Statistical modeling

- "Opposite" of 1R: use all the attributes
- Two assumptions: Attributes are
- equally important
- statistically independent (given the class value)
* This means that knowledge about the value of a particular attribute doesn't tell us anything about the value of another attribute (if the class is known)
- Although based on assumptions that are almost never correct, this scheme works well in practice!

Probabilities for the weather data

Outlook		Temperature				Humidity			Windy			Play	
	Yes	No	Yes	No									
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								

- A new day:

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	$?$

Likelihood of the two classes

$$
\begin{aligned}
& \text { For "yes" }=2 / 9 \times 3 / 9 \times 3 / 9 \times 3 / 9 \times 9 / 14=0.0053 \\
& \text { For "no" }=3 / 5 \times 1 / 5 \times 4 / 5 \times 3 / 5 \times 5 / 14=0.0206
\end{aligned}
$$

Conversion into a probability by normalization:

$$
\begin{aligned}
& P(\text { "yes" })=0.0053 /(0.0053+0.0206)=0.205 \\
& P(\text { "no" })=0.0206 /(0.0053+0.0206)=0.795
\end{aligned}
$$

Bayes's rule

- Probability of event H given evidence E :

$$
\operatorname{Pr}[H \mid E]=\frac{\operatorname{Pr}[E \mid H] \operatorname{Pr}[H]}{\operatorname{Pr}[E]}
$$

- A priori probability of $H: \operatorname{Pr}[H]$
- Probability of event before evidence has been seen
- A posteriori probability of $H: \operatorname{Pr}[H \mid E]$
- Probability of event after evidence has been seen

Naïve Bayes for classification

- Classification learning: what's the probability of the class given an instance?
- Evidence $E=$ instance
- Event H = class value for instance
- Naïve Bayes assumption: evidence can be split into independent parts (i.e. attributes of instance!)

$$
\operatorname{Pr}[H \mid E]=\frac{\operatorname{Pr}\left[E_{1} \mid H\right] \operatorname{Pr}\left[E_{1} \mid H\right] \ldots \operatorname{Pr}\left[E_{n} \mid H\right] \operatorname{Pr}[H]}{\operatorname{Pr}[E]}
$$

The weather data example

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	?

$$
\begin{aligned}
\operatorname{Pr}[\text { yes } \mid E]= & \operatorname{Pr}[\text { Outlook }=\text { Sunny } \mid \text { yes }] \times \\
& \operatorname{Pr}[\text { Temperature }=\text { Cool } \mid \text { yes }] \times \\
& \operatorname{Pr}[\text { Humdity }=\text { High } \mid \text { yes }] \times \\
& \operatorname{Pr}[\text { Windy }=\text { True } \mid \text { yes }] \times \frac{\operatorname{Pr}[\text { yes }]}{\operatorname{Pr}[E]} \\
= & \frac{2 / 9 \times 3 / 9 \times 3 / 9 \times 3 / 9 \times 9 / 14}{\operatorname{Pr}[E]}
\end{aligned}
$$

The "zero-frequency problem"

- What if an attribute value doesn't occur with every class value (e.g. "Humidity = high" for class "yes")?
- Probability will be zero! Pr[Humdity $=$ High \mid yes $]=0$
- A posteriori probability will also be zero! $\operatorname{Pr}[$ yes $\mid E]=0$
(No matter how likely the other values are!)
- Remedy: add 1 to the count for every attribute value-class combination (Laplace estimator)
- Result: probabilities will never be zero! (also: stabilizes probability estimates)

Modified probability estimates

- In some cases adding a constant different from 1 might be more appropriate
- Example: attribute outlook for class yes

$$
\frac{2+\mu / 3}{9+\mu}
$$

$\frac{4+\mu / 3}{9+\mu}$

$$
\frac{3+\mu / 3}{9+\mu}
$$

- Weights don't need to be equal (if they sum to 1)

$$
\frac{2+\mu p_{1}}{9+\mu}
$$

$\frac{4+\mu p_{2}}{9+\mu}$
$\frac{3+\mu p_{3}}{9+\mu}$

Missing values

- Training: instance is not included in frequency count for attribute value-class combination
- Classification: attribute will be omitted from calculation
- Example:

Outlook	Temp.	Humidity	Windy	Play
$?$	Cool	High	True	$?$

$$
\begin{aligned}
& \text { Likelihood of "yes" }=3 / 9 \times 3 / 9 \times 3 / 9 \times 9 / 14=0.0238 \\
& \text { Likelihood of "no" }=1 / 5 \times 4 / 5 \times 3 / 5 \times 5 / 14=0.0343 \\
& P(\text { "yes" })=0.0238 /(0.0238+0.0343)=41 \% \\
& P(\text { ("no" })=0.0343 /(0.0238+0.0343)=59 \%
\end{aligned}
$$

Dealing with numeric attributes

- Usual assumption: attributes have a normal or Gaussian probability distribution (given the class)
- The probability density function for the normal distribution is defined by two parameters:
- The sample mean μ :

$$
\mu=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

- The standard deviation σ.

$$
\sigma=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}
$$

- The density function $f(x)$:

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Statistics for the weather data

Outlook		Temperature				Humidity			Windy			Play	
	Yes	No	Yes	No									
Sunny	2	3		83	85		86	85	False	6	2	9	5
Overcast	4	0		70	80		96	90	True	3	3		
Rainy	3	2		68	65		80	70					
								
Sunny	2/9	3/5	mean	73	74.6	mean	79.1	86.2	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	std dev	6.2	7.9	std dev	10.2	9.7	True	3/9	3/5		
Rainy	3/9	2/5											

- Example density value:

$$
f(\text { temperature }=66 \mid \text { yes })=\frac{1}{\sqrt{2 \pi} 6.2} e^{-\frac{(66-73)^{2}}{2 * 6.2^{2}}}=0.0340
$$

Classifying a new day

- A new day:

Outlook	Temp.	Humidity	Windy	Play
Sunny	66	90	true	$?$

```
Likelihood of "yes" = 2/9 < 0.0340 }\times0.0221\times3/9\times9/14=0.00003
Likelihood of "no" = 3/5 > 0.0291 }\times0.0380\times3/5\times5/14=0.00013
P("yes") = 0.000036 / (0.000036 + 0.000136) = 20.9%
P("no") = 0.000136 / (0.000036 + 0.000136) = 79.1%
```

- Missing values during training: not included in calculation of mean and standard deviation

Probability densities

- Relationship between probability and density:

$$
\operatorname{Pr}\left[c-\frac{\varepsilon}{2}<x<c+\frac{\varepsilon}{2}\right] \approx \varepsilon * f(c)
$$

- But: this doesn't change calculation of a posteriori probabilities because ε cancels out
- Exact relationship:

$$
\operatorname{Pr}[a \leq x \leq b]=\int_{a}^{b} f(t) d t
$$

Discussion of Naïve Bayes

- Naïve Bayes works surprisingly well (even if independence assumption is clearly violated)
- Why? Because classification doesn't require accurate probability estimates as long as maximum probability is assigned to correct class
- However: adding too many redundant attributes will cause problems (e.g. identical attributes)
- Note also: many numeric attributes are not normally distributed (\rightarrow kernel density estimators)

Linear models

- Work most naturally with numeric attributes
- Standard technique for numeric prediction: linear regression
- Outcome is linear combination of attributes

$$
x=w_{0}+w_{1} a_{1}+w_{2} a_{2}+\ldots+w_{k} a_{k}
$$

- Weights are calculated from the training data
- Predicted value for first training instance $\mathbf{a}^{(1)}$

$$
w_{0} a_{0}^{(1)}+w_{1} a_{1}^{(1)}+w_{2} a_{2}^{(1)}+\ldots+w_{k} a_{k}^{(1)}=\sum_{j=0}^{k} w_{j} a_{j}^{(1)}
$$

Minimizing the squared error

- $k+1$ coefficients are chosen so that the squared error on the training data is minimized
- Squared error:

$$
\sum_{i=1}^{n}\left(x^{(i)}-\sum_{j=0}^{k} w_{j} a_{j}^{(i)}\right)
$$

- Coefficient can be derived using standard matrix operations
- Can be done if there are more instances than attributes (roughly speaking)
- Minimization of absolute error is more difficult!

Classification

- Any regression technique can be used for classification
- Training: perform a regression for each class, setting the output to 1 for training instances that belong to class, and 0 for those that don't
- Prediction: predict class corresponding to model with largest output value (membership value)
- For linear regression this is known as multiresponse linear regression

Theoretical justification

$$
\begin{aligned}
& \text { Model } \\
& =E_{y}\left\{(f(X)-P(Y=1 \mid X=x)+P(Y=1 \mid X=x)-Y)^{2} \mid X=x\right\} \\
& =(f(x)-P(Y=1 \mid X=x))^{2}+2 \times(f(x)-P(Y=1 \mid X=x)) \times \\
& E_{y}\{P(Y=1 \mid X=x)-Y \mid X=x\}+E_{y}\left\{(P(Y=1 \mid X=x)-Y)^{2} \mid X=x\right\} \\
& =(f(x)-P(Y=1 \mid X=x))^{2}+2 \times(f(x)-P(Y=1 \mid X=x)) \times \\
& \quad\left(P(Y=1 \mid X=x)-E_{y}\{Y \mid X=x\}\right)+E_{y}\left\{(P(Y=1 \mid X=x)-Y)^{2} \mid X=x\right\} \\
& =(f(x)-P(Y=1 \mid X=x))^{2}+E_{y}\left\{(P(Y=1 \mid X=x)-Y)^{2} \mid X=x\right\}
\end{aligned}
$$

Pairwise regression

- Another way of using regression for classification:
- A regression function for every pair of classes, using only instances from these two classes
- An output of +1 is assigned to one member of the pair, an output of -1 to the other
- Prediction is done by voting
- Class that receives most votes is predicted
- Alternative: "don't know" if there is no agreement
- More likely to be accurate but more expensive

Logistic regression

- Problem: some assumptions violated when linear regression is applied to classification problems
- Logistic regression: alternative to linear regression
- Designed for classification problems
- Tries to estimate class probabilities directly
* Does this using the maximum likelihood method
- Uses the following linear model:

$$
\log \left(P /(1-P)=w_{0} a_{0}+w_{1} a_{1}+w_{2} a_{2}+\ldots+w_{k} a_{k}\right.
$$

Class probability

Discussion of linear models

- Not appropriate if data exhibits non-linear dependencies
- But: can serve as building blocks for more complex schemes (i.e. model trees)
- Example: multi-response linear regression defines a hyperplane for any two given classes:
$\left(w_{0}^{(1)}-w_{0}^{(2)}\right) a_{0}+\left(w_{1}^{(1)}-w_{1}^{(2)}\right) a_{1}+\left(w_{2}^{(1)}-w_{2}^{(2)}\right) a_{2}+\ldots+\left(w_{k}^{(1)}-w_{k}^{(2)}\right) a_{k}>0$
- Obviously the same for pairwise linear regression

Instance-based learning

- Distance function defines what's learned
- Most instance-based schemes use Euclidean distance:

$$
\sqrt{\left(a_{1}^{(1)}-a_{1}^{(2)}\right)^{2}+\left(a_{2}^{(1)}-a_{2}^{(2)}\right)^{2}+\ldots+\left(a_{k}^{(1)}-a_{k}^{(2)}\right)^{2}}
$$

$\mathbf{a}^{(1)}$ and $\mathbf{a}^{(2)}$: two instances with k attributes

- Taking the square root is not required when comparing distances
- Other popular metric: city-block metric
- Adds differences without squaring them

Normalization and other issues

- Different attributes are measured on different scales \Rightarrow they need to be normalized:

$$
a_{i}=\frac{v_{i}-\min v_{i}}{\max v_{i}-\min v_{i}}
$$

v_{i} : the actual value of attribute i

- Nominal attributes: distance either 0 or 1
- Common policy for missing values: assumed to be maximally distant (given normalized attributes)

Discussion of 1-NN

- Often very accurate but also slow: simple version scans entire training data to derive a prediction
- Assumes all attributes are equally important
- Remedy: attribute selection or weights
- Possible remedies against noisy instances:
- Taking a majority vote over the k nearest neighbors
- Removing noisy instances from dataset (difficult!)
- Statisticians have used k-NN since early 1950s
- If $n \rightarrow \infty$ and $k / n \rightarrow 0$, error approaches minimum

