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Abstract. In the present paper we use the approach of height functions
to defining a semi-distance measure between Horn clauses. This appraoch
is already discussed elsewhere in the framework of propositional and sim-
ple first order languages (atoms). Hereafter we prove its applicability for
Horn clauses. We use some basic results from lattice theory and introduce
a family of language independent coverage-based height functions. Then
we show how these results apply to Horn clauses. We also show an exam-
ple of conceptual clustering of first order atoms, where the hypotheses
are Horn clauses.

1 Introduction

Almost all approaches to inductive learning are based on generalization and/or
specialization hierarchies. These hierarchies represent the hypothesis space which
in most cases is a partially ordered set under some generality ordering. The prop-
erties of partially ordered sets are well studied in lattice theory. One concept from
this theory is mostly used in inductive learning — this is the least general gen-
eralization (lgg) which given two hypotheses builds their most specific common
generalization. The existence of an lgg in a hypothesis space directly implies that
this space is a semi-lattice (the lgg plays the role of infimum). Thus the lgg-based
approaches are theoretically well founded, simple and elegant.

Lgg’s exist for most of the languages commonly used in machine learning.
However all practically applicable (i.e. computable) lgg’s are based on syntactical
ordering relations. A relation over hypotheses is syntactical if it does not account
for the background knowledge and for the coverage of positive/negative exam-
ples. For example, dropping condition for nominal attributes, instance relation
for atomic formulae and #-subsumption for clauses are all syntactical relations.
On the other hand the evaluation of the hypotheses built by an lgg operator
is based on their coverage of positive/negative examples with respect to the
background knowledge, i.e. it is based on semantic relations (in the sense of the
inductive task). This discrepancy is a source of many problems, where overgen-
eralization is the most serious one.



The idea behind the lgg is to make ”cautious” (minimal) generalization.
However this property of the lgg greatly depends on how similar are the hy-
potheses/examples used to build the lgg. For example there exist elements in
the hypothesis space whose lgg is the top element (empty hypothesis). This is
another source of overgeneralization.

An obvious solution of the latter problem is to use a distance (metric) over
the hypothesis/examle space in order to evaluate the similarity between the
hypotheses/examples. The basic idea is when building an lgg to choose the pair
of hypotheses/examples with the minimal distance between them. Thus the lgg
will be the minimal generalization over the whole set of hypotheses/examples.
Various distance measures can be used for this purpose. The best choice however
is a distance which corresponds to the lgg used, that is the pair of the closest
hypotheses must produce the minimal lgg. To ensure this, the distance and the
lgg must be well coupled. Ideally such a distance exists in semi-lattices, however
it is based on syntactical relations and as we mentioned above the best way to
evaluate the similarity between hypotheses is to use semantic relations. This is
a typical problem in Inductive Logic Programming ([4]), where the hypotheses
are usually Horn clauses which are generated by syntactical operators (e.g. 6-
subsumption lgg) and evaluated by coverage-based functions.

In the present paper we use the approach of height functions to defining a
semi-distance on a join semi-lattice. This appraoch was already discussed for
propositional and simple first order languages (atoms) in [3]. Hereafter we prove
its applicability for Horn clauses. For this purpose we repeat some of the basic
results and further elaborate the notions introduced in [3].

The paper is organized as follows. The next section introduces some basic
notions from lattice theory used throughout the paper. Section 3 describes the
height-based approach to defining a semi-distance on a join semi-lattice. Section
4 proves the applicability of this appraoch to Horn clauses and Section 5 shows
an example of this. Finally Section 6 concludes with a discussion of related
approaches and directions for future work.

2 Preliminaries

The discussion in this section follows [3] with some modifications and elabora-
tions (the proofs of the theorems are also skipped).

Definition 1 (Semi-distance, Quasi-metric). A semi-distance (quasi-metric)
is a mapping d: O x O — R on a set of objects O with the following properties
(a,b,c € O):

d(a,a) =0 and d(a,b) > 0.
d(a,b) = d(b,a) (symmetry).
(a,b) < d(a,c) + d(c,b) (triangle inequality).

w o=
.



Definition 2 (Order preserving semi-distance). A semi-distance d : O x
O — R on a partially ordered set (O, <) is order preserving iff for all a,b,c € O,
such that a < b < ¢ it follows that d(a,b) < d(a,c¢) and d(b,c) < d(a,c)

Definition 3 (Join/Meet semi-lattice). A join/meet semi-lattice is a par-
tially ordered set (A, <) in which every two elements a,b € A have an infi-
mum /supremum.

Definition 4 (Diamond inequality). Let (A, <) be a join semi-lattice. A
semi-distance d : A x A — R satisfies the diamond inequality iff the existence
of sup{a,b} implies the following inequality: d(inf{a,b},a) + d(inf{a,b},b) <
d(a, sup{a,b}) + d(b, sup{a,b}).

Definition 5 (Size function). Let (A4, <) be a join semi-lattice. A mapping
s:Ax A— Ris called a size function if it satisfies the following properties:

S1. s(a,b) > 0,Va,b€ A and a < b.

S2. s(a,a) =0,Ya € A.

S3.Va,b,c € A, such that a < ¢ and ¢ < b it follows that s(a,b) < s(a,c)+s(c,b)
and s(c,b) < s(a,b).

S4. Let ¢ = inf{a,b}, where a,b € A. For any d € A, such that a <d and b < d
it follows that s(e,a) + s(c,b) < s(a,d) + s(b,d).

Consider for example the partially ordered set of first order atoms under 6-
subsumption. A size function s(a,b) on this set can be defined as the number
of different functional symbols (a constant is considered a functional symbol of
arity zero) occurring in the substitution # mapping a onto b (af = b). A family
of similar size functions is introduced in [1], where they are called a size of
substitution. Although well defined these functions do not account properly for
the variables in the atoms and consequently cannot be used with non-ground
atoms.

Theorem 1. Let (A, <) be a join semi-lattice and s — a size function. Let also
d(a,b) = s(inf{a,b},a) + s(inf{a,b},b). Then d is a semi-distance on (A, <).

A widely used approach to define a semi-distance is based on an order pre-
serving size function and the diamond inequality instead of property S4. The use
of property S4 however is more general because otherwise we must assume that
(1) all intervals in the lattice are finite and (2) if two elements have an upper
bound they must have a least upper bound (supremum) too. An illustration of
this problem is shown in Figure 1, where a3 is an upper bound of b; and b, and
e = sup{bl,b2}. Generally the interval [e, a3] may be infinite or e may not exists.
This however does not affect our definition of semi-distance.

Further, a size function can be defined by using the so called height func-
tions. The approach of height functions have the advantage that it is based on
estimating the object itself rather than its relations to other objects.

Definition 6 (Height function). A function h is called height of the elements
of a partially ordered set (A, <) if it satisfies the following two properties:



by C b
Xe%
ai as a2

Fig. 1. A semi-lattice structure

H1. For every a,b € A if a < b then h(a) < h(b) (isotone).
H2. For every a,b € A if ¢ = inf{a,b} and d € A such that a < d and b < d
then h(a) + h(b) < h(c) + h(d).

Theorem 2. Let (4, <) be a join semi-lattice and h be a height function. Let
s(a,b) = h(b) — h(a),Ya < b € A. Then s is a size function on (A, <).

a

Corollary 1. Let (A, <) be a join semi-lattice and h be a height function. Then

the function d(a,b) = h(a) + h(b) — 2h(inf{a,b}),Va,b € A is a semi-distance
n (4,2).

3 Semantic semi-distance on join semi-lattices

In this section we briefly outline the approach to defining a semantic semi-
distance on join semi-lattices originally introduced in [3].

Let A be a set of objects and let <; and <5 be two binary relations on A.
Let also <y be a partial ordering and (A, <;) — a join semi-lattice.

Definition 7 (Ground elements of a join semi-lattice (GA)). GA is the
set of all maximal elements of A w.r.t. <1, i.e. GA = {aJa € A and =3 € A :
a jl b}

Definition 8 (Ground coverage). For every a € A the ground coverage of a
wrt <2is S, = {b|b € GA and a <5 b}.

The ground coverage S, can be considered as a definition of the semantics of
a. Therefore we call <2 a semantic relation by analogy to the Herbrand inter-
pretation in first order logic used to define the semantics of a given term. The
other relation involved, < is called constructive (or syntactic) relation because
it is used to build the lattice from a given set of ground elements G A.

The basic idea of our approach is to use these two relations, <; and <5 to
define the semi-distance. According to Corollary 1 we use the syntactic relation
=< to find the infimum and the semantic relation <5 to define the height function



h. The advantage of this approach is that in many cases there exists a proper
semantic relation however it is intractable, computationally expensive or even
not a partial order, which makes impossible to use it as a constructive relation too
(an example of such a relation is logical implication). Then we can use another,
simpler relation as a constructive one (to find the infimum) and still make use
of the semantic relation (in the height function).

Not any two relations however can be used for this purpose. The following
teorem states the necessary conditions for two relations to form a correct height
function.

Theorem 3. Let A be a set of objects and let <5 and <1 be two binary relations
in A such that:

1. < is a partial order and (A, <;) is a join semi-lattice.
2. For every a,b € A if a <1 b then |S,| > |S,|*.
3. For every a,b € A and ¢ = inf{a,b} such that there exists d = sup{a,b}
one of the following must hold:
Cl1. |Sd| < |Sa| and |Sd| < |Sb|
C2. |Sq| = |Sa| and |S.| = | S|
C3. |S4| = |Ss| and |S.| = |Sa|

Then there exists a family of height functions h(a) = ~!%, where a € A, z € R
and x > 2.

Proof.

1. Let a,b € A, a <1 b. Then by the assumptions |S,| > |Sp| and hence h(a) <

h(b).

2. L((at)a, be A, c=inf{a,b} and d = sup{a, b}.

(a) Assume that C1 is true. Then |Sy| < |Sa| and [Sq| < |Sp] = |Sal
|Sa|+1 and |Sp| > |Sa| +1 = —|Sa| < —|Sal — 1 and —|Sp| < —|Sq| —
Hence h(a)+h(b) = xSl 427191 < g=[Sal=1 4 g=1Sal—1 = 94— [Sal-1
z.x~ 151 = ¢=154l = h(d) < h(c) + h(d).

(b) Assume that C2 is true. Then |S4| = |S,| and |S.| = |Sy|. Hence h(a) +
h(b) = h(c) + h(d).

(c) Assume that C3 is true. Then |Sy| = |Ss| and |S;| = |S,|. Hence h(a) +
h(b) = h(c) + h(d).

IN IV

4 Coverage-based semi-distance between Horn clauses

Within the language of Horn clauses we use 6-subsumption for the construc-
tive relation <y and logical implication (semantic entailment) for the semantic
relation <.

Definition 9 (#-subsumption). Let a and b be Horn clauses. Then a 6-
subsumes b denoted a =<y b, iff there exist a substitution €, such that af C b (the
clauses are considered as sets of literals).

! Generally an isotone property is required here. However we skip the other case,
[Sa| < |Ss| since it is analogous.



Under #-subsumption a set of Horn clauses with same predicates at their
heads (same functors and arity) forms a join semi-lattice, where the join oper-
ator is the #-subsumption-based least general generalization (lggy). Further, we
will show that #-subsumption and logical implication can be used to define a
correct height function on this semi-latice which in turn implies the existence of
a coverage-based semi-distance between Horn clauses.

Definition 10 (Model). A set of ground literals which does not contain a
complementary pair is called a model. Let M be a model, ¢ — a clause, and C' —
the set of all ground clauses obtained by replacing the variables in ¢ by ground

terms. M is a model of ¢ iff each clause in C' contains at least one literal from
M.

Definition 11 (Semantic entailment). Let f; and f> be well-formed formulae.
f1 semantically entails fo, denoted fi = fo (or fi <= fo) iff every model of f;
is a model of fs.

Corollary 2. Let a and b be clauses such that a <y b. Then S, O S, and
|Sa| Z |Sb|

Proof. Let a and b be clauses and let a #-subsumes b. According to Definitions
9 and 10 a semantically entails b, i.e. a <= b. Then according to Definition 8
Sa D Sp and |S,| > |Ssl.

Now we will show that the two assumptions of Theorem 3 hold:

—

. Let a and b be clauses and let a <; b. Then by Corollary 2 |S,| > |Ss|.

2. Let d = sup{a,b} w.r.t. <g. Then a <y d, b <y d, and by Corollary 2
|Sa| < |Sa| and |S4| < |Ss|. Further, we will show that actually |Sq| < |S,]
and |Sg| < |Sp|. First, we assume that for any two clauses ¢; and co if
Se; = Se, then ¢ = co. Thus, in fact instead of clauses we use equivalence
classes of clauses w.r.t. <. Let z € S, A Sy (symmetric difference). Assume
now that x € S;. Then by Corollary 2 S; C S, and S; C Sp, that is
x € S, NSy which is a contradiction. Hence = ¢ Sy, i.e. Sy C S, and
Sq C Sy, i.e. |Sd| < |Sa| and |Sd| < |Sb|

Then according to Corollary 1 the following function is a semi-distance

d(a,b) = 2 |5al + 2156l 2m_‘slgg9(a,b)"

where a and b are Horn clauses and S,, Sp and Sjgg,(4,5) are models of a, b and
lggo(a,b).

5 Example

To illustrate the semi-distance between Horn clauses we use the inductive al-
gorithm described in [3,2]. The algorithm starts with a given set of examples
(ground atoms) GA and builds a hierarchy of Horn clauses covering this ex-
amples (i.e. a partial lattice, where GA is the set of maximal elements of the
lattice). The algorithgm is as follows:



. Initialization: G = GA, C = GA;

. If |C] =1 then exit;

. T ={hlh =1ggs(a,b), (a,b) = argming pecd(a,b)};
. DC = {hlh € C and 3hpmin € T : hypin 32 h};

. C=C\DC,

.G=GUT,C=CUT, go to step 2.

SR W N

We use 10 instances of the member predicate and supply them as a GA set
to our algorithm. Figure 2 shows the lattice structure built upon this set of
examples. The two successors of the top element form the well known definition
of member (the recursive clause contains a redundant literal). The generated tree
structure can be seen as an example of conceptual clustering of first order atoms,
where the hypotheses are Horn clauses.

memb(1,[3,1])
— memb(1,[2,3,1])
[memb(A [A]),
memb(A,[C|D]),
memb(A,[3,A])] memb(2,(3,2])
memb(a,[b,a,b])
membiaBopl - MARA
[T:;‘:é?iﬁl?}f' T memb@laCl),  ——— b ehl)
/ , memb(A,[A|C])] o
memb(2,[2])
memb(A,[BIC]) - [] -
_ memb(A [A]) :- [memb(A,[3,A])]
memb(A[A[B]) :- [| — memb(A[A]):-[] — T memb(1,[1])
memi )
~_ \
memb(b,[b])
memb(a,[a,b])
memb(a,[a])

Fig. 2. Hypothesis space for the instances of the member predicate.

A major problem in applying our algorithm is the clause reduction. This is
because although finite the length of the lggy of n clauses can grow exponentially
with n. Some well-known techniques of avoiding this problem are discussed in
[4]. By placing certain restrictions on the hypothesis language the number of
literals in the lggy clause can be limited by a polynomial function independent
on n. Currently we use ij-determined clauses in our experiments (actually 22-
determinated).



6 Conclusion

Distance measures are widely used in machine learning, pattern recognition,
statistics and other related areas. Most of the distances in these areas are based
on attribute-value (or feature-value) languages and further elaborate well known
distances in feature spaces (e.g. Euclidean distance, Hamming distance etc.).
Recently a lot of attention has been paid to studying distance measures in first
order languages. The basic idea is to apply the highly successful instance based
algorithms to relational data described in the much more expressive language of
first order logic. Various approaches have been proposed in this area. Some of
the most recent ones are [1,5-7]. These approaches as well as most of the others
define a simple metric on atoms and then extend it to sets of atoms (clauses
or models) using the Hausdorff metric or other similarity functions. Because of
the complexity of the functions involved and problems with the computability
of the models these approaches are usually computationally hard. Compared to
the other approaches our approach has two basic advantages:

— It is language independent, i.e. it can be applied both within propositional
(attribute-value) languages and within first order languages.

— It allows consistent integration of generalization operators with a semantic
distance measure. This makes the approach particularly suitable for induc-
tive algorithms, such as the one discussed in Section 5.

We see the following directions for future work:

— Particular attention should be paid to the clause reduction problem when
using the language of Horn clauses. Other lgg operators, not based on 6-
subsumption should be considered too.

— The practical learning data often involve numeric attributes. In this respect
proper relations, 1gg’s and covering functions should be investigated in order
to extend the approach for handling numeric data.

— More experimental work should be done to investigate the applicability of
the proposed algorithm in real domains.
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