
Attribute-oriented analysis

1 Generality and specificity

1.1 Representing tuples as sets

• Let X, Y be tuples, i.e. X =< x1, x2, ..., xn >, Y =< y1, y2, ..., yn >.

• Assume that the attributes are A1, A2, ..., An.

• Then we can represent tuples as sets of attribute-value pairs: X =
{A1 = x1, A2 = x2, ..., An = xn}, Y = {A1 = y1, A2 = y2, ..., An =
yn}.

1.2 Generality ordering with different attribute types

• Nominal attributes. X is more general than Y (or X covers, sub-
sumes Y ), if X ⊆ Y . Conversely, Y is more specific than X (or Y

is covered, subsumed by X).

• Structured attributes (attributes forming a concept hierarchy). X is
more general than Y (or X covers, subsumes Y ), if yi is a successor
of xi in the concept hierarchy of Ai, for i = 1, ..., n.

• Converting nominal attributes into structured. Assume A is a nom-
inal attribute with values v1, v2, ..., vn. Then we can create a two-
level concept hierarchy with leaves v1, v2, ..., vn and a root label that
allows all possible values for A (v1, v2, ..., vn), e.g. ALL (as used in
the data cube).
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2 Attribute generalization

• Nominal attributes: Dropping condition. Removing an attribute-
value pair from X, thus obtaining a subset of X. Similar to dicing
(selecting a subset of values) in the data cube.

• Structured attributes: Climbing up concept hierarchy. Replacing a
value in an attribute value pair with a more general one. Similar
to roll-up in the data cube.
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3 Example

Day Outlook Temperature Humidity Wind PlayTennis
x1 x2 x3 x4 y

1 sunny hot high weak no
2 sunny hot high strong no
3 overcast hot high weak yes
4 rain mild high weak yes
5 rain cool normal weak yes
6 rain cool normal strong no
7 overcast cool normal strong yes
8 sunny mild high weak no
9 sunny cool normal weak yes
10 rain mild normal weak yes
11 sunny mild normal strong yes
12 overcast mild high strong yes
13 overcast hot normal weak yes
14 rain mild high strong no

3.1 Set representation

X1 = {x1 = sunny, x2 = hot, x3 = high, x4 = weak, y = no}
X2 = {x1 = sunny, x2 = hot, x3 = high, x4 = strong, y = no}
X3 = {x1 = overcast, x2 = hot, x3 = high, x4 = weak, y = yes}

3.2 Generalization

Y1 = {x2 = hot, x3 = high, x4 = weak} (X1 with first and last attributes dropped).

Y1 is more general than (covers) both X1 and X3, because Y1 ⊆ X1 and Y1 ⊆ X3.

We may create a classification rule IF Y1 THEN y = no, that has coverage 2 (two
tuples covered by Y1) and accuracy 1/2. Note that the notion of coverage here
is different from the support for the association rules.

The most general tuple is > = {} (covers all 14 tuples). By adding attribute-value
pairs we may specialize it. For example, {x1 = overcast} covers 4 tuples (X3,
X7, X12, X13). What is the accuracy of IF {x1 = overcast} THEN y = yes ?
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4 Attribute relevance

4.1 Attribute selection

Searching the lattice of subsets of the set of attributes (similar to search-
ing the lattice of cuboids).

4.2 Selection criterion

Find a subset of attributes that is most likely to describe/predict the
class best.

• Filtering: scheme-independent attribute selection.

– Minimal set of attributes that separate all tuples (class-independent).
Problem: ID attribute (no possibility to generalize).

– Minimal set of attributes that preserve the class distribution:
instance-based methods and entropy-based methods.

• Scheme-specific methods.

4.3 Instance-based attribute selection

• Similarity measure (distance). For example:

– Euclidean distance for numeric attributes:
D(X, Y ) =

√
(x1 − y1)2 + (x2 − y2)2 + ... + (xn − yn)2

– Number of differences for nominal attributes:
D(X, Y ) =

∑n
1 d(xi, yi),

where d(xi, yi) = 0 if xi = yi and 1 otherwise.

– Normalization required for mixed (numeric and nominal).

• Similarity-based attribute selection:
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– For each tuple find the nearest neighbors (the closest tuples
according to the distance measure) of the same and different
classes – ”near hits” and ”near misses”.

– If a near hit has a different value for a certain attribute then
that attribute appears to be irrelevant and its weight should be
decreased.

– For near misses, the attributes with different values are relevant
and their weights should be increased.

– Algorithm: Start with equal weights for all attributes and do
the weight adjustment, as explained above. This allows or-
dering attributes by relevance and selecting the best subset of
attributes.

• Example (weather data – Section 3, this chapter):

– The nearest neighbors of X1 in its class ”no” (near hits) are
X2 and X8 (ignoring the class y we have: D(X1, X2) = 1,
D(X1, X6) = 4, D(X1, X8) = 1, D(X1, X14) = 3).

– Attribute x4 (wind) has different values in X1 and X2, so we
decrease its relevance.

– Attribute x2 (temperature) has different values in X1 and X8,
so we decrease its relevance too.

– The nearest neighbor of X1 in the opposite class ”yes” (near
miss) is X3 (D(X1, X3) = 1).

– Attribute x1 (outlook) has different values in X1 and X3, so we
increase its relevance.

5



4.4 Entropy-based attribute selection

• Let S be a set of tuples from m classes – C1, C2, ..., Cm. Then the
number of tuples in S is |S| = |S1| + |S2| + ... + |Sm|, where Si is
the set of tuples from class Ci.

• The entropy of the class distribution in S (or the average informa-
tion needed to classify an arbitrary tuple) is

I(S) = −P (C1)×log2P (C1)−P (C2)×log2P (C2)−...−P (Cn)×log2P (Cn),

where P (Ci) = |Si|
|S| .

• Assume that attribute A splits S into k subsets – A1, A2, ..., Ak

(each Ai having the same value for A).

• Then (similarly to the info function used for entropy-based dis-
cretization in Chapter 3), the information in the split, based on
the values of A is

I(A) =
|A1|
|S|

× I(A1) +
|A2|
|S|

× I(A2) + ... +
|Ak|
|S|

× I(Ak))

• Then, the information gain is

gain(A) = I(S)− I(A)

• The most relevant attribute (the one with the highest discriminant
power) is the attribute with maximal information gain.

• What about the tuple ID attribute? I(A) =?, Is it relevant?

• Example (weather data – Section 3, this chapter):

I(S) = −P (yes)×log2P (yes)−P (no)×log2P (no) = − 5
14×log2

5
14−

9
14 × log2

9
14
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A = outlook, A1 = {1, 2, 8, 9, 11} (sunny), A2 = {3, 7, 12, 13}
(overcast), A3 = {4, 5, 6, 10, 14} (rainy).

I(outlook) = 5
14 × I(A1) + 4

14 × I(A2) + 5
14 × I(A3)

I(A1) = I({no, no, no, yes, yes}) = −3
5 × log2

3
5 −

2
5 × log2

2
5

I(A2) = I({yes, yes, yes, yes}) = 0

I(A3) = I({yes, yes, no, yes, no}) = −3
5 × log2

3
5 −

2
5 × log2

2
5

4.5 Class characterization and comparison

• Let X be a generalized tuple (rule) from class Ci in a data set S

with n classes – C1, C2, ..., Cn. Assume X covers Mi tuples from
class Ci and a total of Ki tuples from S.

• T (X) = Mi

|Ci|

• D(X) = Mi

Ki

• T (X) is a measure of the characterization power of X. If T (X) < 1
(X does not cover all tuples in Ci), we need more generalized tuples
to describe Ci (the new tuples are added to X as disjuncts). If T (X)
is too small then we need to many disjuncts (overspecialization).

• D(X) is a measure of the discriminant power of X. If D(X) = 1,
X is s good rule (100% accurate). If D(X) < 1 (X covers tuples
from contrasting classes) then X has to be specialized (we have
overgeneralization).

• Example (weather data – Section 3, this chapter): X = {Day = 3},
T (X) =?, D(X) =?
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4.6 Statistical measures

• Measuring central tendency

– Arithmetic mean (average) of all values of an attribute:

µ =
1

n

n∑
1

xi

– Median: the middle value in an ordered sequence.

• Measuring dispersion: variance (σ) and standard deviation (σ2)

σ2 =
1

n

n∑
1

(xi − µ)2
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