Clustering

= Unsupervised. no target value to be predicted
= Differences between models/algorithms:
# EXxclusive vs. overlapping
o Deterministic vs. probabilistic
o Hierarchical vs. flat
¢ Incremental vs. batch learning
= Evaluation problematic: usually done by inspection

= But: If clustering is treated as a density estimation
problem, then it can be evaluated on test data!
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Hierarchical clustering

= Bottom up: at each step join the two closest
clusters (starting with single-instance clusters)

+ Design decision: distance between clusters

* E.g. two closest instances in clusters vs. distance
between means

= Top down: find two clusters and then proceed
recursively for the two subsets

¢ Can be very fast
= Both methods produce a dendrogram
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The k-means algorithm

Clusters the data into k groups where kis
predefined

1st step: cluster centers are chosen (e.g. at
random)

2hd step: instances are assigned to clusters based
on their distance to the cluster centers

3'd step: centroids of clusters are computed
4t step: go to 1st step until convergence

10/25/2000 83



Discussion

= Result can vary significantly based on initial choice
of seeds
= Algorithm can get trapped in a local minimum

¢ Example: four instances at the vertices of a two-
dimensional rectangle
* Local minimum: two cluster centers at the midpoints
of the rectangle’s long sides
= Simple way to increase chance of finding a global
optimum: restart with different random seeds
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Incremental clustering

= COBWEB/CLASSIT: incrementally forms a
nierarchy of clusters

= In the beginning tree consists of empty root node

= Instances are added one by one, and the tree is
updated appropriately at each stage

= Updating involves finding the right leaf for an
Instance (possibly restructuring the tree)

= Updating decisions are based on category utility
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Clustering the weather data

10/25/2000

ID code  Outlook  Temp. Humidity Windy
A Sunny Hot High False
B Sunny Hot High True
C Overcast Hot High False
D Rainy Mild High False
E Rainy Cool Normal False
F Rainy Cool Normal True
G Overcast Cool Normal True
H Sunny Mild High False
I Sunny Cool Normal False
J Rainy Mild Normal False
K Sunny Mild Normal True
L Overcast Mild High True
M Overcast Hot Normal False
N Rainy Mild High True
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Steps 1-3
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(2
Steps 3-4

OLOIOXIOXE.
Best host and
runner-up have OIOID
been merged

Note: splitting the best host is considered if merging doesn’t help
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The final hierarchy
O
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Clustering (parts) of the iris data



Clustering the iris data with cutoff

YVersicolor
YWersicolor
Versicolor
Wersicolor
Yersicolor
Wersicolor
Virginica
Virginica
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Wirginica
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Wirginica
Wirginica

Virginica
Virginica

Yersicolor
Yersicolor

YWersicolor
Yersicolor
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Sctosa Setosa Setosa
Setnsa ’ Semosa
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Category utility

Category utility is a kind of quadratic loss function
defined on conditional probabilities:

Zpr[cl]ZZ(Pr[ai =V |C,1° -~ Prla =Vij]2)
T ]

CU(C,,C,,....C,) = >

If every instance gets put into a different category
the numerator becomes (m = #attributes):

m-Prlg =]’
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Numeric attributes

(a-u)°
e 20’2

S f(a)=
We assume normal distribution: J2ro

Then we get: 5 Prla =y;]* - If(q)qu =
Thus ’
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Z Pr[Q]Z Z(Pr[ai = Vi |G 1°-Prla =Vij]2)
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Acuity parameter: prespecified minimum variance

IS
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Probability-based clustering

= Problems with above heuristic approach:
¢ Division by k?
¢ Order of examples?
o Are restructuring operations sufficient?
¢ Is result at least local minimum of category utility?

= From a probabillistic perspective, we want to find
the most likely clusters given the data

= Also: instance only has certain probability of
belonging to a particular cluster
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Finite mixtures

= Probabillistic clustering algorithms model the data
using a mixture of distributions

= Each cluster is represented by one distribution

¢ The distribution governs the probabilities of
attributes values in the corresponding cluster

= They are called finite mixtures because there is
only a finite number of clusters being represented

= Usually individual distributions are normal distribut.
= Distributions are combined using cluster weights
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A two-class mixture model

10/25/2000

HA=50, g, =5, p,=0.6

Ug=65, 0y =2, pz=0.4

A 51 B 62 B &4 A 48 A 39 A 51
A 43 A 47 A 51 B &4 B 62 A 48
B 62 A 52 A 52 A 51 B 64 B 64
B &4 B &4 B 62 B 63 A 52 A 42
A 45 A 51 A 49 A 43 B 63 A 48
A 42 B 65 A 48 B 65 B &4 A 41
A 46 A 48 B 62 B 66 A 48
A 45 A 49 A 43 B 65 B 64
A 45 A 46 A 40 A 46 A 48
model
A B
40 50 60 70
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Using the mixture model

The probability of an instance x belonging to
cluster A is:

Prix| AIPIA] _ (X, lp,0A) Pa
Prix] Pr[x]

with 1 &
f(x;,u,a):ﬁoe 20

The likelihood of an instance given the clusters is:

Pr{A|X] =

Pr[ x| the distributions] = Z Pr[ x| cluster;] Pr[cluster;]
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Learning the clusters

= Assume we know that there are k clusters

= 10 learn the clusters we need to determine their
parameters

¢ |.e. their means and standard deviations

= We actually have a performance criterion: the
Ikelihood of the training data given the clusters

= Fortunately, there exists an algorithm that finds a
ocal maximum of the likelihood
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The EM algorithm

= EM algorithm:. expectation-maximization algorithm
¢ Generalization of k-means to probabilistic setting
= Similar iterative procedure:

1. Calculate cluster probability for each instance
(expectation step)

2. Estimate distribution parameters based on the
cluster probabilities (maximization step)

= Cluster probabillities are stored as instance
weights
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More on EM

Estimating parameters from weighted instances:
_ WX HWoX, . WX
W+ W, LW

Ha

2 _ Wi(X% — )% W, (X, = 1) o+ W (X, — )

Op
W+ W, W

Procedure stops when log-likelihood saturates

Log-likelihood: S 10g(p, P | Al + pg P | B)
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Extending the mixture model

= Using more then two distributions: easy

= Several attributes: easy If independence Is
assumed
= Correlated attributes: difficult

¢ Modeled jointly using a bivariate normal distribution
with a (symmetric) covariance matrix

¢ With n attributes this requires estimating n+n(n+1)/2
parameters

= Nominal attributes: easy if independent
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More on extensions

= Correlated nominal attributes: difficult
+ Two correlated attributes result in v, v, parameters
= Missing values: easy

= Distributions other than the normal distribution can
be used:

¢ “log-normal” if predetermined minimum is given
¢ “log-odds” if bounded from above and below
o Poisson for attributes that are integer counts

= Cross-validation can be used to estimate k!
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Bayesian clustering

= Problem: overfitting possible if number of
parameters gets large

= Bayesian approach. every parameter has a prior
probability distribution

+ Gets incorporated into the overall likelihood figure
and thereby penalizes introduction of parameters

= Example: Laplace estimator for nominal attributes
= Can also have prior on number of clusters!
= Actual implementation: NASA’'s AUTOCLASS
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Discussion

= Clusters can be interpreted by using supervised
learning in a post-processing step

= Can be used to fill in missing values

= May be advantageous to make attributes more
Independent in pre-processing step

¢ |.e. using principal component analysis
= Big advantage of probabilistic clustering schemes:

¢ Likelihood of data can be estimated and used to
compare different clustering models
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