Statistical modeling

= “Opposite” of 1R: use all the attributes

= Two assumptions: Attributes are
& equally important

o statistically independent (given the class value)

* This means that knowledge about the value of a
particular attribute doesn’t tell us anything about the
value of another attribute (if the class is known)

= Although based on assumptions that are almost
never correct, this scheme works well in practice!

10/25/2000 11



Probabilities for the weather data

Outlook Temperature Humidity Windy Play
Yes No Yes No Yes No Yes No Yes No
Sunny 2 Hot 2 High 3 4 False 6 2 9 5
Overcast 4 Mild 4 2 Normal 6 1 True 3 3
Rainy 3 2 Cool 3 1
Sunny 29 3/5 Hot 2/9 2/5 High 3/9 4/5 False 6/9 2/5 9/14 5/14
Overcast 4/9 0/5 Mid 4/9 2/5 Normal 6/9 1/5 True 3/9 3/5
Rainy 3/9 2/5 Cool 3/9 1/5
n A new day Likelihood of the two classes
For “yes” = 2/9 x 3/9 x 3/9 x 3/9 x 9/14 = 0.0053
Outlook _ Temp. Humidity Windy Play For “no” = 3/5 x 1/5 x 4/5 x 3/5 x 5/14 = 0.0206
Sunny Cool High True ?

Conversion into a probability by normalization:
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P(“yes”) = 0.0053 / (0.0053 + 0.0206) = 0.205
P(“n0”) = 0.0206 / (0.0053 + 0.0206) = 0.795
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Bayes’s rule

Probability of event H given evidence E:

Pr{E|H]Pr[H]
PriE]

Pr{H |E] =

A priori probability of H: Pr[H]

o Probability of event before evidence has been seen
A posteriori probability of H: Pr[H | E]

o Probability of event after evidence has been seen
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Naive Bayes for classification

Classification learning: what’s the probability of the
class given an instance?

¢ Evidence E = instance
¢ Event H = class value for instance

Nailve Bayes assumption: evidence can be split
Into independent parts (i.e. attributes of instance!)

i |1 = PLEIHIPLE 1. ALE, |HIPH)
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The weather data example

Outlook

Temp. Humidity Windy Play

Sunny

Cool High True ?

Prlyes|E] =Pr

e
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Pr
Pr

Pr

Outlook = Sunny | yes] x
Temperature = Cool | yes] x
 Humdity = High| yes] x

Pr yes]

'Windy = True| yes] x P E]

=2/9><3/9><3/9><3/9><9/14

Pr{E]
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The “zero-frequency problem”

= What if an attribute value doesn’t occur with every
class value (e.g. “Humidity = high” for class “yes”)?

& Probability will be zero! Pr[Humdity = High|yes| =0
o A posteriori probability will also be zero! Prlyes|E]=0
(No matter how likely the other values are!)

= Remedy: add 1 to the count for every attribute
value-class combination (Laplace estimator)

= Result: probabilities will never be zero! (also:
stabilizes probabillity estimates)
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Modified probability estimates

In some cases adding a constant different from 1
might be more appropriate

Example: attribute outlook for class yes

2+ 113 4+ /3 3+ ul3
O+ u O+ u 9+ u

Weights don’t need to be equal (if they sum to 1)

2+ p, 4+ up, 3+ up,
O+ u O+ u 9+ u
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Missing values

= Training: instance is not included in frequency
count for attribute value-class combination

= Classification: attribute will be omitted from
calculation

. Outlook  Temp. Humidity Windy Pla
= Example: v ey T
? Cool High True ?

Likelihood of “yes” = 3/9 x 3/9 x 3/9 x 9/14 = 0.0238
Likelihood of “no” = 1/5 x 4/5 x 3/5 x 5/14 = 0.0343
P(“yes”) = 0.0238 / (0.0238 + 0.0343) = 41%

P(“no”) = 0.0343 / (0.0238 + 0.0343) = 59%
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Dealing with numeric attributes

Usual assumption: attributes have a normal or
Gaussian probability distribution (given the class)

The probability density function for the normal
distribution is defined by two parameters:

o The sample mean L u _1g X
n&

Th ndar viation o 1
¢ The standard deviation o:. . (>q — 1)’
n—-1&
1 (X‘#)

f() rae 20°
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¢ The density function f(x):



Statistics for the weather data

Outlook Temperature Humidity Windy Play
Yes No Yes No Yes No Yes No Yes No
Sunny 2 3 83 85 86 85 False 6 2 9 5
Overcast 4 0 70 80 96 90 True 3 3
Rainy 3 2 68 65 80 70

Sunny 29 35 mean 73 746 mean 79.1 86.2 False 6/9 2/5 9/14 5/14
Overcast 4/9 0/5 stddev 6.2 7.9 stddev 10.2 9.7 True 3/9 3/5
Rainy 3/9 2/5

Example density value:
_(86-73)?

f (temperature = 66| yes) = J7:6 ,e 262° =(,0340
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Classifying a new day

| A new day Outlook  Temp. Humidity Windy Play

Sunny 66 90 true ?

Likelihood of “yes” = 2/9 x 0.0340 x 0.0221 x 3/9 x 9/14 = 0.000036
Likelihood of “no” = 3/5 x 0.0291 x 0.0380 x 3/5 x 5/14 = 0.000136
P(“yes”) = 0.000036 / (0.000036 + 0. 000136) = 20.9%

P(“no”) = 0. 000136 / (0.000036 + 0. 000136) = 79.1%

= Missing values during training: not included In
calculation of mean and standard deviation
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Probability densities

Relationship between probability and density:
Pr[c—%<x<c+%] = gf (c)

But: this doesn’t change calculation of a posteriori
probabilities because &£ cancels out

Exact relationship:
b

Prla< x<b] :If(t)dt
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Discussion of Naive Bayes

= Naive Bayes works surprisingly well (even if
Independence assumption is clearly violated)

= Why? Because classification doesn’t require
accurate probability estimates as long as
maximum probability is assighed to correct class

= However: adding too many redundant attributes
will cause problems (e.g. identical attributes)

= Note also: many numeric attributes are not
normally distributed (- kernel density estimators)
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Linear models

Work most naturally with numeric attributes

Standard technigue for numeric prediction: linear
regression

¢ Outcome is linear combination of attributes
X=wW, +Wa +W,a, +...+W,a,
Weights are calculated from the training data
Predicted value for first training instance a®)

k
@ @ @ M — ®
W,y +Wa +W,as’ +...+ W a —ijaj
J:

10/25/2000 68



Minimizing the squared error

= k+1 coefficients are chosen so that the squared
error on the training data is minimized

. A K
= Squared error: Z%((i)_zw"a?)%
1= 1=

= Coefficient can be derived using standard matrix
operations

= Can be done Iif there are more instances than
attributes (roughly speaking)

= Minimization of absolute error is more difficult!
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Classification

= Any regression technique can be used for
classification

¢ Training: perform a regression for each class,
setting the output to 1 for training instances that
belong to class, and O for those that don't

+ Prediction: predict class corresponding to model
with largest output value (membership value)

= For linear regression this is known as multi-
response linear regression
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Theoretical justification

“a l r'd
EAFOO-YYIX=% -
=E{(f(X)=P(Y=1| X =x)+P(Y =1| X =x)-Y)? | X =%}
=(f(X)=P(Y =1| X = x))? +2x(f (X) = P(Y =1| X = X)) x

EL{P(Y=1|X=x)-Y|X=x3+E{(P(Y=1| X =x)-Y)?| X =x
=(f(X)=P(Y =1| X = x))? +2x(f (X) = P(Y =1| X = X)) x

(P(Y=1| X =x)-EfY|X =x)+E{(P(Y =1| X =x)-Y)*| X =%}
=(f()-P(Y=1| X =x)* +E{(P(Y =1| X =x)-Y)* | X =%
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Pairwise regression

= Another way of using regression for classification:

# A regression function for every pair of classes,
using only instances from these two classes

¢ An output of +1 is assigned to one member of the
pair, an output of —1 to the other

= Prediction is done by voting
+ Class that receives most votes is predicted
¢ Alternative: “don’t know” if there Is no agreement

= More likely to be accurate but more expensive
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Logistic regression

= Problem: some assumptions violated when linear
regression iIs applied to classification problems

= Logistic regression: alternative to linear regression

+ Designed for classification problems

¢ Tries to estimate class probabilities directly
» Does this using the maximum likelihood method

¢ Uses the following linear model:

log(P/(1-P) =w,a, + wa, +W,a, +...+w,.a,
\
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Discussion of linear models

Not appropriate If data exhibits non-linear
dependencies

But: can serve as building blocks for more
complex schemes (i.e. model trees)

Example: multi-response linear regression defines
a hyperplane for any two given classes:

(W6 = w6)ay + (e ~wi)a, + (W —wg?)a, +...+ (W ~w(?)a, >0
Obviously the same for pairwise linear regression
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Instance-based learning

= Distance function defines what's learned
s Most instance-based schemes use Euclidean
distance:
V@ ~al) + @ ~al) +..+ @ -a)’
al) and a@: two instances with k attributes

= Taking the square root is not required when
comparing distances

= Other popular metric: city-block metric
¢ Adds differences without squaring them
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Normalization and other issues

= Different attributes are measured on different
scales [I they need to be normalized.
V. —minv.
_mww—mmw

v the actual value of attribute /
= Nominal attributes: distance either O or 1

= Common policy for missing values: assumed to be
maximally distant (given normalized attributes)
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Discussion of 1-NN

= Often very accurate but also slow: simple version
scans entire training data to derive a prediction

= Assumes all attributes are equally important
¢ Remedy: attribute selection or weights
= Possible remedies against noisy instances:
¢ Taking a majority vote over the k nearest neighbors
¢ Removing noisy instances from dataset (difficult!)
= Statisticians have used k-NN since early 1950s
e lIf n - coand k/n - 0, error approaches minimum
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