Attribute-oriented analysis

1 Generality and specificity

1.1 Representing tuples as sets

- Let X, Y be tuples, i.e. $X = \langle x_1, x_2, ..., x_n \rangle$, $Y = \langle y_1, y_2, ..., y_n \rangle$.
- Assume that the attributes are $A_1, A_2, ..., A_n$.
- Then we can represent tuples as sets of attribute-value pairs: $X = \{A_1 = x_1, A_2 = x_2, ..., A_n = x_n\}, Y = \{A_1 = y_1, A_2 = y_2, ..., A_n = y_n\}.$

1.2 Generality ordering with different attribute types

- Nominal attributes. X is more general than Y (or X covers, subsumes Y), if $X \subseteq Y$. Conversely, Y is more specific than X (or Y is covered, subsumed by X).
- Structured attributes (attributes forming a concept hierarchy). X is more general than Y (or X covers, subsumes Y), if y_i is a successor of x_i in the concept hierarchy of A_i , for i = 1, ..., n.
- Converting nominal attributes into structured. Assume A is a nominal attribute with values $v_1, v_2, ..., v_n$. Then we can create a twolevel concept hierarchy with leaves $v_1, v_2, ..., v_n$ and a root label that allows all possible values for $A(v_1, v_2, ..., v_n)$, e.g. ALL (as used in the data cube).

2 Attribute generalization

- Nominal attributes: Dropping condition. Removing an attributevalue pair from X, thus obtaining a subset of X. Similar to dicing (selecting a subset of values) in the data cube.
- Structured attributes: Climbing up concept hierarchy. Replacing a value in an attribute value pair with a more general one. Similar to roll-up in the data cube.

3 Example

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
	x_1	x_2	x_3	x_4	y
1	sunny	hot	high	weak	no
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
4	rain	mild	high	weak	yes
5	rain	cool	normal	weak	yes
6	rain	cool	normal	strong	no
7	overcast	cool	normal	strong	yes
8	sunny	mild	high	weak	no
9	sunny	cool	normal	weak	yes
10	rain	mild	normal	weak	yes
11	sunny	mild	normal	strong	yes
12	overcast	mild	high	strong	yes
13	overcast	hot	normal	weak	yes
14	rain	mild	high	strong	no

3.1 Set representation

$$X_{1} = \{x_{1} = sunny, x_{2} = hot, x_{3} = high, x_{4} = weak, y = no\}$$
$$X_{2} = \{x_{1} = sunny, x_{2} = hot, x_{3} = high, x_{4} = strong, y = no\}$$
$$X_{3} = \{x_{1} = overcast, x_{2} = hot, x_{3} = high, x_{4} = weak, y = yes\}$$

3.2 Generalization

- $Y_1 = \{x_2 = hot, x_3 = high, x_4 = weak\}$ (X₁ with first and last attributes dropped).
- Y_1 is more general than (covers) both X_1 and X_3 , because $Y_1 \subseteq X_1$ and $Y_1 \subseteq X_3$.
- We may create a classification rule IF Y_1 THEN y = no, that has coverage 2 (two tuples covered by Y_1) and accuracy 1/2. Note that the notion of coverage here is different from the support for the association rules.
- The most general tuple is $\top = \{\}$ (covers all 14 tuples). By adding attribute-value pairs we may specialize it. For example, $\{x_1 = overcast\}$ covers 4 tuples $(X_3, X_7, X_{12}, X_{13})$. What is the accuracy of IF $\{x_1 = overcast\}$ THEN y = yes?

4 Attribute relevance

4.1 Attribute selection

Searching the lattice of subsets of the set of attributes (similar to searching the lattice of cuboids).

4.2 Selection criterion

Find a subset of attributes that is most likely to describe/predict the class best.

- Filtering: scheme-independent attribute selection.
 - Minimal set of attributes that separate all tuples (class-independent).
 Problem: ID attribute (no possibility to generalize).
 - Minimal set of attributes that preserve the class distribution: instance-based methods and entropy-based methods.
- Scheme-specific methods.

4.3 Instance-based attribute selection

- Similarity measure (distance). For example:
 - Euclidean distance for numeric attributes: $D(X,Y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$
 - Number of differences for nominal attributes: $D(X,Y) = \sum_{i=1}^{n} d(x_i, y_i),$ where $d(x_i, y_i) = 0$ if $x_i = y_i$ and 1 otherwise.
 - Normalization required for mixed (numeric and nominal).
- Similarity-based attribute selection:

- For each tuple find the nearest neighbors (the closest tuples according to the distance measure) of the same and different classes – "near hits" and "near misses".
- If a near hit has a different value for a certain attribute then that attribute appears to be irrelevant and its weight should be decreased.
- For near misses, the attributes with different values are relevant and their weights should be increased.
- Algorithm: Start with equal weights for all attributes and do the weight adjustment, as explained above. This allows ordering attributes by relevance and selecting the best subset of attributes.
- Example (weather data Section 3, this chapter):
 - The nearest neighbors of X_1 in its class "no" (near hits) are X_2 and X_8 (ignoring the class y we have: $D(X_1, X_2) = 1$, $D(X_1, X_6) = 4$, $D(X_1, X_8) = 1$, $D(X_1, X_{14}) = 3$).
 - Attribute x_4 (wind) has different values in X_1 and X_2 , so we decrease its relevance.
 - Attribute x_2 (temperature) has different values in X_1 and X_8 , so we decrease its relevance too.
 - The nearest neighbor of X_1 in the opposite class "yes" (near miss) is X_3 ($D(X_1, X_3) = 1$).
 - Attribute x_1 (outlook) has different values in X_1 and X_3 , so we increase its relevance.

4.4 Entropy-based attribute selection

- Let S be a set of tuples from m classes $-C_1, C_2, ..., C_m$. Then the number of tuples in S is $|S| = |S_1| + |S_2| + ... + |S_m|$, where S_i is the set of tuples from class C_i .
- The entropy of the class distribution in S (or the average information needed to classify an arbitrary tuple) is

 $I(S) = -P(C_1) \times \log_2 P(C_1) - P(C_2) \times \log_2 P(C_2) - \dots - P(C_n) \times \log_2 P(C_n),$ where $P(C_i) = \frac{|S_i|}{|S|}.$

- Assume that attribute A splits S into k subsets $-A_1, A_2, ..., A_k$ (each A_i having the same value for A).
- Then (similarly to the info function used for entropy-based discretization in Chapter 3), the information in the split, based on the values of A is

$$I(A) = \frac{|A_1|}{|S|} \times I(A_1) + \frac{|A_2|}{|S|} \times I(A_2) + \dots + \frac{|A_k|}{|S|} \times I(A_k))$$

• Then, the *information gain* is

$$gain(A) = I(S) - I(A)$$

- The most *relevant attribute* (the one with the highest discriminant power) is the attribute with *maximal information gain*.
- What about the tuple ID attribute? I(A) = ?, Is it relevant?
- Example (weather data Section 3, this chapter):

$$I(S) = -P(yes) \times \log_2 P(yes) - P(no) \times \log_2 P(no) = -\frac{5}{14} \times \log_2 \frac{5}{14} - \frac{9}{14} \times \log_2 \frac{9}{14}$$

 $A = outlook, A_1 = \{1, 2, 8, 9, 11\} \text{ (sunny)}, A_2 = \{3, 7, 12, 13\} \text{ (overcast)}, A_3 = \{4, 5, 6, 10, 14\} \text{ (rainy)}.$ $I(outlook) = \frac{5}{14} \times I(A_1) + \frac{4}{14} \times I(A_2) + \frac{5}{14} \times I(A_3)$ $I(A_1) = I(\{no, no, no, yes, yes\}) = -\frac{3}{5} \times \log_2 \frac{3}{5} - \frac{2}{5} \times \log_2 \frac{2}{5}$ $I(A_2) = I(\{yes, yes, yes, yes, yes\}) = 0$ $I(A_3) = I(\{yes, yes, no, yes, no\}) = -\frac{3}{5} \times \log_2 \frac{3}{5} - \frac{2}{5} \times \log_2 \frac{2}{5}$

4.5 Class characterization and comparison

- Let X be a generalized tuple (rule) from class C_i in a data set S with n classes $-C_1, C_2, ..., C_n$. Assume X covers M_i tuples from class C_i and a total of K_i tuples from S.
- $T(X) = \frac{M_i}{|C_i|}$
- $D(X) = \frac{M_i}{K_i}$
- T(X) is a measure of the *characterization power* of X. If T(X) < 1(X does not cover all tuples in C_i), we need more generalized tuples to describe C_i (the new tuples are added to X as disjuncts). If T(X)is too small then we need to many disjuncts (overspecialization).
- D(X) is a measure of the discriminant power of X. If D(X) = 1, X is s good rule (100% accurate). If D(X) < 1 (X covers tuples from contrasting classes) then X has to be specialized (we have overgeneralization).
- Example (weather data Section 3, this chapter): $X = \{Day = 3\}, T(X) = ?, D(X) = ?$

4.6 Statistical measures

- Measuring central tendency
 - Arithmetic mean (average) of all values of an attribute:

$$\mu = \frac{1}{n} \sum_{1}^{n} x_i$$

- Median: the middle value in an ordered sequence.
- Measuring *dispersion*: variance (σ) and standard deviation (σ^2)

$$\sigma^{2} = \frac{1}{n} \sum_{1}^{n} (x_{i} - \mu)^{2}$$