 1

 The FORTRAN Programming Language

@copyright 1993 by Dr. William C. Jones, Jr.

TABLE OF CONTENTS

 1 ##1 REAL and INTEGER Types

 7 ##2 Fundamental Control Statements; LOGICAL Type

15 ##3 Other Control Statements

22 ##4 Subprograms and Parameters (orig 19 in 1st 4, 10 in 5-6)

32 ##5 CHARACTER Type

38 ##6 External Files, Formatting, and Separate Compilation

44 ##7 Arrays and Common Blocks

52 end of booklet

##2 FUNDAMENTAL CONTROL STATEMENTS;

LOGICAL TYPE

 8

IF Statements

Three other relation operators are .ne. meaning "not equal," .ge. meaning

"greater-equal," and .le. meaning "less-equal," that is, "less than or

equal to." The following code segment illustrates an IF statement. This

IF statement tests whether the value of Count is at least 5. If it is,

the phrase "There were lots of numbers" is printed; if the value of Count

is less than 5, the phrase "There were few numbers" is printed.

if (Count .ge. 5) then (3)

 print*, 'There were lots of numbers'

else

 print*, 'There were few numbers'

end if

 The following is an example of a more general form of the IF

statement that is quite often useful. The effect of the coding is to

take the first pair of actions when x is positive, to print "It is zero"

when x is zero, and to take the third pair of actions when x is negative.

if (x .gt. 0.0) then (4)

 print*, 'It is positive'

 Sum = Sum + x

else if (x .eq. 0.0) then

 print*, 'It is zero'

else

 print*, 'It is negative'

 Sum = Sum - x

end if

You can have as many ELSE IF clauses as you want in an IF structure (the

part from ELSE IF down to but not including ELSE). The ELSE clause (the

part from ELSE down to but not including END IF) is optional; when you

have an ELSE clause, you must put it after all ELSE IF clauses.

EXERCISE 2.1: What change would you make in code segment 1 so that it

prints the first nonnegative number it sees instead of the first

nonpositive number?

EXERCISE 2.2: What change would you make in code segment 2 so that it

reads three numbers from each line of input, stops when the middle one is

positive, and then tells how many lines were read?

EXERCISE 2.3: What change would you make in code segment 2 so that it

prints all the numbers it reads?

EXERCISE 2.4: What change would you make in code segment 3 so that it

adds Count to Total, except it adds at most 5 to Total?

EXERCISE 2.5: What change would you make in code segment 4 so that

it does nothing when x is negative but the effect is otherwise unchanged?

ANSWERS TO EXERCISES:==

2.1: Change (x .gt. 0.0) to (x .lt. 0.0)

2.2: Change \ READ*,x to \ READ*, w,x,y in both places, and change

 (x .gt. 0.0) to (x .le. 0.0) and initialize PosCount to 1.

2.3: Insert \ PRINT*,x after each \ read*,x

2.4: replace the first PRINT* statement by \ Total = Total + 5

 replace the second PRINT* statement by \ Total = Total + Count

2.5: omit the 3 lines before the END IF line.

===

 10

Logical Expressions

The expression that follows IF or ELSE IF must be a logical

expression within parentheses, that is, an expression that has one of the

two values .TRUE. and .FALSE. (called a Boolean expression in some

other programming languages). The three logical operators are .AND.

 .OR. .NOT. with the expected meanings. The following lines illustrate

how they can be used.

* if not true that (x is 5 or else y is at least 3) then...

 if (.not. (x .eq. 5 .or. y .ge. 3)) then

 all in order = .true.

 Assume that B and C are both conditions. Then the condition B.AND.C

is .TRUE. only if B is .TRUE. and also C is .TRUE. The condition B.OR.C

is .FALSE. only if B is .FALSE. and also C is .FALSE. FORTRAN does not

have the partial evaluation feature; it does not even guarantee that all

subexpressions will be evaluated if the result can be found by testing

other subexpressions. Thus evaluation of the expression B.AND.F(X) when

B is FALSE may cause evaluation of F(X) for some compilers and may not

for other compilers (in such cases, Pascal guarantees F(X) is evaluated

and C++ guarantees that F(X) is not evaluated). For LOGICAL values B and

C, expressions such as B.EQ.C are illegal, though legal when B and C are

numeric values.

Logical Variables

Since there are logical expressions in FORTRAN, it follows that there

should be logical variables. That is, there are variables to which you

can assign the value .TRUE. or the value .FALSE. or any expression which

has one of those two values. For example, if you declare SeenALittleOne

as a variable of type LOGICAL, you can execute the statement

SeenALittleOne = .TRUE., since .TRUE. is a logical value. You can also

execute the statement SeenALittleOne = (Max .LT. LowerLimit), since the

expression in parentheses is either .TRUE. or .FALSE. at that point in

the execution of the program.

 13

Precedence of Operators

In algebra you learned that the expression A+B*C is evaluated by first

multiplying B by C and then adding the result to A. However, (A+B)*C is

evaluated by first adding B to A and then multiplying the result by C.

A-B+C is evaluated by first subtracting B from A and then adding C to

that result. These evaluations are familiar applications of the three

rules of precedence that also apply to FORTRAN:

 14

 1. An operator of higher precedence is evaluated before one of lower

 precedence.

 2. Operators of equal precedence are evaluated from left to right.

 3. The two preceding rules of precedence can be overridden by the

 appropriate use of parentheses.

 The operator of highest precedence is **, which is exponentiation.

Next come * and /; next are + and -; next are the relational operators

such as .LE.; next is .NOT., then .AND., then .OR.. Thus parentheses are

not required around a relational expression when it is combined with

another using .AND. or .OR. However, parentheses are always required

after IF.

Additional Features of FORTRAN-77

Exponential Notation: REAL constants can be written using exponential

notation, as in 34.2E+7 (which is 34.2 * 10,000,000) or 2.741E-3 (which

is 0.002741). A REAL constant has about 7 digits of accuracy and the

exponent on the 10 must be between -38 and +38.

 PAUSE followed by a string of characters causes execution of

the program to temporarily halt with the string displayed on the screen.

You may then type EXIT to terminate the program or CONTINUE to keep

going. Also, you may have STOP statements wherever you want to

terminate the program immediately. A string of characters after the word

STOP causes that string to be displayed, as in STOP 'Halting due to

attempt to divide by zero.'

 DOUBLE PRECISION is an additional type of real value. Constants

are written in exponential form using D in place of E, as in 32741.5D+10.

DOUBLE PRECISION values have about 16 digits of accuracy; the exponent

must still be between -38 and +38.

 COMPLEX is yet another type of numeric value, for working with

complex numbers in a program. Complex constants are two REAL values in

parentheses and separated by a comma, as in (4.32,-6.3) or (1E-2,-5E0).

 Built-in numeric functions: DBLE(X) returns the DOUBLE PRECISION

value corresponding to the numeric value X. CMPLX(X) returns the COMPLEX

value corresponding to the numeric value X. MAX() and MIN() accept two

or more numeric values as arguments and return the largest and smallest

of the given values, respectively; for instance, MAX(3,7,8.7,5) is 8.7.

LOG10(X) returns the base-10 logarithm of a real number X; for instance,

LOG10(10000) is 4. LOG(X) and EXP(X) return the natural logarithm and

exponential of a given real or complex value; for instance, EXP(LOG(X))=X

for all real values. SIN(X), COS(X), and SQRT(X) return the sine,

cosine, and square root of a given real or complex value. TAN(X),

ATAN(X), ASIN(X), and ACOS(X) return the tangent, arctangent, arcsine,

and arccosine of a given real number, respectively.

