
Clustering

• Clustering is an unsupervised learning approach: there is no target value
(class label) to be predicted, the goal is finding common patterns or
grouping similar documents.

• Motivation

– Grouping search results

– Creating topic hierarchies

– Focusing similarity search

• Models/algorithms for clustering

– Conceptual (model-based) vs. partitioning

– Exclusive vs. overlapping

– Deterministic vs. probabilistic

– Hierarchical vs. flat

– Incremental vs. batch learning

• Evaluating clustering quality: subjective approaches, objective functions.

• Major approaches

– Hierarchical Agglomerative Clustering: partitioning, deterministic

– K-means: flat, deterministic, partitioning or conceptual

– Expectation Maximization (EM): flat, partitioning, probabilistic

– Collaborative Filtering: clustering users using terms (preferences)
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1 Hierarchical Agglomerative Clustering

• At each step merge the two closest (most similar) clusters.

• Distance/similarity function between instances (e.g. cosine similarity,
Euclidean distance).

• Distance/similarity function between clusters (e.g. distance between cen-
ters, minimal distance, average distance).

• Criteria for stopping merging:

– desired number of clusters;

– distance between the closest clusters is above a threshold.

• Algorithms:

– Nearest neighbor (single-linkage) agglomerative clustering: cluster
distance = minimal distance between elements. Merging stops when
distance > threshold. In fact, this is an algorithm for generating a
minimal spanning tree.

– Farthest neighbor (complete-linkage) agglomerative clustering: cluster
distance = maximal distance between elements. Merging stops when
distance > threshold. The algorithm computes the complete subgraph
for every cluster.

• Visualization: dendrogram

• Problems: greedy algorithm (local minimum), once created a subtree
cannot be restructured.
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2 k-means

• Iterative distance-based clustering.

• Used by statisticians for decades.

• Similarly to Cluster/2 uses k seeds (predefined k), but is based on a
distance measure:

1. Select k instances (cluster centers) from the sample (usually at ran-
dom).

2. Assign instances to clusters according to their distance to the cluster
centers.

3. Find new cluster centers and go to step 2 until the process converges
(i.e. the same instances are assigned to each cluster in two consecutive
passes).

• The clustering depends greatly on the initial choice of cluster centers –
the algorithm may fall in a local minimum.

• Example of bad chioce of cluster centers: four instances at the vertices of
a rectangle, two initial cluster centers – midpoints of the long sides of the
rectangle. This is a stable configuration, however not a good clustering.

• Solution to the local minimum problem: restart the algorithm with an-
other set of cluster centers.

• Hierarchical k-means: apply k = 2 recursively to the resulting clusters.
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3 Probabilty-based clustering

Why probabilities?

• Restricted amount of evidence implies probabilistic reasoning.

• From a probabilistic perspective, we want to find the most likely clusters
given the data.

• An instance only has certain probability of belonging to a particular
cluster.
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4 Probabilty-based clustering – mixture models

• For a single attribute: three parameters - mean, standard deviation and
sampling probability.

• Each cluster A is defined by a mean (µA) and a standard deviation (σA).

• Samples are taken from each cluster A with a specified probability of
sampling P (A).

• Finite mixture problem: given a dataset, find the mean, standard devia-
tion and the probability of sampling for each cluster.

• If we know the classification of each instance, then:

– mean (average), µ = 1
n

∑n
1 xi;

– standard deviation, σ2 = 1
n−1

∑n
1(xi − µ)2;

– probability of sampling for class A, P (A) = proportion of instances
in it.

• If we know the three parameters, the probability that an instance x

belongs to cluster A is:

P (A|x) = P (x|A)P (A)
P (x) ,

where P (x|A) is the density function for A, f(x; µA, σA) = 1√
2πσA

e
−(x−µA)2

2σ2
A .

P (x) is not necessary as we calculate the numerators for all clusters and
normalize them by dividing by their sum.

⇒ In fact, this is exactly the Naive Bayes approach.

• For more attributes: naive Bayes assumption – independence between
attributes. The joint probabilities of an instance are calculated as a
product of the probabilities of all attributes.
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5 EM (expectation maximization)

• Similarly to k-means, first select the cluster parameters (µA, σA and
P (A)) or guess the classes of the instances, then iterate.

• Adjustment needed: we know cluster probabilities, not actual clusters for
each instance. So, we use these probabilities as weights.

• For cluster A:

µA =
∑n

1 wixi∑n
1 wi

, where wi is the probability that xi belongs to cluster A;

σ2
A =

∑n
1 wi(xi−µ)2∑n

1 wi
.

• When to stop iteration - maximizing overall likelihood that the data come
form the dataset with the given parameters (”goodness” of clustering):

Log-likelihood =
∑

i log(
∑

A P (A)P (xi|A) )

Stop when the difference between two successive iteration becomes neg-
ligible (i.e. there is no improvement of clustering quality).
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6 Evaluating quality of clustering

• Distance (similarity) based functions

– Sum of squared error

J =
∑
A

∑
x∈A

||x− µA||2

– Optimal clustering minilizes J : minimal variance clustering.

• Probability (entropy) based functions

– Probability of instance P (xi) =
∑

A P (A)P (xi|A)

– Probability of sample x1, ..., xn:

Πn
i (

∑
A

P (A)P (xi|A) )

– Log-likelihood:

n∑
i

log(
∑
A

P (A)P (xi|A) )

• Evaluate clusters with respect to classes using preclassified instances
(known classes)

– Error: proportion of instances with different class and cluster labels.

– Precision, Recall (ni instances in class i, nj instances in cluster j, nij

members of class i in cluster j):

R(i, j) =
nij

ni
, P (i, j) =

nij

nj

– F–measure

F (i, j) =
2R(i, j)P (i, j)

R(i, j) + P (i, j)
, F =

∑
i

ni

n
max

j
F (i, j)
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7 Collaborative Filtering (Recommender Systems)

Matrix representation

• Persons (rows)

• Items (columns)

• M(i, j) = 1 if person i likes item j; 0 otherwise.

Task: predicting missing values in rows

Clustering approach

• Cluster persons using items as features (e.g. k-means)

• Use the values for the items in each cluster (e.g. centroids)

EM-like approach (symmetric w.r.t. persons and items)

1. Assign random cluster labels to persons and items

2. Take a person and an item at random:

• Compute the probabilty that the person belongs to the person clusters

• Compute the probabilty that the item belongs to the item clusters

• Compute the probabilty that the person likes the item

3. Esimate the maximul likelihood values to the above probabilities

4. If parameter estimation is satisfactory terminate, else go to 2.
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8 Using hyperlink structure to compute similarity

Estimate similarity between d1 and d2 using:

• Length of shortest path between d1 and d2

• Number of common ancestors of d1 and d2

• Number of common successors of d1 and d2

• Vector-space (TFIDF) similarity between d1 and d2
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