Feature Selection

1 General Approaches

- Finding a minimal subset of features that separate all vectors (classindependent).
- Searching the lattice of subsets of the set of features to find the subset that best represents the class distribution (computationaly intractable).
- Ranking: order features by their class discrimination power (for each term independently of the other terms, i.e. greedy search)
- Scheme-specific methods (e.g. attribute selection used in ID3)

2 Similarity-based attribute selection

2.1 Similarity (distance) measures

- Euclidean distance:
$D(X, Y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\ldots+\left(x_{n}-y_{n}\right)^{2}}$
- Cosine similarity (dot product when normalized to unit length): $\operatorname{Sim}(X, Y)=x_{1} \cdot y_{1}+x_{2} \cdot y_{2}+\ldots+x_{n} \cdot y_{n}$
- Number of differences for nominal (boolean) attributes:
$D(X, Y)=\sum_{1}^{n} d\left(x_{i}, y_{i}\right)$,
where $d\left(x_{i}, y_{i}\right)=0$ if $x_{i}=y_{i}$ and 1 otherwise.

2.2 Similarity-based attribute selection algorithm

- For each vector find the nearest neighbors (the closest vectors according to the distance measure) of the same and different classes - "near hits" and "near misses".
- If a near hit has a different value for a certain attribute then that attribute appears to be irrelevant and its weight should be decreased.
- For near misses, the attributes with different values are relevant and their weights should be increased.
- Algorithm: Start with equal weights for all attributes and do the weight adjustment, as explained above. This allows ordering attributes by relevance.

2.3 Example

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
X	x_{1}	x_{2}	x_{3}	x_{4}	y
X_{1}	sunny	hot	high	weak	no
X_{2}	sunny	hot	high	strong	no
X_{3}	overcast	hot	high	weak	yes
X_{4}	rain	mild	high	weak	yes
X_{5}	rain	cool	normal	weak	yes
X_{6}	rain	cool	normal	strong	no
X_{7}	overcast	cool	normal	strong	yes
X_{8}	sunny	mild	high	weak	no
X_{9}	sunny	cool	normal	weak	yes
X_{10}	rain	mild	normal	weak	yes
X_{11}	sunny	mild	normal	strong	yes
X_{12}	overcast	mild	high	strong	yes
X_{13}	overcast	hot	normal	weak	yes
X_{14}	rain	mild	high	strong	no

- The nearest neighbors of X_{1} in its class "no" (near hits) are X_{2} and X_{8} (ignoring the class y we have: $D\left(X_{1}, X_{2}\right)=1, D\left(X_{1}, X_{6}\right)=4, D\left(X_{1}, X_{8}\right)=1$, $\left.D\left(X_{1}, X_{14}\right)=3\right)$.
- Attribute x_{4} (wind) has different values in X_{1} and X_{2}, so we decrease its relevance.
- Attribute x_{2} (temperature) has different values in X_{1} and X_{8}, so we decrease its relevance too.
- The nearest neighbor of X_{1} in the opposite class "yes" (near miss) is $X_{3}\left(D\left(X_{1}, X_{3}\right)=\right.$ 1).
- Attribute x_{1} (outlook) has different values in X_{1} and X_{3}, so we increase its relevance.

3 Entropy-based attribute selection

- Let S be a set of vectors from m classes - $C_{1}, C_{2}, \ldots, C_{m}$. Then the number of vectors in S is $|S|=\left|S_{1}\right|+\left|S_{2}\right|+\ldots+\left|S_{m}\right|$, where S_{i} is the set of vectors from class C_{i}.
- The entropy of the class distribution in S (or the average information needed to classify an arbitrary vector) is

$$
I(S)=-P\left(C_{1}\right) \times \log _{2} P\left(C_{1}\right)-P\left(C_{2}\right) \times \log _{2} P\left(C_{2}\right)-\ldots-P\left(C_{n}\right) \times \log _{2} P\left(C_{n}\right),
$$

where $P\left(C_{i}\right)=\frac{\left|S_{i}\right|}{|S|}$.

- Assume that attribute A splits S into k subsets - $A_{1}, A_{2}, \ldots, A_{k}$ (each A_{i} having the same value for A).
- Then the information in the split, based on the values of A is

$$
\left.I(A)=\frac{\left|A_{1}\right|}{|S|} \times I\left(A_{1}\right)+\frac{\left|A_{2}\right|}{|S|} \times I\left(A_{2}\right)+\ldots+\frac{\left|A_{k}\right|}{|S|} \times I\left(A_{k}\right)\right)
$$

- Then, the information gain is

$$
\operatorname{gain}(A)=I(S)-I(A)
$$

- The most relevant attribute (the one with the highest discriminant power) is the attribute with maximal information gain.

Example

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
X	x_{1}	x_{2}	x_{3}	x_{4}	y
X_{1}	sunny	hot	high	weak	no
X_{2}	sunny	hot	high	strong	no
X_{3}	overcast	hot	high	weak	yes
X_{4}	rain	mild	high	weak	yes
X_{5}	rain	cool	normal	weak	yes
X_{6}	rain	cool	normal	strong	no
X_{7}	overcast	cool	normal	strong	yes
X_{8}	sunny	mild	high	weak	no
X_{9}	sunny	cool	normal	weak	yes
X_{10}	rain	mild	normal	weak	yes
X_{11}	sunny	mild	normal	strong	yes
X_{12}	overcast	mild	high	strong	yes
X_{13}	overcast	hot	normal	weak	yes
X_{14}	rain	mild	high	strong	no

- $I(S)=-P($ yes $) \times \log _{2} P($ yes $)-P(n o) \times \log _{2} P(n o)=$ $-\frac{5}{14} \times \log _{2} \frac{5}{14}-\frac{9}{14} \times \log _{2} \frac{9}{14}$
- $A=$ outlook, $A_{1}=\{1,2,8,9,11\}$ (sunny),
$A_{2}=\{3,7,12,13\}$ (overcast),
$A_{3}=\{4,5,6,10,14\}$ (rainy).
- $I($ outlook $)=\frac{5}{14} \times I\left(A_{1}\right)+\frac{4}{14} \times I\left(A_{2}\right)+\frac{5}{14} \times I\left(A_{3}\right)$
- $I\left(A_{1}\right)=I(\{n o, n o, n o, y e s, y e s\})=-\frac{3}{5} \times \log _{2} \frac{3}{5}-\frac{2}{5} \times \log _{2} \frac{2}{5}$
- $I\left(A_{2}\right)=I(\{$ yes, yes, yes, yes $\})=0$
- $I\left(A_{3}\right)=I(\{$ yes, yes, no, yes, no $\})=-\frac{3}{5} \times \log _{2} \frac{3}{5}-\frac{2}{5} \times \log _{2} \frac{2}{5}$
- Best attribute \Rightarrow outlook

4 Statistical measures

4.1 Bacis measures

- Measuring central tendency
- Arithmetic mean (average) of all values of an attribute:

$$
\mu=\frac{1}{n} \sum_{1}^{n} x_{i}
$$

- Median: the middle value in an ordered sequence.
- Measuring dispersion: variance (σ) and standard deviation $\left(\sigma^{2}\right)$

$$
\sigma^{2}=\frac{1}{n} \sum_{1}^{n}\left(x_{i}-\mu\right)^{2}
$$

- Measuring probability (density function)

$$
f(x ; \mu, \sigma)=\frac{1}{\sqrt{2} \pi \sigma} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}
$$

4.2 Correlation analysis

Correlation between occurrences of A and B :

$$
\operatorname{corr}(A, B)=\frac{P(A, B)}{P(A) P(B)}
$$

- $\operatorname{corr}(A, B)<1 \Rightarrow A$ and B are negatively correlated.
- $\operatorname{corr}(A, B)>1 \Rightarrow A$ and B are positively correlated.
- $\operatorname{corr}(A, B)=1 \Rightarrow A$ and B are independent.

Contingency table (weather data)

	outlook=sunny	outlook \neq sunny	Row total
play $=$ yes	2	7	9
play=no	3	2	5
Column total	5	9	14

$\operatorname{corr}($ outloo $=$ sunny, play $=y e s)=\frac{\frac{2}{14}}{\frac{5}{14} \times \frac{9}{14}}=0.62<1$
$\quad \Rightarrow$ negaive correlation

$$
\begin{aligned}
& \operatorname{corr}(\text { outlook }=\text { sunny, play }=n o)=\frac{\frac{3}{14}}{\frac{5}{14} \times \frac{5}{14}}=1.68>1 \\
& \quad \Rightarrow \text { positive correlation }
\end{aligned}
$$

4.3 The χ^{2} test

Assume term t with values $\{0,1\}$ and class C with values $\{0,1\}$ are two random variables with n observations (e.g. document vectors, where t appears or not). To find out whether t and C are independent or not we use the following test.

$$
\chi^{2}=\sum_{l, m} \frac{(P(C=l, t=m)-n P(C=l) P(t=m))^{2}}{n P(C=l) P(t=m)}
$$

The higher the value of χ^{2}, the lower is our belief that these variables are independent given the observed data. We may compute χ^{2} using the contingency matrix.

	$t=0$	$t=1$	Row total
$C=0$	k_{00}	k_{01}	$k_{00}+k_{01}$
$C=1$	k_{10}	k_{11}	$k_{10}+k_{11}$
Column total	$k_{00}+k_{10}$	$k_{01}+k_{11}$	n

$$
\begin{aligned}
\chi^{2}= & \frac{\left(k_{00}-n\left(k_{00}+k_{01}\right)\left(k_{00}+k_{10}\right)\right)^{2}}{n\left(k_{00}+k_{01}\right)\left(k_{00}+k_{10}\right)}+ \\
& \frac{\left(k_{01}-n\left(k_{00}+k_{01}\right)\left(k_{01}+k_{11}\right)\right)^{2}}{n\left(k_{00}+k_{01}\right)\left(k_{01}+k_{11}\right)}+ \\
& \frac{\left(k_{10}-n\left(k_{10}+k_{11}\right)\left(k_{00}+k_{10}\right)\right)^{2}}{n\left(k_{10}+k_{11}\right)\left(k_{00}+k_{10}\right)}+ \\
& \frac{\left(k_{11}-n\left(k_{10}+k_{11}\right)\left(k_{01}+k_{11}\right)\right)^{2}}{n\left(k_{10}+k_{11}\right)\left(k_{01}+k_{11}\right)}
\end{aligned}
$$

For the purposes of feature selection we prefer terms with higher χ^{2} values (higher dependence between the term and the class variable). To rank features we order them by their χ^{2} values in decreasing order.

4.4 Mutual Information

Assume X and Y are discrete random variable taking values denoted by x and y. The mutual information between X and Y is defined as follows:

$$
M(X, Y)=\sum_{x} \sum_{y} P(x, y) \log \frac{P(x, y)}{P(x) P(y)}
$$

- M is similar to entropy (information): $H(X)=\sum_{x} P(x) \log P(x)$. $M(X, Y)$ is the reduction in the entropy of X if the value of Y is known (and vice versa).
- When X and Y are independent $M(X, Y)=0$.

