14 Minimum Description Length Principle (MDL)

e Bayes Theorem:

P(H;)P(E|H;)

P(H;|E) = v P(H,;)P(E|H;)

e Take a —log of both sides of Bayes:

—logy P(H;|E) = —log, P(H;) — log, P(E|H;) + C

e Information in message A (minimal length of A in bits):
logy, P(A) = I(A) = L(A)

e Then: L(H|E)=L(H)+ L(E|H)

e MDL: The hypothesis must reduce the information needed to
encode the data, i.e.

L(E) > L(H) + L(E|H)

e The best hypothesis must maximize information compression:

L(E) — L(H) — L(E|H)
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15 Computing the description length of H and F

Assume that H is represented as a set of rules, L(H) = ?
e H=RVRV..VR,
o Ri: if ty Ata A ... ANty, then C}, where j =1,...,N.

e Let ts be the total number of tests ¢; (attribute-value pairs)
found in data. This is the number of different values for each
attribute summed over all attributes, excluding the class at-
tribute (for example, in PlayTennis ts = 10).

e To identify the rule R; left-hand side, we choose k; out of ts

tests. This can be done in (2‘9) different ways.

e Then the probability of each particular choice is (tl)
k-,

e According to information theory (Shannon and Weaver, 1949)
the optimal description length of the message that this choice
has been made is

1
— log, @

e Then the description length of R; is:

— The description length of the rule’s left-hand side.

— Plus the number of bits needed to encode the class value,
which is logy N, where NN is the number of classes.

e Then:
1 ts
L(R;) = —log, @ + logy, N = log, L + logy N
ks i
mn ts
L(H) = ._1(10852 e ] T logy N)

14



L(E) =7

e Apply the same technique for E. Both ¥ and H use the same
representation, i.e. each example can be represented as a rule
with the number of tests (attribute-values pairs) in the left-
hand side equal to the number of attributes (the same for all
examples).

15



16 Encoding exceptions (L(FE|H)) for two-class hypothe-
ses

Well be encoding here the exceptions, i.e. what we need in addition
to H in order to represent E. In other words, if we know H we
know F only partially (of course, if H is not 100% correct). Then,
in order to know F completely, we need to know the corrections to
H too, which are represented by the term L(E|H). We start with
the confusion matrix.

e Confusion matrix:

Actual \ Predicted by H | + | —
+ tp | fn
— fpltn
e H predicts class + for (tp+ fp) examples: tp correctly and fp

incorrectly.

e H predicts class — for (tn + fn) examples: tn correctly and
fn incorrectly.

e We have to find the description length of the incorrect predici-
tons (exceptions) fp and fn.

e fp examples out of (tp+ fp) examples can be chosen in (tp ;pf P )

different ways.

e fn examples out of (tn+ fn) examples can be chosen in (m;f ")

different ways.

e Using the probabilities of choosing fp examples out of (tp+ fp)
and fn examples out of (tn + fn), we get:

tp+ fp tn+ fn
fp )+10g2< n )

L(E|H) = log, (
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17 Encoding entropy

The encoding of exceptions approach has two major drawbacks:

e The evaluation is symetric with respect to the tp/fp and tn/fn
ratios. This is due to the symetry of the binomial coefficients:

)= (%)

This means for example, that two hypotheses both covering
100 instances — the one with 1 fp and the other with 99 fp’s,
will be equivalent with respect to their L(E|H) measure (!).

e If the hypothesis is 100% accurate (fp = 0 and fn = 0) then
L(E|H) = 0. In this situation we cannot evaluate the distri-
bution of the examples that the hypothesis coves.

To avoid the above mentioned drawbacks in some cases we may
apply other MDL evaluation measures, based on entropy. Here is
an example of one simple entropy-based measure:

e For each rule R; in H calculate:

. /1: ni J— . n'l: —_ .
e; = by log, bi iy log, pz,

ny; n; n; n;

e Where p; is the number of positive examples covered by R;,
and n; is the total number of examples covered by R;.

e Then

L(H) + L(E|H) = >_|Ri| + e; * n;
e Where |R;| is the number of tests (attribute-value pairs) in
rule R;.

e Since different encodings are used for L(F), L(H) and L(H|E),
the above formula can be used to compare hypotheses only, but
not as a measure of the actual compression.
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e Where p; is the number of positive examples covered by R;, and n;
is the total number of examples covered by R;.

e Then
L(H) + L(E|H) = >_|Ri| + e * n

e Where |R;| is the number of tests (attribute-value pairs) in rule R;.

e Since different encodings are used for L(E), L(H) and L(H|FE), the
above formula can be used to compare hypotheses only, but not as
a measure of the actual compression.

4 Example (encoding exceptions)

4.1 Encoding Data

Outlook | Temperature | Humidity | Wind | Play
T T2 T3 Ly Y

sunny hot high weak | no
sunny hot high strong | no
overcast hot high weak | yes
rain mild high weak | yes
rain cool normal weak | yes
rain cool normal | strong | no
overcast cool normal | strong | yes
sunny mild high weak | no
sunny cool normal weak | yes
rain mild normal weak | yes
sunny mild normal | strong | yes
overcast mild high strong | yes
overcast hot normal weak | yes
rain mild high strong | no

Each tuple can be represented as a set of attribute value pairs as follows:



E = {{z1 = sunny, x5 = hot, x3 = high, x4 = weak}
{x1 = sunny, zy = hot, x3 = high, x4 = strong}

{z1 = overcast,xy = hot,x3 = high, z4 = weak}
¥
L(E) =7

Excluding the class attribute, the total number of different attribute
value pairs is ts = 10.

In each tuple we have 4 pairs involving independent attributes, which
may be chosen in (140) = 4!1216! = 210 different ways, and one pair

with the class attribute, which may be chosen in 2 differnt ways.

1

Thus the probability of choosing a tuple is 55

1
Xﬁ'

The code length in bits for this choice is — log, ﬁ —log, % = log, 210+
logy,2 = 7.715 4+ 1 = 8.715, which is also the number of bits to
encode a tuple with its class value.

Then the code length of the whole data set is
L(FE)=28.715 x 14 = 122.01

4.2 Hypoteses

Consider applying the Prizm algorithm to our data and a situation
where we have generated two rules for class yes and are considering
whether or not to add more rules, i.e. we have two competing hypothe-

ses Hy and Hs (for class no we use CWA):



Hy: If {outlook = overcast} Then play=yes
If {humidity = normal, wind = weak} Then play=yes

Hy: If {outlook = overcast} Then play=yes
If {humidity = normal, wind = weak} Then play=yes
If {temperature = mild, humidity = normal} Then play=yes

Let’s compute the compression of H; and H,. First we need the
length of each hypothesis — L(H;) and L(Hs).

As we do not include the class attribute in the rule conditions (and
no need to encode it at all, because all rules are for just one class),
the total number of tests (fs) is now 10. Summing over the rules (the
number of bits to encode the rule conditions) in each hypothesis, we
get:

10

10
) ) + log, ( 5 ) = log, 10 + log, 45 = 3.32 4+ 5.49 = 8.81

L(H;) = log, (

10 10 10
L(HQ) = 10g2 ( 1 >+10g2 (2 ) +10g2 ( 9 ) = 10g2 10+2X10g2 45 = 14.30

Next, we need to encode the exceptions. For this purpose let’s com-
pute the confusion matrices first. Again for class no we use CWA (i.e.
tuples not covered by any rule are predicted as belonging to class no).

Hli



Actual \ Predicted | yes | no
yes 7| 2
no 0|5

HQZ

Actual \ Predicted | yes | no
yes 8 | 1
no 0

According to the formula for L(E|H) we have to compute the number
of bits needed to encode the exceptions (wrong classifications).

7 7
L(E|Hy) = log, (0) + log, (2) = log, 1 +logy 21 =0+ 4.39 = 4.39

8 6
L(E|H3) = log, (O) + log, (1) = logy 1 + logy 6 = 0 + 2.59 = 2.59

Then the compression for each hypothesis is

compr(Hy) = L(E)— L(Hy)— L(E|H;) = 122.01 —8.81 —4.39 = 108.81
compr(Hsy) = L(E)—L(Hy)— L(E|Hy) = 122.01—14.30—2.59 = 105.12
The above result shows that H; has better compression that Hs. So,

the conclusion is that we can stop generating Prizm rules and deliver
H, as a good model of our data.



