known (and vice versa).

• When X and Y are independent M(X, Y ) = 0.
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