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Clustering
� Unsupervised: no target value to be predicted

� Differences between models/algorithms:

� Exclusive vs. overlapping

� Deterministic vs. probabilistic

� Hierarchical vs. flat

� Incremental vs. batch learning

� Evaluation problematic: usually done by inspection

� But: if clustering is treated as a density estimation 
problem, then it can be evaluated on test data!
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Hierarchical clustering
� Bottom up: at each step join the two closest 

clusters (starting with single-instance clusters)

� Design decision: distance between clusters

� E.g. two closest instances in clusters vs. distance 
between means

� Top down: find two clusters and then proceed 
recursively for the two subsets

� Can be very fast

� Both methods produce a dendrogram
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The k-means algorithm
� Clusters the data into k groups where k is 

predefined

� 1st step: cluster centers are chosen (e.g. at 
random)

� 2nd step: instances are assigned to clusters based 
on their distance to the cluster centers

� 3rd step: centroids of clusters are computed

� 4th step: go to 1st step until convergence
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Discussion
� Result can vary significantly based on initial choice 

of seeds

� Algorithm can get trapped in a local minimum

� Example: four instances at the vertices of a two-
dimensional rectangle

� Local minimum: two cluster centers at the midpoints 
of the rectangle’s long sides

� Simple way to increase chance of finding a global 
optimum: restart with different random seeds
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Incremental clustering
	 COBWEB/CLASSIT: incrementally forms a 

hierarchy of clusters

	 In the beginning tree consists of empty root node

	 Instances are added one by one, and the tree is 
updated appropriately at each stage

	 Updating involves finding the right leaf for an 
instance (possibly restructuring the tree)

	 Updating decisions are based on category utility 
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Clustering the weather data

N

M

L

K

J

I

H

G

F

E

D

C

B

A

ID code

TrueHighMildRainy

FalseNormalHotOvercast
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Steps 1-3
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Steps 3-4
Best host and
runner-up have
been merged

Note: splitting the best host is considered if merging doesn’t help
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The final hierarchy

a and b are actually very similar
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Clustering (parts) of the iris data
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Clustering the iris data with cutoff
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Category utility

 Category utility is a kind of quadratic loss function 

defined on conditional probabilities:


 If every instance gets put into a different category 
the numerator becomes (m = #attributes):
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Numeric attributes
� We assume normal distribution:

� Then we get: 

� Thus

is

� Acuity parameter: prespecified minimum variance
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Probability-based clustering
� Problems with above heuristic approach:


 Division by k?


 Order of examples?


 Are restructuring operations sufficient?


 Is result at least local minimum of category utility?

� From a probabilistic perspective, we want to find 
the most likely clusters given the data

� Also: instance only has certain probability of 
belonging to a particular cluster
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Finite mixtures
� Probabilistic clustering algorithms model the data 

using a mixture of distributions

� Each cluster is represented by one distribution

� The distribution governs the probabilities of 
attributes values in the corresponding cluster

� They are called finite mixtures because there is 
only a finite number of clusters being represented

� Usually individual distributions are normal distribut.

� Distributions are combined using cluster weights
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A two-class mixture model
A       51
A       43
B       62
B       64
A       45
A       42
A       46
A       45
A       45

B       62
A       47
A       52
B       64
A       51
B       65
A       48
A       49
A       46

B       64
A       51
A       52
B       62
A       49
A       48
B       62
A       43
A       40

A       48
B       64
A       51
B       63
A       43
B       65
B       66
B       65
A       46

A       39
B       62
B       64
A       52
B       63
B       64
A       48
B       64
A       48

A       51
A       48
B       64
A       42
A       48
A       41

data

model

µA=50, σA =5, pA=0.6       µB=65, σB =2, pB=0.4
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Using the mixture model
� The probability of an instance x belonging to 

cluster A is:

with 

� The likelihood of an instance given the clusters is:

]Pr[
),;(

]Pr[
]Pr[]|Pr[

]|Pr[
x

pxf

x

AAx
xA AAA σµ==

2

2

2

)(

2
1

),;( σ
µ

σπ
σµ

−

=
x

exf

∑=
i

xx ]clusterPr[]cluster|Pr[]onsdistributi the|Pr[ ii



10/25/2000 98

Learning the clusters
� Assume we know that there are k clusters

� To learn the clusters we need to determine their 
parameters

� I.e. their means and standard deviations

� We actually have a performance criterion: the 
likelihood of the training data given the clusters

� Fortunately, there exists an algorithm that finds a 
local maximum of the likelihood
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The EM algorithm
� EM algorithm: expectation-maximization algorithm

� Generalization of k-means to probabilistic setting

� Similar iterative procedure:
1. Calculate cluster probability for each instance 

(expectation step)
2. Estimate distribution parameters based on the 

cluster probabilities (maximization step)

� Cluster probabilities are stored as instance 
weights
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More on EM
� Estimating parameters from weighted instances:

� Procedure stops when log-likelihood saturates

� Log-likelihood: 
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Extending the mixture model
� Using more then two distributions: easy

� Several attributes: easy if independence is 
assumed

� Correlated attributes: difficult

� Modeled jointly using a bivariate normal distribution 
with a (symmetric) covariance matrix

� With n attributes this requires estimating n+n(n+1)/2 
parameters

� Nominal attributes: easy if independent
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More on extensions
� Correlated nominal attributes: difficult

� Two correlated attributes result in v1 v2 parameters

� Missing values: easy

� Distributions other than the normal distribution can 
be used: 

� “log-normal” if predetermined minimum is given

� “log-odds” if bounded from above and below

� Poisson for attributes that are integer counts

� Cross-validation can be used to estimate k!!
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Bayesian clustering
� Problem: overfitting possible if number of 

parameters gets large

� Bayesian approach: every parameter has a prior 
probability distribution

� Gets incorporated into the overall likelihood figure 
and thereby penalizes introduction of parameters

� Example: Laplace estimator for nominal attributes

� Can also have prior on number of clusters!

� Actual implementation: NASA’s AUTOCLASS
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Discussion
� Clusters can be interpreted by using supervised 

learning in a post-processing step

� Can be used to fill in missing values

� May be advantageous to make attributes more 
independent in pre-processing step

 I.e. using principal component analysis

� Big advantage of probabilistic clustering schemes:

 Likelihood of data can be estimated and used to 
compare different clustering models


