Mining association rules

- Naïve method for finding association rules:
 - Using the standard separate-and-conquer method, treating every possible combination of attribute values as a separate class
- Two problems:
 - Computational complexity
 - Resulting number of rules (which would have to be pruned on the basis of support and confidence)
- But: we can look for high support rules directly!

Item sets

- Support: number of instances correctly covered by association rule
 - ◆ The same as the number of instances covered by all tests in the rule (LHS and RHS!)
- Item: one test/attribute-value pair
- Item set: all items occurring in a rule
- Goal: only rules that exceed pre-defined support
 - ⇒ We can do it by finding all item sets with the given minimum support and generating rules from them!

Item sets for weather data

One-item sets	Two-item sets	Three-item sets	Four-item sets
Outlook = Sunny (5)	Outlook = Sunny Temperature = Mild (2)	Outlook = Sunny Temperature = Hot Humidity = High (2)	Outlook = Sunny Temperature = Hot Humidity = High Play = No (2)
Temperature = Cool (4)	Outlook = Sunny Humidity = High (3)	Outlook = Sunny Humidity = High Windy = False (2)	Outlook = Rainy Temperature = Mild Windy = False Play = Yes (2)

In total: 12 one-item sets, 47 two-item sets, 39 three-item sets, 6 four-item sets and 0 five-item sets (with minimum support of two)

Generating rules from an item set

- Once all item sets with minimum support have been generated, we can turn them into rules
- **Example:** Humidity = Normal, Windy = False, Play = Yes (4)
- Seven (2^N-1) potential rules:

```
If Humidity = Normal and Windy = False then Play = Yes 4/4

If Humidity = Normal and Play = Yes then Windy = False 4/6

If Windy = False and Play = Yes then Humidity = Normal 4/6

If Humidity = Normal then Windy = False and Play = Yes 4/7

If Windy = False then Humidity = Normal and Play = Yes 4/8

If Play = Yes then Humidity = Normal and Windy = False 4/9

If True then Humidity = Normal and Windy = False and Play = Yes 4/12
```

10/25/2000 59

Rules for the weather data

Rules with support > 1 and confidence = 100%:

	Association rule			Conf.
1	Humidity=Normal Windy=False	⇒Play=Yes	4	100%
2	Temperature=Cool	\Rightarrow Humidity=Normal	4	100%
3	Outlook=Overcast	⇒Play=Yes	4	100%
4	Temperature=Cold Play=Yes	\Rightarrow Humidity=Normal	3	100%
	• • •	• • •		
58	Outlook=Sunny Temperature=Hot	⇒Humidity=High	2	100%

In total: 3 rules with support four, 5 with support three, and 50 with support two

Example rules from the same set

Item set:

```
Temperature = Cool, Humidity = Normal, Windy = False, Play = Yes (2)
```

Resulting rules (all with 100% confidence):

```
Temperature = Cool, Windy = False \Rightarrow Humidity = Normal, Play = Yes Temperature = Cool, Windy = False, Humidity = Normal \Rightarrow Play = Yes Temperature = Cool, Windy = False, Play = Yes \Rightarrow Humidity = Normal
```

due to the following "frequent" item sets:

```
Temperature = Cool, Windy = False (2)

Temperature = Cool, Humidity = Normal, Windy = False (2)

Temperature = Cool, Windy = False, Play = Yes (2)
```

10/25/2000 61

Generating item sets efficiently

- How can we efficiently find all frequent item sets?
- Finding one-item sets easy
- Idea: use one-item sets to generate two-item sets, two-item sets to generate three-item sets, ...
 - ◆ If (A B) is frequent item set, then (A) and (B) have to be frequent item sets as well!
 - ◆ In general: if X is frequent k-item set, then all (k-1)item subsets of X are also frequent
 - \Rightarrow Compute *k*-item set by merging (*k*-1)-item sets

An example

Given: five three-item sets

```
(ABC), (ABD), (ACD), (ACE), (BCD)
```

- Lexicographically ordered!
- Candidate four-item sets:

```
(A B C D) OK because of (B C D)

(A C D E) Not OK because of (C D E)
```

- Final check by counting instances in dataset!
- (*k*-1)-item sets are stored in hash table

Generating rules efficiently

- We are looking for all high-confidence rules
 - Support of antecedent obtained from hash table
 - ◆ But: brute-force method is (2^N-1)
- Better way: building (c + 1)-consequent rules from c-consequent ones
 - ◆ Observation: (c + 1)-consequent rule can only hold if all corresponding c-consequent rules also hold
- Resulting algorithm similar to procedure for large item sets

Example

1-consequent rules:

```
If Outlook = Sunny and Windy = False and Play = No
  then Humidity = High (2/2)

If Humidity = High and Windy = False and Play = No
  then Outlook = Sunny (2/2)
```

Corresponding 2-consequent rule:

```
If Windy = False and Play = No
   then Outlook = Sunny and Humidity = High (2/2)
```

Final check of antecedent against hash table!

Discussion of association rules

- Above method makes one pass through the data for each different size item set
 - ◆ Other possibility: generate (k+2)-item sets just after (k+1)-item sets have been generated
 - ◆ Result: more (k+2)-item sets than necessary will be considered but less passes through the data
 - ◆ Makes sense if data too large for main memory
- Practical issue: generating a certain number of rules (e.g. by incrementally reducing min. support)

Other issues

- ARFF format very inefficient for typical market basket data
 - Attributes represent items in a basket and most items are usually missing
- Instances are also called transactions
- Confidence is not necessarily the best measure
 - ◆ Example: milk occurs in almost every supermarket transaction
 - ◆ Other measures have been devised (e.g. lift)