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Statistical modeling
� “Opposite” of 1R: use all the attributes

� Two assumptions: Attributes are

� equally important

� statistically independent (given the class value)

� This means that knowledge about the value of a 
particular attribute doesn’t tell us anything about the 
value of another attribute (if the class is known)

� Although based on assumptions that are almost 
never correct, this scheme works well in practice!
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Probabilities for the weather data
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� A new day: Likelihood of the two classes

For “yes” = 2/9 × 3/9 × 3/9 × 3/9 × 9/14 = 0.0053

For “no” = 3/5 × 1/5 × 4/5 × 3/5 × 5/14 = 0.0206

Conversion into a probability by normalization:

P(“yes”) = 0.0053 / (0.0053 + 0.0206) = 0.205

P(“no”) = 0.0206 / (0.0053 + 0.0206) = 0.795
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Bayes’s rule
� Probability of event H given evidence E:

� A priori probability of H:

� Probability of event before evidence has been seen

� A posteriori probability of H:

� Probability of event after evidence has been seen
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Naïve Bayes for classification
� Classification learning: what’s the probability of the 

class given an instance? 

� Evidence E = instance

� Event H = class value for instance

� Naïve Bayes assumption: evidence can be split 
into independent parts (i.e. attributes of instance!)
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The weather data example
?TrueHighCoolSunny

PlayWindyHumidityTemp.Outlook
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The “zero-frequency problem”
� What if an attribute value doesn’t occur with every 

class value (e.g. “Humidity = high” for class “yes”)?

	 Probability will be zero!

	 A posteriori probability will also be zero!
(No matter how likely the other values are!) 

� Remedy: add 1 to the count for every attribute 
value-class combination (Laplace estimator)

� Result: probabilities will never be zero! (also: 
stabilizes probability estimates)

0]|Pr[ == yesHighHumdity
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Modified probability estimates

 In some cases adding a constant different from 1 

might be more appropriate


 Example: attribute outlook for class yes


 Weights don’t need to be equal (if they sum to 1)
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Missing values
� Training: instance is not included in frequency 

count for attribute value-class combination

� Classification: attribute will be omitted from 
calculation

� Example:
?TrueHighCool?

PlayWindyHumidityTemp.Outlook

Likelihood of “yes” = 3/9 × 3/9 × 3/9 × 9/14 = 0.0238

Likelihood of “no” = 1/5 × 4/5 × 3/5 × 5/14 = 0.0343

P(“yes”) = 0.0238 / (0.0238 + 0.0343) = 41%

P(“no”) = 0.0343 / (0.0238 + 0.0343) = 59%
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Dealing with numeric attributes
� Usual assumption: attributes have a normal or 

Gaussian probability distribution (given the class)

� The probability density function for the normal 
distribution is defined by two parameters:


 The sample mean µ: 


 The standard deviation σ:


 The density function f(x):
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Statistics for the weather data
� Example density value:
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Classifying a new day
� A new day:

� Missing values during training: not included in 
calculation of mean and standard deviation

?true9066Sunny

PlayWindyHumidityTemp.Outlook

Likelihood of “yes” = 2/9 × 0.0340 × 0.0221 × 3/9 × 9/14 = 0.000036

Likelihood of “no” = 3/5 × 0.0291 × 0.0380 × 3/5 × 5/14 = 0.000136

P(“yes”) = 0.000036 / (0.000036 + 0. 000136) = 20.9%

P(“no”) = 0. 000136 / (0.000036 + 0. 000136) = 79.1%
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Probability densities
� Relationship between probability and density:

� But: this doesn’t change calculation of a posteriori
probabilities because ε cancels out 

� Exact relationship:
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Discussion of Naïve Bayes
� Naïve Bayes works surprisingly well (even if 

independence assumption is clearly violated)

� Why? Because classification doesn’t require 
accurate probability estimates as long as 
maximum probability is assigned to correct class

� However: adding too many redundant attributes 
will cause problems (e.g. identical attributes)

� Note also: many numeric attributes are not 
normally distributed (→ kernel density estimators)
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Linear models
� Work most naturally with numeric attributes

� Standard technique for numeric prediction: linear 
regression

� Outcome is linear combination of attributes

� Weights are calculated from the training data

� Predicted value for first training instance a(1)
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Minimizing the squared error
� k+1 coefficients are chosen so that the squared 

error on the training data is minimized

� Squared error:

� Coefficient can be derived using standard matrix 
operations

� Can be done if there are more instances than 
attributes (roughly speaking)

� Minimization of absolute error is more difficult!
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Classification
� Any regression technique can be used for 

classification

� Training: perform a regression for each class, 
setting the output to 1 for training instances that 
belong to class, and 0 for those that don’t

� Prediction: predict class corresponding to model 
with largest output value (membership value)

� For linear regression this is known as multi-
response linear regression
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Theoretical justification

}|))({( 2 xXYXfEy =−

}|))|1()|1()({( 2 xXYxXYPxXYPXfEy =−==+==−=

}|))|1({(})|{)|1((   

))|1()((2))|1()((
2

2

xXYxXYPExXYExXYP

xXYPxfxXYPxf

yy =−==+=−==

×==−×+==−=
}|))|1({(}|)|1({   

))|1()((2))|1()((
2

2

xXYxXYPExXYxXYPE

xXYPxfxXYPxf

yy =−==+=−==

×==−×+==−=

}|))|1({())|1()(( 22 xXYxXYPExXYPxf y =−==+==−=

Model Instance
Observed target value (either 0 or 1)

True class probability

ConstantWe want to minimize this

The scheme minimizes this



10/25/2000 72

Pairwise regression
� Another way of using regression for classification: 

� A regression function for every pair of classes, 
using only instances from these two classes

� An output of +1 is assigned to one member of the 
pair, an output of –1 to the other

� Prediction is done by voting

� Class that receives most votes is predicted

� Alternative: “don’t know” if there is no agreement

� More likely to be accurate but more expensive 
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Logistic regression
� Problem: some assumptions violated when linear 

regression is applied to classification problems

� Logistic regression: alternative to linear regression

� Designed for classification problems

� Tries to estimate class probabilities directly

� Does this using the maximum likelihood method

� Uses the following linear model:

kk awawawawPP ++++=− �221100)1/(log(
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Discussion of linear models
� Not appropriate if data exhibits non-linear 

dependencies

� But: can serve as building blocks for more 
complex schemes (i.e. model trees)

� Example: multi-response linear regression defines 
a hyperplane for any two given classes:

� Obviously the same for pairwise linear regression
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Instance-based learning
� Distance function defines what’s learned

� Most instance-based schemes use Euclidean 
distance:

a(1) and a(2): two instances with k attributes

� Taking the square root is not required when 
comparing distances

� Other popular metric: city-block metric

� Adds differences without squaring them 
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Normalization and other issues
� Different attributes are measured on different 

scales ⇒ they need to be normalized:

vi: the actual value of attribute i

� Nominal attributes: distance either 0 or 1

� Common policy for missing values: assumed to be 
maximally distant (given normalized attributes)
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Discussion of 1-NN
 Often very accurate but also slow: simple version 

scans entire training data to derive a prediction

 Assumes all attributes are equally important

! Remedy: attribute selection or weights

 Possible remedies against noisy instances:

! Taking a majority vote over the k nearest neighbors

! Removing noisy instances from dataset (difficult!)

 Statisticians have used k-NN since early 1950s

! If n → ∞ and k/n → 0, error approaches minimum


