Statistical modeling

- "Opposite" of 1R: use all the attributes
- Two assumptions: Attributes are
 - equally important
 - statistically independent (given the class value)
 - This means that knowledge about the value of a particular attribute doesn't tell us anything about the value of another attribute (if the class is known)
- Although based on assumptions that are almost never correct, this scheme works well in practice!

Probabilities for the weather data

Outlook		Tempe	perature		Humidity		Windy		Play				
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								

A new day:

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	?

Likelihood of the two classes

For "yes" = $2/9 \times 3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0053$

For "no" = $3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0206$

Conversion into a probability by normalization:

P("yes") = 0.0053 / (0.0053 + 0.0206) = 0.205

P("no") = 0.0206 / (0.0053 + 0.0206) = 0.795

Bayes's rule

Probability of event H given evidence E:

$$\Pr[H | E] = \frac{\Pr[E | H] \Pr[H]}{\Pr[E]}$$

- A priori probability of H: Pr[H]
 - Probability of event before evidence has been seen
- A posteriori probability of H: Pr[H | E]
 - Probability of event after evidence has been seen

Naïve Bayes for classification

- Classification learning: what's the probability of the class given an instance?
 - ◆ Evidence *E* = instance
 - Event H = class value for instance
- Naïve Bayes assumption: evidence can be split into independent parts (i.e. attributes of instance!)

$$\Pr[H \mid E] = \frac{\Pr[E_1 \mid H] \Pr[E_1 \mid H] \dots \Pr[E_n \mid H] \Pr[H]}{\Pr[E]}$$

The weather data example

The "zero-frequency problem"

- What if an attribute value doesn't occur with every class value (e.g. "Humidity = high" for class "yes")?
 - Probability will be zero! Pr[Humdity = High | yes] = 0
 - ◆ A posteriori probability will also be zero! Pr[yes | E] = 0
 (No matter how likely the other values are!)
- Remedy: add 1 to the count for every attribute value-class combination (*Laplace estimator*)
- Result: probabilities will never be zero! (also: stabilizes probability estimates)

Modified probability estimates

- In some cases adding a constant different from 1 might be more appropriate
- Example: attribute outlook for class yes

$2 + \mu / 3$	$4 + \mu / 3$	$3 + \mu / 3$
$9+\mu$	$9+\mu$	$9+\mu$
Sunny	Overcast	Rainy

Weights don't need to be equal (if they sum to 1)

$L + \mu p_1$	$4 + \mu p_{2}$	$3 + \mu p_3$
$9 + \mu$	$9 + \mu$	$9 + \mu$

Missing values

- Training: instance is not included in frequency count for attribute value-class combination
- Classification: attribute will be omitted from calculation
- Example:

Outlook	Temp.	Humidity	Windy	Play
?	Cool	High	True	?

Likelihood of "yes" = $3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0238$ Likelihood of "no" = $1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0343$ P("yes") = 0.0238 / (0.0238 + 0.0343) = 41%P("no") = 0.0343 / (0.0238 + 0.0343) = 59%

Dealing with numeric attributes

- Usual assumption: attributes have a *normal* or *Gaussian* probability distribution (given the class)
- The probability density function for the normal distribution is defined by two parameters:

• The sample mean
$$\mu$$
: $\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$

• The standard deviation
$$\sigma$$
:

$$\sigma = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu)^2$$
• The density function $f(x)$:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Statistics for the weather data

Outlook		Temperature			Humidity		Windy		Play				
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3		83	85		86	85	False	6	2	9	5
Overcast	4	0		70	80		96	90	True	3	3		
Rainy	3	2		68	65		80	70					
Sunny	2/9	3/5	mean	73	74.6	mean	79.1	86.2	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	std dev	6.2	7.9	std dev	10.2	9.7	True	3/9	3/5		
Rainy	3/9	2/5											

Example density value:

$$f(temperature = 66 \mid yes) = \frac{1}{\sqrt{2\pi} 6.2} e^{-\frac{(66-73)^2}{2*6.2^2}} = 0.0340$$

Classifying a new day

A new day:

Outlook	Temp.	Humidity	Windy	Play
Sunny	66	90	true	?

Likelihood of "yes" = $2/9 \times 0.0340 \times 0.0221 \times 3/9 \times 9/14 = 0.000036$ Likelihood of "no" = $3/5 \times 0.0291 \times 0.0380 \times 3/5 \times 5/14 = 0.000136$ P("yes") = 0.000036 / (0.000036 + 0.000136) = 20.9%P("no") = 0.000136 / (0.000036 + 0.000136) = 79.1%

 Missing values during training: not included in calculation of mean and standard deviation

Probability densities

Relationship between probability and density:

$$\Pr[c - \frac{\varepsilon}{2} < x < c + \frac{\varepsilon}{2}] \approx \varepsilon * f(c)$$

- But: this doesn't change calculation of a posteriori probabilities because ɛ cancels out
- Exact relationship:

$$\Pr[a \le x \le b] = \int_{a}^{b} f(t)dt$$

Discussion of Naïve Bayes

- Naïve Bayes works surprisingly well (even if independence assumption is clearly violated)
- Why? Because classification doesn't require accurate probability estimates as long as maximum probability is assigned to correct class
- However: adding too many redundant attributes will cause problems (e.g. identical attributes)
- Note also: many numeric attributes are not normally distributed (→ kernel density estimators)

Linear models

- Work most naturally with numeric attributes
- Standard technique for numeric prediction: linear regression
 - Outcome is linear combination of attributes

 $x = w_0 + w_1 a_1 + w_2 a_2 + \dots + w_k a_k$

- Weights are calculated from the training data
- Predicted value for first training instance a⁽¹⁾

$$w_0 a_0^{(1)} + w_1 a_1^{(1)} + w_2 a_2^{(1)} + \dots + w_k a_k^{(1)} = \sum_{j=0}^k w_j a_j^{(1)}$$

Minimizing the squared error

- k+1 coefficients are chosen so that the squared error on the training data is minimized
- Squared error: $\sum_{i=1}^{n} \left(x^{(i)} \sum_{j=0}^{k} w_j a_j^{(i)} \right)$
- Coefficient can be derived using standard matrix operations
- Can be done if there are more instances than attributes (roughly speaking)
- Minimization of absolute error is more difficult!

Classification

- Any regression technique can be used for classification
 - Training: perform a regression for each class, setting the output to 1 for training instances that belong to class, and 0 for those that don't
 - Prediction: predict class corresponding to model with largest output value (*membership value*)
- For linear regression this is known as multiresponse linear regression

Theoretical justification

Observed target value (either 0 or 1) Instance - The scheme minimizes this $E_{y}\{(f(X) - Y)^{2} | X = x\}$ True class probability $= E_{y} \{ (f(X) - P(Y = 1 | X = x) + P(Y = 1 | X = x) - Y)^{2} | X = x \}$ $=(f(x) - P(Y=1 | X = x))^{2} + 2 \times (f(x) - P(Y=1 | X = x)) \times$ $E_{y}\{P(Y=1 \mid X=x) - Y \mid X=x\} + E_{y}\{(P(Y=1 \mid X=x) - Y)^{2} \mid X=x\}$ $=(f(x) - P(Y=1 | X = x))^{2} + 2 \times (f(x) - P(Y=1 | X = x)) \times$ $(P(Y=1 | X = x) - E_{y} \{Y | X = x\}) + E_{y} \{(P(Y=1 | X = x) - Y)^{2} | X = x\}$ $= (f(x) - P(Y = 1 | X = x))^{2} + E_{y} \{ (P(Y = 1 | X = x) - Y)^{2} | X = x \}$

We want to minimize this 10/25/2000

Constant

Pairwise regression

- Another way of using regression for classification:
 - A regression function for every *pair* of classes, using only instances from these two classes
 - An output of +1 is assigned to one member of the pair, an output of -1 to the other
- Prediction is done by voting
 - Class that receives most votes is predicted
 - Alternative: "don't know" if there is no agreement
- More likely to be accurate but more expensive

Logistic regression

- Problem: some assumptions violated when linear regression is applied to classification problems
- Logistic regression: alternative to linear regression
 - Designed for classification problems
 - Tries to estimate class probabilities directly
 - * Does this using the *maximum likelihood* method
 - Uses the following linear model:

 $log(P/(1-P) = w_0a_0 + w_1a_1 + w_2a_2 + \dots + w_ka_k$ Class probability

Discussion of linear models

- Not appropriate if data exhibits non-linear dependencies
- But: can serve as building blocks for more complex schemes (i.e. model trees)
- Example: multi-response linear regression defines a *hyperplane* for any two given classes:

 $(w_0^{(1)} - w_0^{(2)})a_0 + (w_1^{(1)} - w_1^{(2)})a_1 + (w_2^{(1)} - w_2^{(2)})a_2 + \dots + (w_k^{(1)} - w_k^{(2)})a_k > 0$

Obviously the same for pairwise linear regression

Instance-based learning

- Distance function defines what's learned
- Most instance-based schemes use *Euclidean* distance:

$$\sqrt{(a_1^{(1)} - a_1^{(2)})^2 + (a_2^{(1)} - a_2^{(2)})^2 + \dots + (a_k^{(1)} - a_k^{(2)})^2}$$

 $\mathbf{a}^{(1)}$ and $\mathbf{a}^{(2)}$: two instances with *k* attributes

- Taking the square root is not required when comparing distances
- Other popular metric: city-block metric
 - Adds differences without squaring them

Normalization and other issues

Different attributes are measured on different scales \Rightarrow they need to be *normalized*:

 $a_i = \frac{v_i - \min v_i}{\max v_i - \min v_i}$

v_i: the actual value of attribute *i*

- Nominal attributes: distance either 0 or 1
- Common policy for missing values: assumed to be maximally distant (given normalized attributes)

Discussion of 1-NN

- Often very accurate but also slow: simple version scans entire training data to derive a prediction
- Assumes all attributes are equally important
 - Remedy: attribute selection or weights
- Possible remedies against noisy instances:
 - Taking a majority vote over the k nearest neighbors
 - Removing noisy instances from dataset (difficult!)
- Statisticians have used k-NN since early 1950s
 - If $n \rightarrow \infty$ and $k/n \rightarrow 0$, error approaches minimum