Mining association rules

= Naive method for finding association rules:

+ Using the standard separate-and-conquer method,
treating every possible combination of attribute
values as a separate class

= Two problems:
o Computational complexity

¢ Resulting number of rules (which would have to be
pruned on the basis of support and confidence)

= But: we can look for high support rules directly!

10/25/2000 56

Item sets

= Support: number of instances correctly covered by
association rule

¢ The same as the number of instances covered by
all tests in the rule (LHS and RHS!)

= [tem: one test/attribute-value pair
= [tem set. all items occurring in a rule

= Goal: only rules that exceed pre-defined support

[We can do it by finding all item sets with the given
minimum support and generating rules from them!

10/25/2000 57

ltem sets for weather data

One-item sets Two-item sets Three-item sets Four-item sets
Outlook = Sunny (5) Outlook = Sunny Outlook = Sunny Outlook = Sunny
Temperature = Mild (2) Temperature = Hot Temperature = Hot
Humidity = High (2) Humidity = High
Play = No (2)
Temperature = Cool (4) Outlook = Sunny Outlook = Sunny Outlook = Rainy
Humidity = High (3) Humidity = High Temperature = Mild
Windy = False (2) Windy = False
Play = Yes (2)

= In total: 12 one-item sets, 47 two-item sets, 39
three-item sets, 6 four-item sets and O five-item
sets (with minimum support of two)

10/25/2000 58

Generating rules from an item set

= Once all item sets with minimum support have
been generated, we can turn them into rules

n Example: Humidity = Normal, Wndy = False, Play = Yes (4)

= Seven (2N-1) potential rules:

|f Humdity = Normal and Wndy = Fal se then Play = Yes
|f Humdity = Normal and Play = Yes then Wndy = Fal se
If Wndy = Fal se and Play = Yes then Hum dity = Nor mal
|f Humdity = Normal then Wndy = False and Play = Yes
|f Wndy = False then Hum dity = Normal and Play = Yes
If Play = Yes then Hum dity = Normal and Wndy = Fal se
|f True then Humdity = Normal and Wndy = Fal se and Play = Yes

10/25/2000

4/ 4
4/ 6
4/ 6
4/ 7
4/ 8
4/ 9
4/ 12

59

Rules for the weather data

= Rules with support > 1 and confidence = 100%:

Association rule Sup. Conf.
1 Hum di t y=Nor mal W ndy=Fal se Pl ay=Yes 4 100%
2 Tenper at ur e=Cool 0 Hum di t y=Nor nmal 4 100%
3 Qut | ook=Cver cast [Pl ay=Yes 4 100%
4 Tenper at ur e=Col d Pl ay=Yes 0 Hum di t y=Nor nal 3 100%
58 Qut | ook=Sunny Tenper at ur e=Hot O Hum di t y=Hi gh 2 100%

= In total: 3 rules with support four, 5 with support

three, and 50 with support two

10/25/2000

60

Example rules from the same set

= [tem set:
Tenperature = Cool, Humdity = Normal, Wndy = False, Play = Yes (2)

= Resulting rules (all with 100% confidence):

Tenperature = Cool, Wndy = False OO Humdity = Normal, Play
Tenperature = Cool, Wndy = False, Humdity = Normal 0O Pl ay
Tenperature = Cool, Wndy =

due to the following “frequent” item sets:

Yes
Yes
Fal se, Play = Yes O Hum dity = Nornal

Tenperature = Cool, Wndy = Fal se (2)
Tenperature = Cool, Humdity = Normal, Wndy = False (2)
Tenperature = Cool, Wndy = False, Play = Yes (2)

10/25/2000 61

Generating item sets efficiently

= How can we efficiently find all frequent item sets?

= FInding one-item sets easy

= |ldea: use one-item sets to generate two-item sets,
two-item sets to generate three-item sets, ...

¢ If (A B) Is frequent item set, then (A) and (B) have
to be frequent item sets as well!

¢ In general: if X is frequent k-item set, then all (k-1)-
item subsets of X are also frequent

[1 Compute k-item set by merging (k-1)-item sets

10/25/2000 62

An example

= Given: five three-item sets
(ABCO, (ABD, (ACD, (ACE), (BCD
= Lexicographically ordered!
= Candidate four-item sets:
(A B CD) CK because of (B C D)
(ACDE Not OK because of (C D E)
= Final check by counting instances in dataset!
= (k-1)-item sets are stored in hash table

10/25/2000

63

Generating rules efficiently

= We are looking for all high-confidence rules
+ Support of antecedent obtained from hash table
& But: brute-force method is (2N-1)

= Better way: building (¢ + 1)-consequent rules from
c-consequent ones

¢ Observation: (¢ + 1)-consequent rule can only hold
If all corresponding c-consequent rules also hold

= Resulting algorithm similar to procedure for large
Item sets

10/25/2000 64

Example

= 1-consequent rules:

| f Qutl ook = Sunny and W ndy
then Humdity = H gh (2/2)

Fal se and Play = No

|f Humdity = H gh and W ndy
t hen Qutl ook = Sunny (2/2)

= Corresponding 2-consequent rule:

&

Fal se and Pl ay

|f Wndy = Fal se and Play = No
then Qutlook = Sunny and Hum dity = Hi gh (2/2)

= Final check of antecedent against hash table!

10/25/2000 65

Discussion of association rules

= Above method makes one pass through the data
for each different size item set

o Other possibility: generate (k+2)-item sets just after
(k+1)-item sets have been generated

¢ Result: more (k+2)-item sets than necessary will be
considered but less passes through the data

¢ Makes sense If data too large for main memory

= Practical issue: generating a certain number of
rules (e.g. by incrementally reducing min. support)

10/25/2000 66

Other issues

= ARFF format very inefficient for typical market
basket data

¢ Attributes represent items in a basket and most
items are usually missing

= Instances are also called transactions

= Confidence is not necessarily the best measure

¢ Example: milk occurs in almost every supermarket
transaction

+ Other measures have been devised (e.qg. lift)

10/25/2000 67

