1.1

Attribute-oriented analysis

Generality and specificity

Representing tuples as sets

Let X, Y betuples,i.e. X =< x1,29,....,T, >, Y =< Y1,Y2, .., Yn >.
Assume that the attributes are Aq, Ao, ..., A,,.

Then we can represent tuples as sets of attribute-value pairs: X =
{Al = ZUl,AQ = T2, ,An = I’n}, Y = {Al = yl,AQ = Y2, ...,An =
Ynt-

Generality ordering with different attribute types

Nominal attributes. X is more general than Y (or X covers, sub-
sumes Y), if X C Y. Conversely, Y is more specific than X (or Y
is covered, subsumed by X).

Structured attributes (attributes forming a concept hierarchy). X is
more general than Y (or X covers, subsumes Y), if y; is a successor
of x; in the concept hierarchy of A;, for i =1,...,n.

Converting nominal attributes into structured. Assume A is a nom-
inal attribute with values vy, v, ...,v,. Then we can create a two-
level concept hierarchy with leaves vy, vo, ..., v, and a root label that
allows all possible values for A (v, v9,...,v,), e.g. ALL (as used in
the data cube).



2 Attribute generalization

e Nominal attributes: Dropping condition. Removing an attribute-
value pair from X, thus obtaining a subset of X. Similar to dicing
(selecting a subset of values) in the data cube.

e Structured attributes: Climbing up concept hierarchy. Replacing a
value in an attribute value pair with a more general one. Similar
to roll-up in the data cube.



3 Example

Day | Outlook | Temperature | Humidity | Wind | PlayTennis
T T2 I3 T4 Y
1 sunny hot high weak no
2 sunny hot high strong no
3 | overcast hot high weak yes
4 rain mild high weak yes
5 rain cool normal weak yes
6 rain cool normal | strong no
7 | overcast cool normal | strong yes
8 sunny mild high weak no
9 sunny cool normal weak yes
10 rain mild normal weak yes
11 sunny mild normal | strong yes
12 | overcast mild high strong yes
13 | overcast hot normal weak yes
14 rain mild high strong no

3.1 Set representation
X = {x1 = sunny, xy = hot, x3 = high, x4, = weak,y = no}

Xy = {x1 = sunny, xy = hot, x3 = high, x4 = strong,y = no}

X3 = {x1 = overcast, xy = hot, x5 = high, x4, = weak,y = yes}

3.2 Generalization
Y1 = {3 = hot, x5 = high, x4, = weak} (X; with first and last attributes dropped).
Y] is more general than (covers) both X; and X3, because Y; C X; and Y] C X.

We may create a classification rule IF Y3 THEN y = no, that has coverage 2 (two
tuples covered by Y;) and accuracy 1/2. Note that the notion of coverage here
is different from the support for the association rules.

The most general tuple is T = {} (covers all 14 tuples). By adding attribute-value
pairs we may specialize it. For example, {x; = overcast} covers 4 tuples (X3,
X7, Xi9, X13). What is the accuracy of IF {x; = overcast} THEN y = yes ?



4 Attribute relevance
4.1 Attribute selection

Searching the lattice of subsets of the set of attributes (similar to search-
ing the lattice of cuboids).

4.2 Selection criterion

Find a subset of attributes that is most likely to describe/predict the
class best.

e Filtering: scheme-independent attribute selection.

— Minimal set of attributes that separate all tuples (class-independent).
Problem: ID attribute (no possibility to generalize).

— Minimal set of attributes that preserve the class distribution:
instance-based methods and entropy-based methods.

e Scheme-specific methods.

4.3 Instance-based attribute selection
e Similarity measure (distance). For example:

— Fuclidean distance for numeric attributes:
D(X,Y) = /(z1 = 91)? + (@2 = 92)2 + o + (@0 — y)?
— Number of differences for nominal attributes:
D(X,Y) =51 d(zi, y1),
where d(z;,y;) = 0 if x; = y; and 1 otherwise.

— Normalization required for mixed (numeric and nominal).

e Similarity-based attribute selection:



— For each tuple find the nearest neighbors (the closest tuples
according to the distance measure) of the same and different
classes — "near hits” and "near misses”.

— If a near hit has a different value for a certain attribute then
that attribute appears to be irrelevant and its weight should be
decreased.

— For near misses, the attributes with different values are relevant
and their weights should be increased.

— Algorithm: Start with equal weights for all attributes and do
the weight adjustment, as explained above. This allows or-
dering attributes by relevance and selecting the best subset of
attributes.

e Example (weather data — Section 3, this chapter):

— The nearest neighbors of X; in its class "no” (near hits) are
Xy and Xy (ignoring the class y we have: D(Xi, X5) = 1,
D(X1, Xs) = 4, D(X1, Xs) = 1, D(X1, X14) = 3).

— Attribute z4 (wind) has different values in X; and Xj, so we
decrease its relevance.

— Attribute xy (temperature) has different values in X; and X,
so we decrease its relevance too.

— The nearest neighbor of X in the opposite class "yes” (near
miss) is X3 (D(X1, X3) = 1).

— Attribute 7 (outlook) has different values in X; and X3, so we
increase its relevance.



4.4 Entropy-based attribute selection

e Let S be a set of tuples from m classes — C1, (Y, ..., C,,. Then the
number of tuples in S is |S| = |S1]| + |Sa| + ... + | S|, where S; is
the set of tuples from class Cj.

e The entropy of the class distribution in S (or the average informa-
tion needed to classify an arbitrary tuple) is

](S) = —P(Ol)XZOQQP(Cl)—P(OQ)XZOQQP(CQ)—...—P(Cn)Xl092p<0n),

where P(C;) = ‘g?".

e Assume that attribute A splits S into k subsets — A, Ao, ..., Ay
(each A; having the same value for A).

e Then (similarly to the info function used for entropy-based dis-
cretization in Chapter 3), the information in the split, based on
the values of A is
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e Then, the information gain is
gain(A) = I1(S) — I(A)
e The most relevant attribute (the one with the highest discriminant
power) is the attribute with mazimal information gain.
e What about the tuple ID attribute? I(A) =7, Is it relevant?
e Example (weather data — Section 3, this chapter):

1(S) = —P(yes) xlogs P(yes) — P(no) xloga P(no) = — 2 xlogs2; —
% X loggﬁ



A = outlook, A; = {1,2,8,9,11} (sunny), Ay = {3,7,12,13}
(overcast), A3 = {4,5,6, 10,14} (rainy).

I(outlook) = 2 x I(Ay) + & X I(As) + 2 x I(As3)

I(A1) = I({no,no,no, yes,yes}) = =2 x logs? — 2 X logy?
I(As) = I({yes,yes, yes,yes}t) =0

I(A3) = I({yes, yes, no,yes,no}) = —% X ZOQQ% — % X ZOQQ%

4.5 Class characterization and comparison

e Let X be a generalized tuple (rule) from class C; in a data set S
with n classes — C1, (s, ..., C,,. Assume X covers M; tuples from
class C; and a total of K; tuples from S.

o I'(X) = |]\C{_i|
« D(X) =3

e T'(X) is a measure of the characterization power of X. If T'(X) < 1
(X does not cover all tuples in C;), we need more generalized tuples
to describe C; (the new tuples are added to X as disjuncts). If T(X)
is too small then we need to many disjuncts (overspecialization).

e D(X) is a measure of the discriminant power of X. If D(X) = 1,
X is s good rule (100% accurate). If D(X) < 1 (X covers tuples
from contrasting classes) then X has to be specialized (we have
overgeneralization).

e Example (weather data — Section 3, this chapter): X = {Day = 3},
T(X)=? D(X) ="



4.6 Statistical measures

e Measuring central tendency

— Arithmetic mean (average) of all values of an attribute:
1.
p=—>
n
— Median: the middle value in an ordered sequence.

e Measuring dispersion: variance (o) and standard deviation (o?)
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