
 Java Au Naturel by William C. Jones 20-1 20-1

20 Models Of Computation

Overview

This chapter gives a very light introduction to the Theory of Computability. Several major
concepts and results are presented. However, many proofs are omitted, whereas proofs
are the major part of a course in computability.

• Section 20.1 introduces decision problems and finite automata. A finite automaton is

a model of a computing machine that has only enough RAM to store one integer
(other than the storage space for the program itself).

• Section 20.2 describes grammars and pushdown automata. A grammar is a
description of the logic a computing machine uses. A pushdown automaton has
enough RAM for one stack of data.

• Sections 20.3-20.4 define a Turing machine, the most general model of a computing
machine, and prove that some problems are unsolvable.

• Section 20.5 develops a context-free grammar describing a complete practical
programming language J1, which is a simplification of Java.

20.1 Decision Problems And Finite Automata

A fundamental kind of problem to solve is that you are given a non-negative number and
you have to say whether it is or is not acceptable according to some criterion. For
instance, you may be asked to write a method that tells whether the input number is
divisible by 3. Or you may be asked to write a method that tells whether the input
number is a prime number.

The general decision problem is that you are given a finite string of characters and you
have to say whether that string is or is not acceptable according to a specified criterion.
The problem should specify what characters are acceptable in the input string. That
specified set of characters is called the alphabet for the problem. For instance, the
numeric decision problem described in the previous paragraph has ten digits as its
alphabet. If the decision problem is to decide whether a given string of characters is a
compilable Java class, then the alphabet can be considered to contain the characters
that have Unicode values 32 through 127, a total of 96 characters.

To solve a decision problem, you (a) write a computer program that inputs a finite string
of characters and outputs whether it is acceptable and (b) prove logically that the
program is bug-free. The reason for part (b) is that we do not want to have to spend time
debugging programs. In fact, part (b) is more important than part (a), because any idiot
can write a program, the hard part is to write a correct program.

The technical term for a set of strings of characters over a given alphabet is a language
over that alphabet. For instance, if the decision problem is to tell whether the input
number is divisible by 2, the language for that problem is the set of strings of base-ten
digits that end in 0, 2, 4, 6, or 8. If the decision problem is to tell whether the input
number is a prime number, the language for that problem is the set of strings of base-ten
digits that include 2, 3, 5, 7, 11, 13, 17, 19, 23, etc. If the decision problem is to tell
whether a given string of characters is a legal Java class, then one element of the
language for that problem is class Whatever { int x = 4; }.

 Java Au Naturel by William C. Jones 20-2 20-2

Finite Automata

Older computer systems had less RAM. The further back in history you go, the less RAM
the computers had. It makes sense to start with the most primitive kind of computing
machine, one with just one unit of RAM, capable of storing a single integer. We also
restrict the machine to reading through the input string one time only, then making its
decision. This is called a finite automaton. We will investigate what decision problems
such a primitive computer is capable of solving.

The current value of the one unit of RAM is called the state of the finite automaton.
When a program starts, the state is initialized to zero. All that the machine can do is look
at the next available input character (called the current symbol) and assign a new value
to its state variable. When it comes to the end of the input, RAM should have either an
int value that represents acceptance or an int value that represents rejection of the input.
If the input contains an illegal character, i.e., not in the permissible alphabet, the machine
should say whether it accepts or rejects the input string up to that point.

Acceptance means that the input is a member of the language of the stated decision
problem, and rejection means that the input is not. The FiniteAutomaton class in Listing
20.1 (see below) codes for what is common to all finite automata. It is abstract because
specific subclasses will have different ways of computing the next state. It could be used
as follows, if sam is a FiniteAutomaton object and s is a string of input characters:

 sam.askOpinion (new Sentence (s))

We provide this and related classes because you might not have available an actual
physical finite automaton, or yours might be broken. So you can use the Java simulation
we develop here if you wish.

It is standard to name the starting state q0 and the other states that the automaton can
be in q1, q2, etc., as well as the standard ACCEPT and REJECT states. The
FiniteAutomaton class supplies names only through q9, so if you need larger numbers,
e.g. 14, just write them explicitly. We reserve negative numbers as codes for accepting
and rejecting the input. These definitions are in the upper part of Listing 20.1.

Listing 20.1 The FiniteAutomaton abstract class

public abstract class FiniteAutomaton
{
 public static final int ACCEPT = -1, REJECT = -2;
 public static final int q0 = 0, q1 = 1, q2 = 2, q3 = 3,
 q4 = 4, q5 = 5, q6 = 6, q7 = 7, q8 = 8, q9 = 9;

 public String askOpinion (Sentence input)
 { return accepts (input) ? "accepted" : "rejected";
 } //======================

 public boolean accepts (Sentence input)
 { int state = q0;
 while (state >= q0)
 state = nextState (state, input.next());
 return state == ACCEPT;
 } //======================

 public abstract int nextState (int state, byte symbol);
}

 Java Au Naturel by William C. Jones 20-3 20-3

An outside class would create a finite automaton and then pass it a specific input string in
the form of a Sentence object, to "ask its opinion" of it -- accept or reject. The
askOpinion method returns the answer in a printable form.

The accepts method is what actually does the work of deciding whether the string of
characters is acceptable. It starts by initializing the state variable to the starting state q0.
Then it repeatedly gets the next character of the input (obtained by input.next()) and
uses both it and the current state to calculate the nextState. This coding is in the
middle part of Listing 20.1. The nextState method is of course an abstract method,
because its coding depends on the particular decision problem you are trying to solve.

A finite automaton to determine divisibility by 2

We start with a simple example -- a finite automaton (abbreviated FA) to find out whether
the input string denotes an integer divisible by 2. We can do this by keeping track of the
most-recently-read digit. If it is 0, 2, 4, 6, or 8, we switch to state q0; otherwise we switch
to another state q1. We arbitrarily decide to treat a string of length zero as denoting an
even number. When we come to the end of the input, we report acceptance if we are in
state q0, rejection if we are in state q1. So if we are currently in state q1, we change the
state to the following value based on the current input symbol (expressed quite compactly
using the conditional operator):

 (symbol == 0) ? q0 : (symbol == 1) ? q1 : (symbol == 2) ? q0
 : (symbol == 3) ? q1 : ... (symbol == 9) ? q1 : REJECT

If the input could be any base-ten numeral, this will require a lengthy coding. Just to
avoid too much typing, we change the problem to one where the input is a base-four
numeral (i.e., a string of 0s, 1s, 2s, and 3s only). That gives us the coding in the upper
part of Listing 20.2 for the nextState method.

Listing 20.2 Finite Automaton to compute divisibility by 2

public class Div2FA extends FiniteAutomaton
{
 /** Tell whether the base-four input is divisible by 2. */

 public int nextState (int state, byte symbol)
 { return state == q0 ? (symbol == 0 ? q0 : symbol == 1 ? q1
 : symbol == 2 ? q0 : symbol == 3 ? q1
 : ACCEPT)
 : state == q1 ? (symbol == 0 ? q0 : symbol == 1 ? q1
 : symbol == 2 ? q0 : symbol == 3 ? q1
 : REJECT)
 : REJECT; // should never happen
 } //======================
}
//##

class Div2FAApp
{
 public static void main (String[] args)
 { System.out.println
 (new Div2FA().askOpinion (new Sentence (args[0])));
 } //======================
}

 Java Au Naturel by William C. Jones 20-4 20-4

The only difference between what happens for the state of q0 and the state of q1 is when
we reach the end of the input or see an illegal symbol (both of which are signaled by
some symbol value outside the range 0 through 3). If we are in state q0 when we come
to the end of the input, that means that the most-recently-seen digit was even, so the
number is even. If we are in state q1, the last digit was odd so the number is odd.

It should be clear from the coding that the state parameter can never be a value other
than q0 or q1. So you may think it odd to have the :REJECT phrase at the end of the
nextState coding, because it can never arise. However, that makes the alternatives
clearer, so we do it that way. Besides, if someone is silly enough to call the nextState
method inappropriately, passing in an unreachable state, we rightly reject their input.

The lower part of Listing 20.2 is an application so that we can test this Div2FA class from
the command line. It is of course in a separate class so that we are also free to use
Div2FA objects from applets and in other contexts. This main method might be called
from the command line by one of these two commands:

 java Div2FAApp 1203011
 java Div2FAApp 33221100

The Sentence class of objects

The commands above pass in the string of digits to args[0]. The main method creates a
new Div2FA object, asks its opinion of the Sentence created from that string of digits, and
prints what it says. Listing 20.3 gives an appropriate definition of the Sentence class.

Listing 20.3 The Sentence class

public class Sentence
{
 private String itsString;
 private int itsIndex = 0;
 private int itsBase = '0';

 public Sentence (String input) // the natural constructor
 { itsString = (input == null) ? "" : input;
 if (itsString.length > 0 && itsString.charAt (0) >= 'a')
 itsBase = 'a';
 } //======================

 public Sentence()
 { this (javax.swing.JOptionPane.showInputDialog
 ("Enter a sentence for the FA"));
 } //======================

 public Sentence (Sentence given)
 { this ((given == null) ? "" : given.itsString);
 } //======================

 public byte next()
 { return (byte) ((itsIndex >= itsString.length) ? -1
 : itsString.charAt (itsIndex++) - itsBase);
 } //======================
}

 Java Au Naturel by William C. Jones 20-5 20-5

The main method in the earlier Listing 20.2 calls the first constructor in the Sentence
class, passing in a string of characters. That string is assigned to an instance variable
itsString so it can be used later. The current position in the string is itsIndex,
which is initially zero.

The presumption is that the input string consists of digits, so the itsBase Unicode
value of '0' is to be subtracted from the Unicode value of the char at a given position to
obtain a number in the range 0 through 9. However, we also accommodate strings of
lowercase letters -- If the first character is the letter 'a' or higher, we make itsBase the
Unicode value of 'a', to be subtracted from Unicode values of characters in the input,
which gives a number in the range 0 through 25 for each lowercase letter.

The Sentence class offers a convenience constructor with no parameters. It displays a
frame to get the string input from the user and passes that over to the natural constructor
that has a String parameter. Similarly, if you supply an existing Sentence object as a
parameter to a constructor, that invokes the third constructor which passes that
Sentence's String value over to the natural constructor that has a String parameter. This
is useful when the given Sentence has already been iterated through by some FA and
you want to create a new Sentence starting over at itsIndex = 0.

The key method of the Sentence class is the next method. It returns the next
character of the input, "normalized" to produce values of 0 or more. When you have
consumed all the characters of the input, the next method returns -1 to signal this.
Reminder: A byte value ranges from -128 to 127 inclusive.

A finite automaton to determine divisibility by 3

Okay, divisibility by 2 was extremely easy. Let us try something harder, a FA that tests a
base-four numeral for divisibility by 3. We can proceed this way: The state is q0 if the
number so far is evenly divisible by 3, q1 if the remainder for dividing the number so far
by 3 is 1, q2 if the remainder is 2. If you take the number so far, call it n, and append
another digit, call it d, you obtain the value 4*n + d (because that is the definition of
base-four). The remainder on dividing 4*n by 3 is the same as the remainder on dividing
n by 3 (think about it for a while to verify this). So the remainder on dividing 4*n + d by 3
is the remainder for n added to the remainder for d, except if that comes out to 3, 4, or 5,
you subtract 3 from it to get the true remainder of 0, 1, or 2.

This leads to the following expression for the new state when the current state is q1.
Similar expressions are needed for the states of q0 and q2:

 symbol == 0 ? q1 : symbol == 1 ? q2
 : symbol == 2 ? q0 : symbol == 3 ? q1 : REJECT

This kind of expression is quite wordy, as well as being rather hard to follow due to all the
conditional operators in it. It makes more sense to store the information in an array of int
values. This array is traditionally called the delta array; we call it del for short. We
store in del[q][sym] the state to which the finite automaton is to switch when the
current state is q and the current input symbol is sym. The values of sym range from
0 through 3. We store in del[q][4] either ACCEPT or REJECT, depending on what
is supposed to happen when we are in state q at the end of the input.

For the divisibility by 3 FA, that means we have an array of 3 rows (one for each state
other than ACCEPT or REJECT) and 5 columns (one for each legal symbol plus one for
all other cases). The complex conditional-operator expression above corresponds to
having the row of index 1 (for state q1) be {q1, q2, q0, q1, REJECT}. You can
see the entire array in the upper part of Listing 20.4 (see next page).

 Java Au Naturel by William C. Jones 20-6 20-6

Listing 20.4 Finite Automaton to compute divisibility by 3

public class Div3FA extends FiniteAutomaton
{
 private final int NUM_SYMBOLS = 4;
 private final int NUM_STATES = 3; // other than ACCEPT/REJECT
 private final int[][] del = { {q0, q1, q2, q0, ACCEPT}, //q0
 {q1, q2, q0, q1, REJECT}, //q1
 {q2, q0, q1, q2, REJECT} }; //q2

 /** Tell whether the base-four input is divisible by 3. */

 public int nextState (int state, byte symbol)
 { return (state < 0 || state >= NUM_STATES)
 ? REJECT
 : (symbol < 0 || symbol >= NUM_SYMBOLS)
 ? del[state, NUM_SYMBOLS]
 : del[state, symbol];
 } //======================
}
//##

class Div3FAApp
{
 public static void main (String[] args)
 { System.out.println
 (new Div3FA().askOpinion (new Sentence (args[0])));
 } //======================
}

The nextState method in Listing 20.4 uses the del array. Note that any other FA
can be written with exactly the same nextState coding, as long as you make the
appropriate changes in the three instance variables declared at the top of the listing. For
instance, the divisibility-by-2 Div2FA class is obtained from Listing 20.4 by just replacing
the array declaration by the following and defining NUM_STATES as 2:

 private final int[][] del = { {q0, q1, q0, q1, ACCEPT},
 {q0, q1, q0, q1, REJECT} };

The set of strings that a FA accepts is called the language that it recognizes. For
instance, Div3FA recognizes all multiples of 3 in base-four notation.

Exercise 20.1 Write out declarations of del and NUM_STATES for a FA that tells
whether a given input string contains a base-four number evenly divisible by 4.
Exercise 20.2 Write out declarations of del and NUM_STATES for a FA that tells
whether a given input string contains a base-four number that has no two consecutive
digits the same.
Exercise 20.3 Write out declarations of del and NUM_STATES for a FA that tells
whether a given input string contains a binary number that ends in 01.
Exercise 20.4* Write out declarations of del and NUM_STATES for a FA that tells
whether a given input string contains a base-four number evenly divisible by 5.
Exercise 20.5* Write out declarations of del and NUM_STATES for a FA that tells
whether a given input string contains a binary number that ends in 01 followed by exactly
one digit.
Exercise 20.6* Revise Listing 20.2 so that an input with no symbols is not accepted as
being an even number.

 Java Au Naturel by William C. Jones 20-7 20-7

20.2 Grammars And Pushdown Automata

You are probably thinking of easy ways to write down the state-transitions of a FA,
instead of going to the trouble of declaring a Java array. One way that is popular is
illustrated below for the Div2FA of Listing 20.2 (the array declaration is shown below it for
comparison). It is called a grammar of the language accepted by this FA:

 q0 -> 0 q0 | 1 q1 | 2 q0 | 3 q1 | Ë ; q1 -> 0 q0 | 1 q1 | 2 q0 | 3 q1 ;
 del = { {q0, q1, q0, q1, ACCEPT}, {q0, q1, q0, q1, REJECT} };

A grammar for the language accepted by the Div3FA of Listing 20.4 is as follows:

 q0 -> 0 q0 | 1 q1 | 2 q2 | 3 q0 | Ë ;
 q1 -> 0 q1 | 1 q2 | 2 q0 | 3 q1 ; q2 -> 0 q2 | 1 q0 | 2 q1 | 3 q2 ;

In general, a grammar is a number of lines, one for each state, each line beginning with
that state and the -> symbol. Lines are separated from each other by semicolons and/or
ends-of-line characters. That -> symbol is followed by a number of production items
separated by the | symbol. The meaning is that the state before the -> symbol can be
replaced by any one of the production items listed. The language generated by a
grammar is the set of strings you can get by starting with the grammar's starting state
and repeatedly making replacements according to the grammar's production items.

The Ë symbol is special; this Greek letter lambda signals that the state before the -> can
be replaced by nothing at all and the input is to be accepted if you reach the end of the
input in the state for that line. If you reach the end of the input in some state that does
not have the Ë as a production item, the input is to be rejected.

The replacement process traces the action of the FA on a given input. For instance, if
the input is 120301, a trace of the action of Div2FA is as follows:

 q0 => 1 q1 => 12 q0 => 120 q0 => 1203 q1 => 12030 q0 => 120301 q1 rejected.

This compact notation means that from q0 you consume 1 and go to q1, from which you
consume 2 and go to q0, from which you consume 0 and go to q0, etc. When you come
to the end of the input, you are in state q1, which is a rejecting state. But if the input is
3012, a trace of the action of Div2FA is as follows:

 q0 => 3 q1 => 30 q0 => 301 q1 => 3012 q0 => 3012 accepted.

Note that in the last step, q0 is replaced by nothing at all to obtain the desired string, as
permitted by the production item Ë. These two lines are called derivations of the given
inputs using the given grammar.

Regular grammars

In grammar rules, the symbols that can appear in the input are called terminal symbols.
The other symbols that represent states are called nonterminal symbols. Production
items in general can be any combination of terminals and nonterminals. When all the
production items in a grammar (other than Ë) consist of one terminal followed by one
nonterminal, the grammar is called a regular grammar. As you can see, the given
grammars for Div2FA and Div3FA are both regular grammars.

Obviously, if you take a particular grammar or FA and change the names of the states,
nothing else, that makes no real difference. In that case, we say that the new grammar
or FA is the same as the old one. But you can also have two different grammars that
generate the same language.

 Java Au Naturel by William C. Jones 20-8 20-8

The grammars that make a FA work right require that all production items for a particular
state begin with a different terminal. An arbitrary regular grammar may violate that rule.
That would mean that the FA has uncertainty as to which to choose in that case.
However, you may be able to reengineer the grammar to remove the uncertainty without
changing the strings of characters that are or are not acceptable. Then the grammar is
different but the language it generates is the same. Some major results of the Theory of
Computation are the following (you will see their proofs when you take the whole course):

Kleene's Theorem: Every regular grammar can be reengineered to produce a new
grammar that generates the same language but has no uncertainty. So for every regular
grammar there is a FA that recognizes the language that the grammar generates (and
conversely, of course). The proof describes an algorithm for doing the reengineering.
Lemma: Two strings are distinguishable with respect to some language L if there is
some string you can append to make one in L and the other not in L. Then any FA that
recognizes L must arrive at two different states for any two distinguishable strings.
Theorem: If, for a given language L, you can specify a set of n strings, any two of which
are distinguishable with respect to L, then a FA that recognizes L has at least n states.
Theorem: The language of palindromes over the alphabet {0,1} cannot be recognized by
a FA, and therefore does not have a regular grammar.
Myhill-Nerode Theorem: For every FA there is a unique FA that recognizes the same
language and has fewer states than any different FA that recognizes the same language.
That unique FA always arrives in the same state for any two indistinguishable strings.

Connection with programming languages

You should be able to see that you could write a computer program that reads in a
regular grammar without uncertainty and outputs a subclass of FiniteAutomaton (similar
to Listing 20.4) that recognizes the language generated by the grammar. In other words,
the set of regular grammars without uncertainty is a programming language, and your
program would be a kind of compiler for that language.

A highly-restricted version of Java can be described as follows:

• A class definition is public class Name extends Name { MethodGroup }

where the word public is optional.
• A method group is zero or more public void Name() { StatementGroup }

where the word public is optional.
• A statement group is zero or more stmt words.

This version of Java has a regular grammar. Part is as follows (words not beginning with
'q' are terminals):

 q0 -> public q1 | class q2 ; q1 -> class q2 ; q2 -> name q3 ; q3 -> extends q4 ;

Context-free grammars

A more general kind of grammar allows any number and mix of terminal and nonterminal
symbols on the right of a production item. Such a grammar is a context-free grammar.

Example 1 Consider the language of all palindromes in base 4 that have a 1 in the
middle and no 1 anywhere else. This language can be described by the following
grammar:

 S -> 0 S 0 | 2 S 2 | 3 S 3 | 1 ;

Here the starting state is named S. By tradition, when we write context-free grammars,
the nonterminal symbols are represented by capital letters in most cases. The starting
state is normally named S.

 Java Au Naturel by William C. Jones 20-9 20-9

This grammar means that, if the current symbol is 0 or 2 or 3, you may replace the
starting state S by two instances of the current symbol with S in between them. But if the
current symbol is 1, you replace S by 1. A derivation that shows that 030212030 is an
acceptable palindrome with a unique 1 in the middle is the following:

 S => 0 S 0 => 03 S 30 => 030 S 030 => 0302 S 2030 => 030212030 accepted.

In this derivation, we try to clarify which production rules are applied where by two
notational devices that are not actually part of the official derivation: (a) the symbols that
replace a nonterminal are boldfaced, and (b) the nonterminal to be replaced at the
following step is separated from other symbols by blanks.

Example 2 Consider the language of all sequences of base 3 digits (0s, 1s, and 2s) that
are in ascending order with the same number of 0s as 2s. This language can be
described by the following grammar:

 S -> 0 S 2 | T ; T -> 1 T | Ë ;

For this grammar, T stands for all sequences of 1s. The Ë production item indicates that
T can be replaced by nothing at all at any time. Derivations that show that 000222 and
001122 are in the language are as follows:

 S => 0 S 2 => 00 S 22 => 000 S 222 => 000 T 222 => 000 222 accepted.
 S => 0 S 2 => 00 S 22 => 00 T 22 => 001 T 22 => 0011 T 22 => 0011 22 accepted.

Example 3 Consider the language of all binary numerals that have the same number of
0s as 1s. This language can be described by the following grammar:

 S -> 0 W | 1 Z | Ë ; Z -> 0 S | 1 Z Z ; W -> 1 S | 0 W W ;

For this grammar, Z stands for all strings that have exactly one more 0 than 1s, and W
stands for all strings that have exactly one more 1 than 0s. A multi-line derivation that
shows that 1000100111 is in the language is as follows:

 S => 1 Z => 10 S => 100 W => 1000 W W => 10001 S W => 100010 W W
 => 1000100 W WW => 10001001 S WW => 10001001 W W => 100010011 S W
 => 100010011 W => 1000100111 S => 1000100111 accepted.

In this derivation, we sometimes had more than one nonterminal that we could have
replaced at that point. We always replace the one furthest left; this is called a leftmost
derivation. But the result is the same regardless of the order of replacement.

Example 4 Consider the language of all words that are palindromes using only an even
number of the letters a, b, and c. This language can be described by the following
grammar:

 S -> a S a | b S b | c S c | Ë ;

A leftmost derivation that shows that bacbbcab is in the language are as follows:

 S => b S b => ba S ab => bac S cab => bacb S bcab => bacb bcab accepted.

Example 5 A grammar for the structure of the Scheme programming language as
described at the beginning of Chapter Sixteen is as follows. S and T are the only
nonterminals for the entire programming language. The three words are terminals:

 S -> word | text | real | (T ; T -> S T |) ; V -> Ë ;

 Java Au Naturel by William C. Jones 20-10 20-10

Ambiguous grammars

An ambiguous grammar is a grammar for which some string in the language it
generates has two different leftmost derivations. The grammar of Example 6 is
ambiguous. An ambiguous grammar can usually (but not always) be replaced by an
unambiguous grammar that generates the same language.

Example 6 A grammar for the if-statement in Java could be as follows. Here "if" and
"else" are the only terminals:

 Stmt -> if Condition Stmt | if Condition Stmt else Stmt ;

Two different leftmost derivations for the same string show that the if-statement
introduces an element of ambiguity into the Java language, depending on whether the
else goes with the first if or the second if. This is called the dangling-else
problem:

 Stmt => if Condition Stmt => if Condition if Condition Stmt else Stmt
 Stmt => if Condition Stmt else Stmt => if Condition if Condition Stmt else Stmt

Pushdown automata

It should be clear that a FA is not adequate to recognize a language generated by most
context-free grammars. In fact, each of the six examples just given is beyond the power
of a FA. We need a more powerful kind of machine called a top-down pushdown
automaton (ToPDA for short). Its RAM consists of a stack of terminals and nonterminals
on which you can store parts of the derivation that have not yet been processed.

The ToPDA for a given context-free grammar is a machine that acts as described in the
accompanying design block. It has only two states besides the ACCEPT and REJECT
states. If and when a ToPDA reaches its ACCEPT state, the string of characters it has
processed up to that point is said to be accepted by the ToPDA.

SNL DESIGN for the ToPDA constructed from a given context-free grammar
1. The initial state is q0 and the stack initially is empty.
2. Push the start nonterminal S on the stack and switch from state q0 to state q1.
3. Repeat the following until done (remain in state q1 until the end)...
 3a. If the stack is empty, then...
 Switch to ACCEPT and terminate this algorithm.
 3b. Otherwise, pop the top element of the stack and then...
 3ba. If it is a nonterminal then...
 Push any one production item for that nonterminal on the stack.
 3bb. Otherwise it is a terminal, so...
 Read (a.k.a. "consume") the next input symbol.
 If the input symbol is not the same as that terminal then...
 Switch to REJECT and terminate this algorithm.

Naturally, in step 3ba, you choose to push the production item that is indicated by the
next input symbol, where possible. For the earlier Example 1, which is the set of
palindromes in base 4 where a 1 occurs only in the middle, you saw the following
grammar and the following derivation to show that 030212030 is accepted:

 S -> 0 S 0 | 2 S 2 | 3 S 3 | 1 ;
 S => 0 S 0 => 03 S 30 => 030 S 030 => 0302 S 2030 => 030212030 accepted.

 Java Au Naturel by William C. Jones 20-11 20-11

We will trace the action of the ToPDA for this grammar on this string. For this we need
some notation: The conventional representation of the empty stack is Z0. Something like
(q1, 03^S30Z0) means that we are currently in state q1 (or whatever is before the
comma), we have consumed 03 in that order (or whatever is before the caret), and the
stack contains S30 reading from the top down (because Z0 marks the bottom of the
stack). The preceding derivation implies that the ToPDA's action is as follows:

(q0, ^Z0) by Step 1, then (q1, ^SZ0) by Step 2.
(q1, ^0S0Z0) by Step 3ba, then (q1, 0^S0Z0) by Step 3bb, consuming 0.
(q1, 0^3S30Z0) by Step 3ba, then (q1, 03^S30Z0) by Step 3bb, consuming 3.
(q1, 03^0S030Z0) by Step 3ba, then (q1, 030^S030Z0) by Step 3bb, consuming 0.
(q1, 030^2S2030Z0) by Step 3ba, then (q1, 0302^S2030Z0) by Step 3bb, consuming 2.
(q1, 0302^12030Z0) by Step 3ba, then (q1, 03021^2030Z0) consuming 1.
(q1, 030212^030Z0) consuming 2, then (q1, 0302120^30Z0) consuming 0.
(q1, 03021203^0Z0) consuming 3, then (q1, 030212030^Z0) consuming 0.

At this point the stack is empty ("contains" only Z0), so we ACCEPT 030212030.

For a pushdown automaton in general (PDA for short), you still start in state q0 with the
stack containing only a special element Z0 which is never removed or pushed (so Z0 on
the top means it is effectively empty). But you may have any finite number of states, not
just q0 and q1. The PDA allows a finite number of operations of the following structure:

 If the state is ___ and the stack top is ___ and the next input is ___ then...
 Replace the stack top by a particular sequence of zero or more symbols.
 Either do or do not consume the input symbol.
 Either do or do not change the current state to a particular state.

If you get to a point where the stack is empty (i.e., only the Z0 bottom-marker), you can
accept the input consumed so far. If you get to a point where no operation can be
performed given the current state and stack top and input symbol, you reject the input.
The major theorems on PDAs are as follows:

Theorem: The language of all strings that can be accepted by a ToPDA is precisely the
language that is generated by the context-free grammar used in the ToPDA algorithm.
That is, for every context-free grammar there is a ToPDA that accepts its language.
Theorem: For every PDA there is a ToPDA that accepts the same language. In
particular, the language of any PDA has a context-free grammar.

Exercise 20.7 Write out a regular grammar for a FA that tells whether a given input
string contains a base-four number that has no two consecutive digits the same.
Exercise 20.8 Write out a regular grammar for a FA that tells whether a given input
string contains a binary number that ends in 01.
Exercise 20.9 Write out a context-free grammar for the language of all binary numerals
that have more 0s than 1s.
Exercise 20.10 Trace the action of the ToPDA for the grammar of Example 2 on the
input 00122.
Exercise 20.11* Write out a context-free grammar for the language of all binary
numerals that are palindromes of any length.
Exercise 20.12* Write out a context-free grammar for the language of differences of
numbers in variables x and y, e.g., x - y, y - x - y, x - x - y - y.
Exercise 20.13* Trace the action of the ToPDA for the grammar of Example 3 on the
input 000222.
Exercise 20.14* Trace the action of the ToPDA for the grammar of Example 4 on the
input abaaba.

 Java Au Naturel by William C. Jones 20-12 20-12

20.3 Turing Machines

A Turing machine is a more complex automaton than either of the two already
discussed in this chapter. It also takes a string of symbols as input and produces an
answer of either accept or reject (though it may go into an infinite loop and produce
neither). At any given time during its computation, it is in one of a finite number of
different states. It works with an unlimited amount of RAM. You can think of this RAM
area as a number of memory locations numbered from 0 on up, each one capable of
storing a single symbol.

The Turing machine starts in a state conventionally named q0, positioned at index 0 in
the RAM. First the input is loaded into RAM starting at index 1, with all other RAM
positions left blank (in particular, index 0 is left as the blank symbol). The Turing machine
is not limited to a single look at input symbols as they are read; it can keep them stored in
RAM so it can re-check them when needed.

The historical description of a Turing machine imagined it as having a long tape in place
of RAM, with a tapehead positioned at one point on the tape. So we will use head() to
indicate the symbol at the current position in RAM. The machine repeatedly carries out
instructions of the following form until it terminates with either ACCEPT or REJECT:

 If the current state is ___ and the value of head() is the symbol ___ then
 1. Replace the symbol at the current position by the symbol ___ (optional).
 2. Move one position to the right or one position to the left (optional).
 3. Change to another state ___ (or maybe keep the same state).

Implementing a Turing machine in code

We could code this in Java with the following accepts method. It is the same as the
one for Finite Automata in Listing 20.1 except that the first two lines of the body of the
method do the initial loading of the input into RAM. So in the body of the while-loop, the
call of input.next() is replaced by the call of head().

 public boolean accepts (Sentence input)
 { // load the input into RAM starting at index 1
 thePos = 0; // initial position of the tapehead in RAM
 int state = q0;
 while (state >= q0)
 state = nextState (state, head());
 return state == ACCEPT;
 } //======================

This means that a main method could operate a particular Turing machine (TM for short)
and print the result with a statement such as the following, exactly as in Listing 20.3 (here
Palindrome is a TM we will code next):

 System.out.println
 (new Palindrome().askOpinion (new Sentence (args[0])));

We could store the particular instructions that drive the TM in a 2-dimensional array
indexed by state and symbol, as in Listing 20.3. Many authors develop TMs that way.
But it is quite useful to think of each state as a single Java method with a very limited
structure, returning a boolean value of either true (for ACCEPT) or false (for REJECT).
This leads to the abstract TuringMachine class in Listing 20.5 (see next page). Study the
upper part of that listing now. The call of start() corresponds to making the state q0.

 Java Au Naturel by William C. Jones 20-13 20-13

Listing 20.5 The TuringMachine abstract class

public abstract class TuringMachine
{
 public final boolean ACCEPT = true, REJECT = false;
 private final byte[] theRam = new byte[10000];
 private int thePos = 0;

 public String askOpinion (Sentence input)
 { return accepts (input) ? "accepted" : "rejected";
 } //======================

 public boolean accepts (Sentence input)
 { if (input != null)
 { theRam = new byte[10000]; // start with fresh input
 int k = 1;
 byte symbol = input.next();
 while (symbol >= 0)
 { theRam[k++] = symbol;
 symbol = input.next();
 }
 thePos = 0;
 }
 return start();
 } //======================

 public byte head()
 { return theRam[thePos];
 } //======================

 public static void moveOn()
 { thePos++;
 } //======================

 public static void backUp()
 { thePos--;
 } //======================

 public static void moveOn (byte replacement)
 { theRam[thePos++] = replacement;
 } //======================

 public static void backUp (byte replacement)
 { theRam[thePos--] = replacement;
 } //======================

 public abstract boolean start();
}

Some exercises address the need for increasing the size of the array if more room is
needed, and for returning REJECT if the machine tries to make itsPos negative.

 Java Au Naturel by William C. Jones 20-14 20-14

This listing has an abstract method start that will vary from one Turing machine to
another, depending on what it is supposed to do. The methods in the middle of Listing
20.5 are the four basic operations: moveOn moves one position to the right in RAM
(i.e., increments the index in RAM by 1); if it has a parameter, the given symbol replaces
the current value in RAM before it moves to the right. For instance, moveOn(1) writes
1 in the current position before moving right. Similarly, backUp does exactly the same
except it goes to the left (i.e., decrements the index in RAM by 1) instead of to the right.

A method that represents one state of the TM is restricted to (a) looking at the current
head() value and then, depending on that value, (b) executing at most one of the
moveOn and backUp methods, and finally (c) returning a boolean value of ACCEPT or
REJECT or the value returned by some other state of the TM (or possibly of the same
state). This means that, when the non-blank symbols can only be 0 or 1, the coding for a
TM state should be the following multi-way selection statement or its equivalent:

 if (head() == 0)
 { moveOn/backUp, possibly with a replacement value for the symbol
 return ACCEPT/REJECT/otherState
 }else if (head() == 1)
 { moveOn/backUp, possibly with a replacement value for the symbol
 return ACCEPT/REJECT/otherState
 }else if (head() == -1) // representing a blank
 { moveOn/backUp, possibly with a replacement value for the symbol
 return ACCEPT/REJECT/otherState
 }

If you think for a while, you can see that the first statement in such a method could be:

 while (head() == 1)
 moveOn/backUp, possibly with a replacement value for the symbol

As long as the rest of the coding of that method is the multi-way selection statement
shown above, but with the alternative for 1 omitted, this is the equivalent of having the
alternative for 1 end with return theCurrentMethod(). Similarly, you could start
with this while-statement

 while (head() == 0 || head() == 1)
 moveOn/backUp, possibly with a replacement value for the symbol
 moveOn/backUp, possibly with a replacement value for the symbol
 return ACCEPT/REJECT/otherState

because it is the equivalent of calling the current method for 0 and 1, but doing the part
after the while-loop for -1.

Think of the Turing machine as having two light bulbs on it marked ACCEPT and
REJECT. If and when the Turing machine halts, one of the two light bulbs comes on.
You can also think of whatever is left on the tape (i.e., in RAM) as an output of the
machine.

A Turing machine to test for palindromes

The standard multi-way selection statement is the body of the isPalindrome method
in the middle part of Listing 20.6 (see next page). The start method simply moves to
the right from the blank at position 0 and calls the isPalindrome method to test
whether the input is a palindrome (reads the same backwards as forwards). This Turing
machine accepts the input if it is a palindrome and it rejects the input if not.

 Java Au Naturel by William C. Jones 20-15 20-15

Listing 20.6 The Palindrome-testing TuringMachine subclass

public class Palindrome extends TuringMachine // 6 states
{
 public boolean start()
 { if (head() == -1) //1
 { moveOn(); //2
 return isPalindrome(); //3
 } //4
 else // the current position has 0 or 1 //5
 return REJECT; //6
 } //======================

 public boolean isPalindrome()
 { if (head() == 0) //7
 { moveOn (-1); //8
 return findZeroAtOtherEnd(); //9
 }else if (head() == 1) //10
 { moveOn (-1); //11
 return findOneAtOtherEnd(); //12
 }else //13
 return ACCEPT; //14
 } //======================

 public boolean findZeroAtOtherEnd()
 { while (head() == 0 || head() == 1) //15
 moveOn(); //16
 backUp(); //17
 return shouldSeeZero(); //18
 } //======================

 public boolean shouldSeeZero()
 { if (head() == 0) //19
 { backUp (-1); //20
 return goToFront(); //21
 } //22
 else //23
 return (head() == 1) ? REJECT : ACCEPT; //24
 } //======================

 public boolean goToFront()
 { while (head() == 0 || head() == 1) //25
 backUp(); //26
 moveOn(); //27
 return isPalindrome(); //28
 } //======================

 // the following two are left as exercises
 public boolean findOneAtOtherEnd()
 public boolean shouldSeeOne()
}

 Java Au Naturel by William C. Jones 20-16 20-16

The isPalindrome method repeatedly removes one symbol from each end of the
input, making sure they are the same symbol, until the entire input has been processed.
So it returns ACCEPT if it can remove all symbols this way. If the isPalindrome
method detects a 0 as the first symbol, it writes a blank in its place and calls the
findZeroAtOtherEnd, but if it detects a 1 as the first symbol, it calls the analogous
findOneAtOtherEnd (which is left as an exercise).

The findZeroAtOtherEnd method loops to the right past all the symbols until it gets
to the blank at the other end (in effect, calling itself repeatedly). Then it backs up one to
make sure there is a 0 on the other end. If there is only a blank left, the
shouldSeeZero method accepts this palindrome of odd length. If there is a 0 on the
other end, it replaces it by a blank and then moves all the way to the left to start over.

The reason for allowing a restricted kind of while-statement instead of using an
equivalent if-statement with recursion is not to save a few lines of code or to be more
efficient. The Turing machine should execute a goto statement for each method, which
avoids storing all the active method calls on an internal stack. But Java is too advanced
a language to have a goto statement; method calls allow recursion. Serious use of the
TuringMachine class could involve a stack of thousands of method calls, which can lead
to a stack-overflow condition. The while-loop greatly postpones the problem.

We allow just a few variations from the standard multi-way selection statement, for
convenience, and only as long as it is very clear what the standard multi-way selection
statement would actually be. A strict coding of a TM would use only standard multi-way
selection statements.

Exercise 20.15 Revise Listing 20.5 so that the accepts method catches any attempt
to move below index 0 in the array and returns the appropriate value.
Exercise 20.16 Write the findOneAtOtherEnd method for Listing 20.6.
Exercise 20.17* Revise Listing 20.5 so that theRam doubles in size when an attempt
is made to increase itsPos too high.
Exercise 20.18* Write the shouldSeeOne method for Listing 20.6.

20.4 Unsolvable Problems And Uncomputable Functions

The primary purpose of Turing machines is to allow the study of what computers can and
cannot do. The Church-Turing Thesis is that a Turing machine can perform any
computation that a modern computer can do, only much more slowly. This assertion is
not provable logically, but its truth is generally accepted by computer scientists. So if we
prove that certain problems cannot be solved by a TM or that certain functions cannot be
computed by a TM, it follows that no one can program a modern computer to solve those
problems or compute those functions.

A TM is a finite sequence of characters. If you replace each character by its Unicode
value (0 to 255, 8 bits each), and treat the sequence of characters as one long number in
base two, you get a single number for each TM. For instance, if it takes 1000 characters
to write in Java a strictly-coded TM (confined to multi-way selection statements), that TM
corresponds to an 8000 digit number in base 2. Different TMs have different numbers.
Call this number the binary encoding of the Turing machine.

You could even write a Turing machine program to take as input a sequence of 1s and 0s
and accept that input if it is the binary encoding of some Turing machine, rejecting the
input otherwise. In other words, the binary encoding of a TM can be the input for a TM.
You could write a TM that tells whether its input is the binary encoding of a TM that has
less than 10 states. But there are some problems of this type you cannot solve.

 Java Au Naturel by William C. Jones 20-17 20-17

Universal Turing Machines

A 1936 paper by Alan Turing developed the coding for a Universal Turing Machine
(UTM for short). This is a Turing machine that takes as input the binary encoding of a TM
followed by a particular sequence of 1s and 0s, and then produces as output whatever
that TM would have produced on the input of that sequence of 1s and 0s. That is, if and
when the UTM terminates, its ACCEPT or REJECT state is the same as the given TM
would have produced, and whatever is in RAM is what would have been there if the given
TM had been run with the given input.

This paper therefore described the idea of a stored-program computer. Early computers
hard-wired their programs; if you wanted to change what action the computer took, you
had to move some wires around. Later computers functioned by first reading in a
specification of the program to be executed and then running it on various inputs. Of
course, those early computers required that the program be in some numeric code
(machine code). That is essentially what the binary encoding of a Turing machine is.

Henceforth, we will often say "takes a TM as input" when it would be more precise to say
"takes the binary encoding of a TM as input". This has the advantage of making several
assertions easier to state and understand.

The NonSelfAccepting problem

In the town of Seville, all men shave regularly. Some shave themselves; anyone who
does not shave himself goes to the barber for shaves. Key fact: The barber shaves all
men, and only those men, who do not shave themselves. Question: Who shaves the
barber?

You probably figured out the answer -- the barber is not a man. She cannot be a man,
because if she were, then he would either shave himself (contradicting the second part of
the key fact) or he would not shave himself (contradicting the first part of the key fact).
So she must be a woman.

When you execute a Turing machine on a particular input, either it says the input is
acceptable or it does not. You could execute any TM on the input that is its own binary
encoding, and it will either return ACCEPT or it will not. Let us say a TM is SelfAccepting
if it accepts its own binary encoding as input, and it is NonSA if it does not accept its own
binary encoding as input.

The NonSelfAccepting enumeration problem is the problem of writing a Turing
machine that accepts any NonSA TM (and does not accept any other). Note that the
Turing machine you write is allowed to go into an infinite loop for any TM that is not
NonSA. We will explain later in this section why it is called an "enumeration" problem.

Theorem 1 No Turing machine can be the answer to this NonSelfAccepting enumeration
problem.

Proof by contradiction If X were a TM that accepts only the NonSA TMs, then X would
have to either (a) return ACCEPT when given its own binary encoding, or (b) not return
ACCEPT when given its own binary encoding. In case (a), X is SelfAccepting, which X
does not accept. In case (b), X is NonSA, which X does accept. Conclusion: X cannot
be a TM.

The Church-Turing Thesis then allows us to conclude that, if anyone ever claims to have
written a computer program that will read in a TM and say whether it is NonSA, you can
be absolutely guaranteed that the program has a bug in it. It cannot be done. Every TM
is either NonSA or it is not, but no one can write a correct program to tell whether
any given TM is NonSA.

 Java Au Naturel by William C. Jones 20-18 20-18

You can obviously write a Turing machine that takes some TM as input and very often
tells whether it is or is not NonSA. The theorem just says that such a Turing machine will
not be able to tell for every TM.

The SelfAccepting problem

The SelfAccepting enumeration problem is the problem of writing a Turing machine
that accepts any SelfAccepting TM and does not accept any other TM.

Theorem 2 A Turing machine exists that is the answer to the SelfAccepting enumeration
problem.

Proof by construction Let E be the binary encoding of a given TM. Apply the Universal
Turing Machine to the input consisting of E followed by E. If the given TM produces
ACCEPT given its encoding as input, then the UTM will also produce ACCEPT given EE.
If the given TM does not ACCEPT itself, the UTM will not ACCEPT its EE either.

A decision problem is the problem of accepting all things of a particular type that satisfy
a certain property and rejecting all things of that type that do not satisfy the property. For
instance, the SelfAccepting decision problem is the problem of writing a Turing machine
that accepts a SelfAccepting TM and rejects all other TMs. Here the particular type of
thing is a binary encoding of a TM. By contrast, a solution to an enumeration problem
can loop infinitely on an input that it does not accept, rather than stop by rejecting.

Theorem 3 The SelfAccepting decision problem is not solvable.

Proof by contradiction If X were a Turing machine that accepts all SelfAccepting TMs
and rejects all NonSelfAccepting TMs, then you could write a new Turing machine as
follows: The start method of the new machine calls the start method of X and
returns the opposite of what X's start method returns. That would give you a TM that
accepts all NonSA TMs, which Theorem 1 proved to be impossible.

Note that the difficulty here is that any TM that accepts all SelfAccepting TMs and no
others, must go into an infinite loop for some TMs that are not SelfAccepting. So the
enumeration problem has an answer but the decision problem does not. In other words,
any computer program that correctly spots SelfAccepting TMs must go into an infinite
loop on some inputs. In yet other words, the SelfAccepting problem is enumerable but
not decidable.

An enumeration problem is the problem of accepting all things of a particular type that
satisfy a certain property and either rejecting or going into an infinite loop on all things of
that type that do not satisfy the property. It is so-called because of a theorem that
constructs an Enumerating Turing Machine (ETM for short). An ETM takes as input any
TM and produces as output (on the tape, i.e., in RAM) all the inputs that that TM accepts,
one at a time. They will not necessarily be in any particular order. But every input that
the TM accepts will eventually (after a finite amount of time) appear on the tape.

Therefore, given a TM X that is the answer to some enumeration problem, the ETM
acting on X will enumerate (list) all the inputs that X accepts. We do not explain here
how to construct an ETM; we leave that for a course in Theory of Computation.

The Accepting Problem

Theorem 4 No Turing machine can be the solution to the Accepting decision problem,
which is the problem of deciding (accept or reject) whether any given Turing machine will
accept a given input.

 Java Au Naturel by William C. Jones 20-19 20-19

Proof by contradiction Assume X is a Turing machine that takes as input some TM
followed by a particular string of symbols S, and X always returns ACCEPT if that TM
accepts S and X returns REJECT if that TM does not accept S. Then you could apply X
to the input consisting of E followed by E, where E is the binary encoding of a given TM.
That would give you a solution of the SelfAccepting decision problem, contradicting
Theorem 3.

Theorem 5 A Turing machine exists that solves the WritesSomething decision
problem, which is the problem of deciding whether any given TM writes any symbol at all
when its input is an all-blank tape.

Proof by construction Have the UTM execute the given TM T for n+1 instructions, where
n is the number of states that T has. If T has not written anything on the tape yet, T
never will. The reason is that, at the end of executing n+1 instructions, T will be in a state
that it has previously been in, and the tape will be in the same configuration it was at the
time T was in that previous same state, namely, all blanks, so T will repeat that sequence
of operations that writes nothing over and over.

The Halting decision problem is to find a Turing machine that tells whether or not any
given TM halts on a given input (accepts those that do, rejects those that do not).
Clearly, we already have a Turing machine that returns ACCEPT for any given TM T that
halts on a given input, namely, the UTM. It calls T's start method; if and when T
accepts or rejects, the UTM returns ACCEPT. But the UTM goes into an infinite loop if T
does. So the UTM is an answer to the Halting enumeration problem.

Theorem 6 No Turing machine can be the solution to the Halting decision problem.

Proof by contradiction Assume X is a Turing machine that takes as input some TM T and
some input P and always returns ACCEPT if T does not go into an infinite loop on input
P, but returns REJECT otherwise. Then you easily write a Turing machine Y that (a)
calls X's start method applied to the input consisting of E followed by E, where E is
the binary encoding of a given TM; (b) returns REJECT if X's start method returns
REJECT (signalling an infinite loop), otherwise executes the given TM on the same input
and returns whatever it returns. Then Y would be a solution of the SelfAccepting decision
problem, contradicting Theorem 3.

By the Church-Turing Thesis, you cannot write a computer program that can test any TM
to tell correctly whether it does or does not halt. In other words, any attempt to write such
a computer program will have a bug in it.

If you are given a TM to work with, you can always write a program that tells whether or
not that particular TM halts. This may seem startling, but it is actually trivial. After all,
you just write two programs, one that accepts it and another that rejects it, and one of
those will be the one you wanted. Unfortunately, you will often not know which one.

Computable functions

When you execute a Turing machine, it leaves certain symbols on the tape (i.e., in RAM)
if and when it terminates. That is its output. Say you have a TM that, whenever its input
is a number of 1s, terminates with a (usually different) number of 1s on the tape. Then
you could consider it to be computing a function of non-negative integers for which the
answer is always a non-negative integer.

For instance, you could have a TM that moves to the right until it sees a blank (after index
0), then writes a 1 and quits. So if it started with 17 1s, it would end with 18 1s, and if it
started with 200 1s, it would end with 201 1s. It is computing the function f(n) = n+1. Or
you could have a TM that copies its input to the position directly after the input. So if it
started with 17 1s, it would end with 34 1s, and if it started with 200 1s, it would end with
400 1s. It is computing the function f(n) = 2*n.

 Java Au Naturel by William C. Jones 20-20 20-20

TMs can compute functions that have very large values. For instance, it is possible to
write a TM that replaces an input of 1 with 1, replaces an input of 2 with 22 (which is 4),
replaces an input of 3 with 3-to-the-33 power (which is about 7 trillion), etc. In general, an
input of n has an output of n-to-the-nth-to-the-nth-to-the... for n levels. This "pyramid"
value gets to be really big really fast.

A computable function is a function that a TM can be written to compute in the sense
described above. The interesting thing is that there are some functions you can define
but you cannot compute.

Define the Busy Beaver function b(n) as follows for TMs where 0 and 1 are the only
non-blanks allowed on the tape. ACCEPT and REJECT are the halting states:

• b(1) is the largest number that a TM with just 1 non-halting state and an input of 1

can leave as output and terminate (going into an infinite loop does not count).
• b(2) is the largest number a TM with 2 non-halting states and an input of 11 can

leave as output and terminate.
• b(3) is the largest number a TM with 3 non-halting states and an input of 111 can

leave as output and terminate.
• b(4) is the largest number a TM with 4 non-halting states and an input of 1111 can

leave as output and terminate.
• etc.

Theorem 7 No Turing machine can compute the Busy Beaver function.

Proof by contradiction Assume you have a Turing machine T that computes the Busy
Beaver function. Replace each return of ACCEPT or REJECT in T by a call of another
method (state) that does the following:

 public boolean addOne()
 { if (head == 1)
 { moveOn();
 addOne();
 }else // it is 0 or blank
 { moveOn (1);
 return ACCEPT;
 }
 }

Let n denote the number of states this revised machine has. Then this revised machine
will output b(n)+1 1s when the input is n 1s. That contradicts the definition of the Busy
Beaver function b(n).

Note that this function is unambiguously defined, but not in a "constructive" way -- It does
not tell you how to compute it. It cannot, as the theorem shows -- No one can write a
computer program that computes b(n) for every n.

This theorem is a "non-existence" theorem -- it proves that something does not exist. If
you prove something does exist, it does not always help. For instance, it is true that, for
any n you choose, there exists a TM that computes b(n). But it is trivial and it is useless.
First choose a positive number n. Then write a program that prints a TM that prints one
1, then a TM that prints two 1s, then a TM that prints three 1s, etc., going on without limit.
Eventually it will print a TM that computes that particular b(n). So such a TM exists. But
you do not know which one it is.

Exercise 20.19 The pyramid function evaluated at 4 produces 4 to some power.
Choose the closest answer for the power: 105, 1015, 1050, 10150.
Exercise 20.20* Explain why no Turing machine can tell whether any given TM
whatsoever ever writes the symbol 0 on its tape.

 Java Au Naturel by William C. Jones 20-21 20-21

Part B Enrichment And Reinforcement

20.5 Extended Example Of A Context-Free LL(1) Grammar

In this section we describe a complete new programming language, mainly in terms of its
context-free grammar. Java is a language that was developed for professional use, so it
has a number of drawbacks for purposes of teaching beginning programming. We want
a mild simplification of Java that (a) is as good as possible for teaching beginning
programming, subject to (b) is so much like Java that the equivalent "real" Java can be
learned in an hour or so.

One problem with languages intended for professional use is that an advanced feature
useful to people who know what they are doing can be accidentally invoked by a
beginner. This can totally confuse the beginner. It is better if the compiler tells the
beginning student that the coding is simply wrong.

Lisp is a language used in artifical intelligence applications. Scheme is a language based
on Lisp but modified to be highly suitable to teaching beginners. One of its features that
we will adopt here is to have several levels of the language; You learn Scheme#1 to start
with, then Scheme#2 adds more features to Scheme#1, then Scheme#3 adds yet more.
A feature the compiler flags as an error at Level 1 is accepted at Level 2.

We call our beginner's language J1 (since it is Level 1 of a simplification of Java). J1
does not allow interfaces or throwing/catching Exceptions. It allows inheritance and late
binding (where the overriding of a method call cannot be determined until runtime) but not
private methods. J2 allows all of these, plus nesting of one class inside another.

All classes in the J1 language are considered as being in the same package; J3 allows
packages and imports. J1 has only one kind of number, Java's float (32-bits, whole
number values exact to plus or minus 8 million, up to plus or minus 1080). J3 adds the
byte, short, int, long, and double numeric types. We do not need the char type if we have
the methods s.at(k) for the Unicode of the kth character of s and System.chr(u)
for the 1-character String whose character has Unicode u.

The J1 interpreter

Another problem for beginners in Java is that getting a small program to compile and run
is a lot of trouble. You have to write a complete class definition in a text file using some
text editor; save the file on disk; run the compiler to produce the compiled form; and then
execute the compiled file. A line-by-line interpreter is far more intuitive for beginners.

Our J1 language will have a compiler, of course, invoked by a command similar to javac.
But it will also come with an interpreter program that accepts lines written in J1 and gives
an immediate response, similar to Java's DrJava at http://drjava.sourceforge.net/. If the
input is an expression rather than a J1 statement, the interpreter prints the expression's
value.

We start with some examples of student interactions with the interpreter. The interpreter
gives an input> prompt and responds to each line typed with the information shown at
the right in the following example:

 input> 2 + 3 5
 input> 4 + (7 * 2.1) 18.7
 input> 5 / 2 2.5
 input> 7 / * 2.1 ERROR: * is not allowed there

 Java Au Naturel by William C. Jones 20-22 20-22

Grammar rules for basic expressions

A number of items added together could be defined with the following grammar rules
(where Ë indicates you may have nothing there):

 ManyTerms --> Term MaybeMoreTerms
 MaybeMoreTerms --> AddOp Term MaybeMoreTerms | Ë
 AddOp --> + | -

Programming languages typically have many situations in which you can write one or
more of something. We use a special shorthand notation for such cases: Braces around
a part of a rule means that part can occur as many times as you want at that point. So
the first two lines above can be summarized as follows:

 ManyTerms --> Term {AddOp Term}

This braces shorthand allows for eliminating most uses of the lambda symbol Ë (standing
for the empty string) from the grammar rules. Of course, it could be ambiguous if the
language allowed braces as symbols, but J1 syntax does not have braces.

A Literal is an element in a computer program that represents an explicit and unchanging
value. In the grammar, "Literal" is considered to be a terminal, since it is not defined by
grammar rules. There are four kinds of Literals in J1, defined as follows:

1. A string literal is quotes around anything not involving quotes or returns except \" .
2. A numeric literal is a sequence of one or more digits that may have a dot between

two digits, optionally followed by an exponent base 10, along the lines of 42e+21 or
3.704e-06 (implemented as a 32-bit float value).

3. A boolean literal is one of the two keywords true and false.
4. The only object literal is the keyword null.

Grammar rules for expressions

We now look at the grammar rules that define a general Expression in J1. These allow
for boolean expressions using the conditional operator and relational operators. J1 uses
keywords (not, and, and or, boldfaced in grammar rules) instead of Java's symbols !,
&&, and || for booleans, since beginners find words easier. The conditional operator is
easier to recognize with an initial keyword; for instance, x = when y > 2 ? 7 : 5
is easier to comprehend than x = y > 2 ? 7 : 5.

1. Expression --> Term MaybeMore

 | when Expression ? Expression : Expression
2. MaybeMore --> or Term {or Term} | and Term {and Term}

 | + Term { + Term} | * Term { * Term}
 | < Term | > Term | <= Term | >= Term | == Term | != Term
 | - Term | / Term | % Term | Ë

3. Term --> ClassName { [] } Primary | float { [] } Primary
 | boolean { [] } Primary | not Primary | - Primary | Primary

4. Primary --> VariableOrMethodCall | Literal | (Expression)

J1 avoids the difficulties with operator precedence that languages cause for some
beginners, by simply not allowing two or more binrary operators in sequence unless they
are the kind where the order makes no difference (+ * or and), unless the programmer
uses parentheses to indicate the order of operations.

 Java Au Naturel by William C. Jones 20-23 20-23

LL(1) grammars

A grammar is unambiguous when you can always tell which of several rules to apply by
looking at the next symbol in the coding to be processed. This is obviously true when a
nonterminal is defined with only one rule (the definition of ManyTerms) or with several
rules each beginning with a different terminal (the definition of SpecialOp).

When a definition has several rules of which all but one begin with a different terminal,
and the remaining rule begins with a nonterminal defined so that it must begin with some
other terminal, the definition is unambiguous. You will see shortly that a
VariableOrMethodCall must begin with a word other than true, false, or null, so
definition 4 is unambiguous. The word at the beginning of a VariableOrMethodCall
cannot be a ClassName, float, boolean, or not, so definition 3 is unambiguous. And
the word also cannot be when, so definition 1 is unambiguous.

When a definition has several rules of which all but one begin with a different terminal,
and the other rule is the empty string Ë, that definition is unambiguous if the nonterminal
being defined can never be followed by one of those terminals in the language. Definition
2 is therefore unambiguous: an Expression can never be directly followed by
MaybeMore, and no other definition contains one of the 13 terminals for MaybeMore.

For purposes of this section, let us define a perfectly-clear nonterminal to be one for
which every rule in its definition begins with a different terminal (and no rule is the empty
string). For instance, AddOp is perfectly-clear. Let us define the selectors for a
definition to be (a) whatever terminals occur at the beginning of the various rules for that
definition, plus (b) the selectors for any perfectly-clear nonterminal that occurs at the
beginning of some rule for that definition. For instance, Expression has one selector
when, and MaybeMore has 13 selectors.

In general, a basic LL(1) grammar is a grammar for which each definition's selectors are
all different, and each rule in that definition begins with a terminal except possibly one
rule, and moreover, that one exceptional rule (when it exists) expands to:

a) a non-empty string that cannot begin with one of the selectors, or
b) the empty string Ë, in which case the nonterminal being defined is never followed in

any grammar rule by something that begins with one of the selectors.

A special requirement applies for the shorthand braces notation: If a production rule
contains {X}, that is shorthand for some Y defined by Y --> X Y | Ë. The grammar is still
LL(1) if (a) X begins with a terminal that can never follow {X}, or if (b) X begins with a
perfectly-clear nonterminal none of whose selectors can follow {X}, or if (c) {X} is followed
by a terminal that cannot begin X. So the braces in definitions 2 and 3 are unambiguous
by (a). You will see examples of (b) and (c) later in this section.

Variables and method calls

Just as in Java, there are two kinds of construction in J1, illustrated by new Turtle()
and by new Turtle[5][n]. The latter can also be used with the primitive types
float and boolean, but the former cannot. These could be described as follows:

 Construction --> new Type RestOfConstruction
 RestOfConstruction --> Parameters | [Expression] { [Expression] }

However, those two definitions do not forbid having new float(...). So they have to
be made more precise. The grammar rules in the following block define a
VariableOrMethodCall in terms of Expression. Reminder: if xxx is some method name,
then super.xxx invokes the method named xxx in the superclass, even when xxx is
defined in the current class.

 Java Au Naturel by William C. Jones 20-24 20-24

5. VariableOrMethodCall --> Variable { . MethodName Parameters } | Message
 | SingletonName . Message | new Construction

6. Variable --> this | super | VariableName { [Expression] }
7. Message --> MethodName Parameters { . MethodName Parameters }
8. Parameters --> (RestOfParameters | Ë
9. RestOfParameters --> Expression { , Expression }) |)
10. Construction --> float [Expression] { [Expression] }

 | boolean [Expression] { [Expression] }
 | ClassName RestOfConstruction

11. RestOfConstruction --> Parameters | [Expression] { [Expression] }

Note that J1 does not require empty parentheses for a constructor call or method call with
no parameters. This complicates the grammar, but it really reduces irritation for
beginning programmers. Also, J1 has no compound variables such as x.length, but that
is not really a problem, and it makes the language easier for beginners to learn.

Definitions 6, 7, and 10 maintain the LL(1) property because they are perfectly-clear.
Definition 5 is okay because none of the three terminals that can begin a Variable can
begin the other three alternatives for definition 10. Definition 9 is okay because an
Expression cannot start with a right parenthesis. A search of all the definitions in this
grammar will show that Parameters cannot be directly followed by a left parenthesis or a
left bracket. This shows that definitions 8 and 11 maintain the LL(1) property.

The braces in definitions 5-11 must also be checked: The one in definition 9 obviously
maintains the LL(1) property. The ones in definitions 6, 10, and 11 are okay because a
left bracket cannot follow a Construction or a Variable. The ones in definitions 5 and 7
are okay because a period cannot follow a VariableOrMethodCall.

These LL(1) conditions are rather complicated, but they make it easy to write a compiler
that looks ahead one token and chooses the rule with that as its selector. If no rule has
the next token as its selector, it choose the one rule that is empty or not perfectly-clear.

Assignment statements and local declarations

A variable that is local to a method is both declared and initialized with the := symbol. So
in J1, no beginner can declare a local variable and forget to initialize it. You can later re-
assign a new value to the variable using the simple = assignment symbol. Of course, a
variable must be declared before any point where it is used or re-assigned. Here are
some more examples of interpreter interactions with a beginning programmer:

 input> x := 7 % 2 x initialized to 1
 input> x / 3 0.3333333
 input> x = 3 + 4 x assigned 7
 input> x / 3 2.333333
 input> x += 5 x assigned 12
 input> x / 3 4

If the first input had been x = 7 instead of x := 7, the interpreter would have responded
with ERROR: x has not been declared. And if the third input had been x := 3 + 4
instead of x = 3 + 4, the interpreter would have responded with ERROR: x cannot be
declared again. J1 uses x += 1 and x -= 1 instead of ++ x and -- x, to simplify the
language while keeping the ability to increment or decrement efficiently.

Many beginners find it puzzling that Java requires statements such as the following:

 float x = 7.2;
 Turtle y = new Turtle();

 Java Au Naturel by William C. Jones 20-25 20-25

They ask, "Why do you have to say what type it is? The compiler can see what the type
is from what is assigned to it." Also, they have trouble remembering when to put
semicolons at the end, particularly since anyone can see where the statement ends
without the semicolon. Moreover, they do not see why you should write parentheses that
contain nothing on method calls. So in J1, we write these two statements as follows (the
empty parentheses and semicolons are however, optional, if you prefer to put them in):

 x := 7.2
 y := new Turtle

What is lost by using the := symbol instead of stating the type as in Java? One thing lost
is the ability to distinguish between different numeric types, as in int x = 4 and
long x = 4. But other numeric types besides float do not occur until J3, so that is not a
problem in J1. It will be solved there by the device described in the next paragraph.

One other thing is lost: x := null does not tell what type of variable x is. So J1
require a typecast in this case, as in x := Turtle null. The compiler signals an
ambiguity error if you leave out this typecast. A typecast to a superclass, as in Java's
Object x = new Turtle() is expressed in J2 as x := Object new Turtle
(parentheses around the typecast would make it harder for the grammar to be LL(1)). J1
requires Java-like type specifications for parameters and field variables, since their
values are never assigned to them at the point where they are declared. Local variables
and parameters cannot be named the same as field variables or methods in the class.

Modules and class declarations

A confusion for beginners in Java is that a class can be either of two quite different
things: A module that describes a class of objects that can be constructed versus a
module that contains a public static void main method. Beginning students
also have trouble with distinguishing between class methods and instance methods,
between class variables and instance variables, etc.

J1 eliminates the confusion by allowing two kinds of modules, a class and a singleton.
A class contains only instance methods and instance variables; a singleton contains only
static methods and static variables. A compilable file in J1 consists of one or more
modules, each of which can be a class or a singleton. J1 does not use the static
keyword; all members of a singleton module are static but no members of a class module
are static. If you want a class of objects to have static variables as well as instance
variables, J2 will let you put a singleton module nested inside the class module, privately
if you wish, to hold those static variables; it accomplishes the same thing.

A singleton module should be thought of as a description of a single object that is created
when the program begins execution. For instance, you could think of Java's Math class
as describing an object named Math with "instance method" Math.abs() and
"instance variable" Math.PI. We define a module declaration as follows:

 ModuleDeclaration --> class Name extends ClassName {Declaration} end
 | singleton Name {Name Definition} end

The end keyword marks the end of the module definition, so we do not need braces.
In the grammar, "Name" is treated as a terminal, since it is not defined by grammar rules.
It is an identifer: a sequence of letters, digits, and underscores, beginning with a letter,
that is not a keyword and is not declared elsewhere as a class name or singleton name.
The compiler will treat the Name following class or singleton as a ClassName or
SingletonName, respectively, later on in the compilation. So other grammar rules
necessarily treat ClassName and SingletonName as terminals. Note: "Declaration"
includes constructor declarations, which are not allowed in singleton modules.

 Java Au Naturel by William C. Jones 20-26 20-26

Grammar for declarations of modules, methods, and field variables

The complete definition of ModuleDeclaration, in terms of Expression, Parameters, and
Statement, is in the following block. The compiler considers a Name declared at the
beginning of a method heading (i.e., with a Definition that starts with parentheses) to be a
MethodName anywhere else in that module. That Name can be previously declared in
the same module as a MethodName, as long as it is with a different number of
parameters (to allow some overloading).

12. ModuleDeclaration --> class Name extends ClassName {Declaration} end

 | singleton Name {Name Definition} end
13. Declaration --> Name Definition

 | ClassName (VariableDeclarations) super Parameters {Statement} end
14. Definition --> := Expression

 | (VariableDeclarations) returns ReturnType {Statement} end
15. ReturnType --> Type | nothing
16. VariableDeclarations --> Type Name { , Type Name } | Ë
17. Type --> ClassName { [] } | float { [] } | boolean { [] }

The compiler considers a Name declared in a VariableDeclaration of a method heading
to be a VariableName in the rest of that method. A Name declared with a Definition
beginning with := outside any method is a field variable; the compiler considers it to be a
VariableName elsewhere in that module. A Name of a field variable cannot be declared
as the name of a method or of another variable in the same module. The compiler will
process all method headings in a class before analyzing the body of any method.

J1 has method headings begin with the method name because that makes it easier to
find one method amongst several pages of methods. What Java denotes as a void
method, J1 denotes as returns nothing (making it clearer to beginners).

In J1, all methods are public by default and all variables are private by default, since
those are the most common choices in programming. In J2, we will have the keywords
private, public, and final to modify declarations. The other new keywords
added in J2 are interface, instanceof, try, throw, and catch.

The {X} phrase in a grammar rule maintains the LL(1) property if the {X} is followed by a
terminal that cannot be the beginning of X (the end in definitions 17, 18, and 19), or if X
begins with a terminal that cannot follow the {X} (the comma in definition 21 and the left
bracket in definition 22).

Definitions 17, 18, 19, and 22 maintain the LL(1) property because their rules start with
different terminals. Definition 20 is okay because a Type does not start with nothing.
And definition 21 is okay because a Type is perfectly-clear and only a right parenthesis
can directly follow VariableDeclarations.

The Math module in J1 would look something like the following, in part. The runtime
system evaluates all variables in a singleton module when the module is loaded for use.
The method call Math.abs(x) returns the absolute value of x. The PI method is
provided for public use, because field variables such as pi are inherently private in J1.

 singleton Math
 pi := 3.141593
 randomSeed := System.currentTimeMillis()//for Math.random()

 abs (float x) returns float
 return when (x >= 0) ? x : -x
 end

 Java Au Naturel by William C. Jones 20-27 20-27

 PI () returns float
 return pi
 end
 end

This grammar requires that every field variable be initialized by an assignment, even
though the constructors will often re-assign the correct value based on the parameters of
the constructor. But this is what Java itself does (initializing everything to null, zero, or
false). You may omit constructors if the default initialization suffices; just as in Java, the
compiler supplies an empty constructor when you do not give any. The first statement in
a constructor must be super(...); there is no default for this as in Java. The following
class creates a data structure capable of storing five or more strings of characters:

 class ListOfStrings extends Object
 size := 0
 item := String[] null

 ListOfStrings (float cap) // constructor
 super() // first invoke the superclass's constructor
 item = new String [when (cap > 5) ? cap : 5]
 end

 isEmpty () returns boolean
 return size == 0
 end

 get (float index) returns String
 return when (index < 0) or (index >= size)
 ? null : item[index]
 end

 add (String given) returns nothing
 if size < item.length then
 item[size] = given
 size += 1
 endif
 end // of add method
 end // of ListOfStrings class

The instructor of a beginning programming class can encourage students to use
semicolons at the ends of statements, but the compiler will not require them. Making
such semicolons optional, and empty parentheses optional for method calls, and
parentheses optional around if-conditions, eliminates perhaps half of the simple but
irritating errors that beginners make.

Statements

Java has the notoriously ambiguous if-else statement. We adopt a feature of some
dialects of BASIC to solve the problem. An example of a J1 if-else statement is:

 if x > 3 then
 y += x
 stack.push (z)
 elsif x < -3 then
 y -= x
 else
 y = 0
 z = stack.pop()
 endif

 Java Au Naturel by William C. Jones 20-28 20-28

The general idea is that you do not need braces because you always put endif at the
end to mark where it finishes. You can put as many statements as you want in each part.
You can have several elsif parts or none at all. Also, the else part is optional.
Note that it is necessary to distinguish elsif from else if; the latter indicates the
beginning of a separate if statement inside the if-structure. The following lines show a
basic ambiguous Java statement and two ways it can be expressed in J1:

 Java: if (x > 2) if (y > 3) z = 2; else z = 1;
 J1: if x > 2 then if y > 3 then z = 2 endif else z = 1 endif
 J1: if x > 2 then if y > 3 then z = 2 else z = 1 endif endif

Much of the time, if statements in coding have just one statement for the then-part and
have no else-part. J1 provides an alternative shorthand form for this common case,
omitting then to unambiguously signal this shorthand form (FORTRAN-66 does this).
So the following two statements mean the same:

 if x > 2 then z = 2 endif
 if x > 2 z = 2

J1 also has two looping statements: repeat... until x > 4 is a form that is substantially
more intuitive than Java's while (x <= 4) The repeat statement is illustrated by the
following method to find the positive whole-number logarithm of a given number. This
class method could be in the Math module:

 logInt (float base, float target) returns float // in Math
 if (target <= 1) or (base <= 0) return 0
 toReturn := 0 // a local variable declared and initialized
 repeat
 target = target / base
 toReturn += 1
 until target <= 1
 return toReturn
 end

There is a special looping form for cases where you declare a loop-control variable. It is
illustrated by the following two methods that could be in the ListOfStrings class:

 contains (String given) returns boolean // in ListOfStrings
 for (k := 0; k < size; k += 1)
 if item[k].equals (given) return true
 endfor
 return false
 end

 toArray () returns String[] // in ListOfStrings
 toReturn := new String [size]
 for (k := 0; k < size; k += 1)
 toReturn[k] = item[k]
 endfor
 return toReturn
 end

The grammatical rules for a Statement are in the following block, defined in terms of
Expression, Message, and Construction. The Name that occurs in the first rule for a
BasicStatement must not be otherwise defined within the method or defined anywhere
within the module as a method or field variable name; the compiler considers that Name
to be a VariableName for the rest of the method. J1 has no break, continue or
switch statement. The {;} part just means that semicolons are optional at the ends of
statements in J1.

 Java Au Naturel by William C. Jones 20-29 20-29

18. Statement --> BasicStatement {;}
| return Expression {;}
| if Expression Alternatives {;}
| repeat {Statement} until Expression {;}
| for (Optional ; Expression ; Optional) {Statement} endfor {;}

19. Optional --> BasicStatement | Ë
20. BasicStatement --> Name := Expression | Variable Action | Message

 | SingletonName . Message | new Construction
21. Action --> = Expression | += Expression | -= Expression | . Message
22. Alternatives --> Statement | then {Statement} RestOfIf
23. RestOfIf --> elsif {Statement} RestOfIf | else {Statement} endif | endif

These additional grammar rules maintain the LL(1) property: Rules 25, 26, 27, and 28 all
do so obviously (a Statement cannot begin with then). Rule 23 is okay because a
BasicStatement cannot begin with any of return, if, repeat, or for. Rule 24 is
okay because a BasicStatement cannot begin with a semicolon. The braces are okay
because each {Statement} part is followed by a terminal that cannot occur at the
beginning of a Statement: until, endfor, elsif, else, or endif.

These rules finish the full LL(1) grammar for a fairly nice programming language in only
28 definitions with 25 keywords. Then you simply add a moderate number of standard
library modules to allow things such as the following:

System.println (someString) // has the System object print information.
System.readln() // has the System object get the next line of input as a String.
System.readNumber() // has the System object parse the next line of input as a float.

Although it is not expressed by the grammar, J1 also omits typecasting in cases where
you have generic Objects in a collection. In Java, a statement such as String x = (Object)
stack.pop() requires the cast, but the compiler also puts in instructions to the runtime
system to verify that the Object popped is in fact a String. J1's compiler does not require
the cast from Object, although it still provides the runtime check. Specifically, assigning a
value of type Object to any variable of a subclass of Object is allowed without the cast.

Exercise 20.21 Write a method to be added to Math to return the value of its non-
negative parameter truncated to the next-lower whole number (leave unchanged if
already a whole number). Hint: Add 1 until you get a result larger than the parameter.
Exercise 20.22 Revise the grammar to make the returns nothing phrase optional.
Exercise 20.23 Revise the grammar to allow a pound sign # to replace the keyword end
wherever desired (# often indicates end-of-entry for automated telephones).
Exercise 20.24 Write a ListOfStrings method indexOf that returns the earliest index
where a given String appears in the current list. Return -1 if the String is not there.
Exercise 20.25 Revise the grammar to require empty parentheses () after a method call
or constructor call that has no parameters. Simplify any rules that can be simplified.
Exercise 20.26 Essay Explain why we cannot replace definitions 14 and 15 by
Parameters --> (Arguments) and Arguments --> Expression { , Expression } | Ë.
Exercise 20.27* Essay Explain why you need the distinction between := and = in J1.
Exercise 20.28* For the ambiguous Java statement that is shown written two ways in
J1, write it two more ways using the short if-statement.
Exercise 20.29** Add another shorthand notation to the grammars: { }1 around a
phrase mean that phrase is optional (note the superscript, meaning "1 or none"). Then
rule 15 can be omitted, if you put { (Arguments) }1 wherever Parameters appears in the
rules. Restate all grammar rules to use this shorthand, thereby omitting all uses of the Ë
symbol. Brackets [...] are normally used in grammars for this purpose, but for J1 that
conflicts with the array brackets.
Exercise 20.30** Essay Explain how the grammar could easily be re-adjusted to be
LL(1) if we simply omitted the when keyword.

 Java Au Naturel by William C. Jones 20-30 20-30

20.6 Comparing Programming Languages -- Smalltalk

Smalltalk is an object-oriented language that has been around since the late 1970's. It is
even more object-oriented than Java, in a sense. This section describes language
features that Smalltalk has that Java does not. The purpose is to provide some
experience comparing different ways computer languages have for communicating the
same thing.

When you have a method call such as Java's str.length(), the length() part is a message
that you send to the object referred to by str. That object str is the receiver of the
message, and it returns an answer (the number of characters in the string). The
expression str.charAt(k) is a message sent to the receiver str with a parameter. The
heart of object-oriented programming is that you think in terms of sending messsages to
receivers rather than in terms of writing statements that perform a particular operation or
procedure using certain values.

1: Smalltalk does not put unary operators such as ! and the negative sign in front of a
value. Instead, unary operators are placed after the operand. Also, unary operators are
words instead of symbols. So Smalltalk would have what is shown in the left-hand
column below, to mean what Java writes as in the right-hand column:

 hasNext not ! hasNext
 b negated - b

2: Method calls that do not have any parameters are written without punctuation. For
instance, the left-hand column below is Smalltalk for the Java values at the right:

 coll isEmpty coll.isEmpty() // for a Collection
 str size str.length() // for a String
 stack pop stack.pop()
 z asString z.toString()

3: At this point, you might observe that there seems to be no difference between, on
the one hand, unary operators on primitive values such as numbers and booleans, and
on the other hand, no-parameter method calls on object values. The expression
hasNext not looks as much like sending a message to an object as does str size.

In Smalltalk, all unary operators are simply no-parameter method calls on object values.
In fact, Number and Boolean are subclasses of the Object class. There are no
primitive values in Smalltalk -- all values are object values. Even classes are object
variables, e.g., String is an object to which you send messages defined by class methods
in String. This is the sense in which Smalltalk is more object-oriented than Java.

4: Binary operators in Smalltalk evaluate left-to-right in all cases (just like method
calls). For instance, 3 + 4 * 2 is 7 times 2, not 3 plus 8. But you can write 3 + (4 * 2)
when you want multiplication done first. Actually, 3 + 4 is treated as a one-parameter
method call, where 3 is the receiver, + is the name of the method, and 4 is the parameter.

5: Some examples of one-parameter method calls are in the left-hand column below,
with the corresponding Java expressions in the right-hand column:

 str at: k str.charAt (k) // for a String
 str equals: t str.equals (t) // for a String
 coll add: obj coll.add (obj) // for a Collection
 coll includes: obj coll.contains (obj) // for a Collection
 x raisedTo: 5 Math.pow (x, 5) // for a Number

 Java Au Naturel by William C. Jones 20-31 20-31

The correspondence is direct, except that since numbers are objects, the class method
Math.pow is replaced by an instance method of class Number, sending a message to the
number itself. In general, a one-parameter method call has simply a colon after the
method name rather than the connecting dot and parentheses that Java has.

Some examples of two- and three-parameter method calls are below, with the
corresponding Java explained in a comment:

 str at: k put: ch
 // This is sort of str.charAt (k) = ch, except of
 // course you cannot change a string object in Java
 File rename: str to: t
 // Class method File.rename (str, t) in Java.
 // The file named str is renamed as t
 aFile writeBuffer: str ofSize: siz atPosition: pos
 // Could be aFile.write (str, siz, pos) in Java
 Prompter prompt: 'Enter line' default: 'none'
 // Return the user's input in response to "Enter line"
 // if the user declines, return the empty string.
 // String literals are delimited by apostrophes in
 // Smalltalk; quotes are used to delimit comments

In general, a message with one or more parameters is indicated by one "key" word for
each parameter, with a colon between each key and its argument.

Encapsulation and type-checking in Smalltalk

6: Only single identifiers can represent variables in Smalltalk. That is, there is no
equivalent of a compound variable reference such as x.len or this.len. Say you have a
class X with instance variable len. When you are coding an instance method of class X,
you can refer to just plain len, which is the len of the receiver for that method. But if that
instance method has a parameter of type X, you cannot refer to that parameter's len. In
Java you could, even if the instance variables were declared as private.

In Java, a private instance variable of class X can be accessed anywhere inside X, but
not anywhere outside X, not even in a subclass of X. In Smalltalk, an instance variable of
X can be accessed inside any instance method of X or its subclasses, though only for the
receiver for that instance method (the object that Java calls "this").

Thus Smalltalk has no encapsulation: Access to instance variables or class variables
cannot be limited to the class where they are declared. Class variables are accessible
only within the class and its subclasses, simply because the grammar does not provide a
compound way to refer to class or instance variables such as Math.PI or anArray.length.

You might think that of course an exception would be made for arrays: Java allows you
to use the expression item[k], a variable that represents one component of the array
named item. You would be wrong. item[k] is not a variable in Smalltalk. However, every
array variable has two instance methods that allow you to accomplish what you need to
do with arrays. The following illustrates the use of these instance methods for assigning
a value to an array component and for retrieving a value from an array component. Note
that Smalltalk uses := instead of = for assignment to a variable:

 item at: k put: obj item[k] = obj
 x := item at: k x = item[k]

7: Smalltalk has no type-checking at compile time. The compiler considers every
variable to be just an Object variable. At the beginning of a series of statements in a
method, you have to declare all local variables, which you do by listing them between
vertical bars -- no declaration of their type is made. A series of statements is separated

 Java Au Naturel by William C. Jones 20-32 20-32

by periods. So the following could be at the beginning of the body of an instance method
where an array named item is an instance variable and there are two local variables:

 | k obj | k := 0. obj := item at: k.

This lack of type-checking means you can skip all the typecasting that you have to do in
Java, but it also means that many logic errors that Java detects at compile time are not
detected in Smalltalk until runtime.

Smalltalk's requirement that you declare all local variables for a method before you have
any statements in the method is typical of older languages such as Pascal, C, and
FORTRAN. Modern languages such as Java allow you to postpone the declaration of a
local variable until you actually are ready to use it. However, at runtime, all space for
local variables is allocated when the method begins to execute, as in other languages.

Basic method calls that require blocks

8: Smalltalk has a boolean operator that tells whether both of two expressions are true:
x > 0 & (6 / x > 2) is true if x is positive and less than 3; it is false otherwise.
However, what if x is zero? That expression will throw an exception. This is exactly
what the & operator does in Java, which is why we do not use & much in Java.

Pascal and FORTRAN have only a single and-operator that does the same as &, but
Java and Smalltalk have the much more useful short-circuit-evaluation operator. In Java,
with && in place of & in that expression, if the first part, x > 0, is false, then the second
part is not evaluated. So the result is false rather than throwing an exception.

Smalltalk also has a short-circuiting and-message: x > 0 and: [6 / x > 2]
evaluates as false when x is zero instead of throwing an exception. This is a method call,
a message sent to the Boolean receiver that is the value of x > 0. But what, you ask, is
that pair of brackets doing around the parameter of the and: message?

In Smalltalk, as in Java, the parameters of a method call are always evaluated before the
method call is executed. For instance, the method call sam.check(6 / x > 2) in
Java, with a boolean parameter, would crash before the method is called if x were zero.
Smalltalk's solution to this problem is a block. A block is a segment of code inside
brackets. The value of the block is a pointer to a segment of code in memory which can
be executed. That is, the code segment is sent to the method, not its evaluation; the
statements within the method can then choose to evaluate it if needed.

The and: message throws an exception if its parameter is a non-block expression, just as
the multiplication operator * throws an exception if the second operand is a string rather
than a number. But if the parameter is a block, then the and: message does not evaluate
it unless the receiver of the message (the Boolean value before the and:) is true.

9: Similarly, the or: message requires a block as its parameter, and it uses short-
circuiting: It evaluates the block if and only if the receiver (before the or:) is false. For
instance, the following is a definition of a class method that tells whether a given positive
number is an exact power of 2. This method is defined in a class named Check and has
no local variables. n even tells whether n is even; note that unary and binary operators
have precedence over method calls formed with key words, and the caret symbol ^ is
used where Java uses "return":

 isPowerOf2 : n | |
 ^ n <= 1 or: [n even and: [Check isPowerOf2: n / 2]]

 Java Au Naturel by William C. Jones 20-33 20-33

10: As you would expect, Smalltalk has an analog of Java's if-statement. It is,
however, another method call. Here is an example of its use. It assigns 7 to x if x < y
is true and assigns 4 to z if x < y is false:

 x < y ifTrue: [x := 7] ifFalse: [z := 4]

This is the ifTrue:ifFalse: message sent to a Boolean object. The two parameters have to
be blocks, because only one should be evaluated. We would not want the assignment to
x executed if x is not less than y, so we cannot use a non-block parameter after the
ifTrue: part. And we would not want z assigned a value if x is less than y, so we cannot
use a non-block parameter after the ifFalse: part. Note that this Smalltalk expression has
the same meaning as Java's x < y ? x = 7 : z = 4.

Smalltalk also has a one-parameter method to correspond to a simple if-statement
without an else-part. For instance, the following could be used as part of the logic for
finding the minimum of a sequence of values.

 x < minimum ifTrue: [minimum := x]

The ifTrue: message is actually the same as the and: message. There is also a one-
parameter ifFalse: message that is the same as the or: message.

In effect, a block is an on-the-fly definition of a class without a name and with one
method. That (anonymous) class is passed as a parameter of the Boolean ifTrue:
message. If the receiver is true, it executes the class's method, but if false it does not.

11: Smalltalk also has a method call that is the analog of Java's while-statement. It is
a one-parameter message named whileTrue: and it requires that both the receiver and
the parameter be blocks. For instance, the following method computes the sum of the
integers less than a given limit:

 sumTo: givenLimit | sum i |
 sum := 0. i := 0.
 [i < givenLimit]
 whileTrue: [sum := sum + i. i := i + 1].
 ^ sum

Why, you may ask, does the receiver (before the whileTrue:) have to be a block?
Because the method needs to evaluate the condition each time through the loop. So it
needs access to the coding to be evaluated for loop continuation, as well as the coding to
be executed in the body of the loop.

Constructors

#12: Even the constructors in Smalltalk are ordinary methods, normally named new.
Here is an example of a constructor for a Place class that has two instance variables
named city and state. You could then create a new Place object with the expression
Place new: 'Boston' state: 'MA' (which corresponds to the Java expression
new Place ("Boston", "MA")).

 new: givenCity state: givenState | |
 ^ super new initialize: givenCity state: givenState

 initialize: givenCity state: givenState
 city := givenCity.
 state := givenState.
 ^ self

 Java Au Naturel by William C. Jones 20-34 20-34

The new:state: method is a class method in the Place class. It calls the superclass's
new: method (i.e., sends the new: message to the Object class) to get a new object, on
which it calls the initialize:state: instance method. That instance method is allowed to
refer to the instance variables of the object. It then returns the object itself.

Note that Smalltalk uses "self" where Java uses "this"; the five global variables
accessible in all classes are self, super, true, false, and nil. All variables are
automatically initialized to nil (which corresponds to Java's null).

Cascades

For convenience in coding, you may send a sequence of two or more messages to the
same object, separated by semicolons. For instance, some versions of Smalltalk have a
a Pen class of objects used for drawing pictures. It provides facilities similar to the Logo
programming language. The following is a sequence of messages you could send to a
turtle object once it is defined as turtle := Pen new:

turtle home. "place the turtle in the middle of the screen facing to the right."
turtle go: 200. "move the turtle 200 pixels forward in the direction it is facing."
turtle turn: 60. "turn the turtle 60 degrees to the left."
turtle down. "put the drawing pen down."
turtle gray. "make the drawing color gray."
turtle go: 50. "move the turtle 50 pixels forward, drawing a gray line."
turtle up. "put the drawing pen up."
turtle go: 40. "move the turtle 40 pixels forward, without leaving a trace."

Since all of the messages go to the same object, you can use cascading as a sort of
shorthand. That is, the following single Smalltalk statement does the same thing as the
above eight statements:

 turtle home; go: 20; turn: 60; down; gray; go: 50; up; go: 40.

An unambiguous grammar

The following grammar describes only the subset of Smalltalk that we have discussed in
this section. It has only twelve rules. The vertical bar "|" used to list local variables is
inside quotes in the rules because we are already using | as a meta-symbol meaning
"choose one of these alternatives". In the definition of Expression, multiple KeyNames
must be all part of one method call. Definition 3 says that a single statement can assign
the same value to several different variables at once. Reminder: {X} means that you
may have as many occurrences of X as you like, i.e., X occurs zero or more times.

1. MethodDefinition --> Name "|" {Name} "|" StatementSeries

 | Name : Name {Name : Name} "|" {Name} "|" StatementSeries
2. StatementSeries --> {Statement . } Statement | {Statement . } ^ Expression
3. Statement --> {VariableName :=} Expression
4. Expression --> Primary | Primary CompoundMessage { ; Message }
5. Primary --> VariableName | self | super | Literal | [StatementSeries]

 | (Expression)
6. Message --> UnaryName | BinOpMessage | KeyMessage
7. BinOpMessage --> BinaryOperator Factor
8. Factor --> Primary {UnaryName}
9. BinaryOperator --> + - * / < <= > >= ==
10. KeyMessage --> KeyName : Term {KeyName : Term}
11. Term --> Factor {BinOpMessage}
12. CompoundMessage --> UnaryName {UnaryName}

 | {UnaryName} BinOpMessage {BinOpMessage}
 | {UnaryName} {BinOpMessage} KeyMessage

 Java Au Naturel by William C. Jones 20-35 20-35

This grammar is unambiguous because only one alternative from each definition can
possibly apply in any syntactically correct program. But the grammar is not LL(1),
because you have to look ahead several tokens to determine which alternative to apply
for definitions 1, 2, 3, and 4. VariableName, KeyName, and UnaryName are all identifiers
(a letter followed by letters and digits) that have previously been declared, and Name is
an identifier that is being declared by the rule. But the grammar would be unambiguous
even if we did not know about previous declarations. The name of a class is considered
a VariableName, which is accessible in any method of any class.

The grammar for this restricted Smalltalk is so short in part because it has no rules for
class definitions or instance or class variable definitions; it only has rules for a method.
This is because Smalltalk implementations normally come with an environment where
you create a new class by bringing up a window with a form you fill in and/or menus you
choose from, including specifying the instance variables and class variables. You often
create individual methods as well with a pop-up form, including the decision as to
whether they are instance methods or class methods.

The primary features of Smalltalk that the restricted grammar leaves out are (a) the use
of parameters of blocks, and (b) the ability to define more binary operators, even on non-
numeric objects. Every Smalltalk method returns a value. If there is no caret ^ on the
last statement of a method, then the method returns the value of that last statement. The
value of an assignment statement is the value being assigned to the variable(s).

The lack of encapsulation (no private methods or variables) and the lack of type-checking
at compile-time are serious drawbacks of Smalltalk. Many experienced programmers will
find the lack of if- and for-statements and += rather irritating, as well as the requirement
that all local variables be declared at the beginning of a method. But overall, the
simplicity and power of Smalltalk has much to recommend it, even compared with Java.

More information, including a tutorial, a manual, and a free downloadable Smalltalk
compiler, is available at www.gnu.org/software/smalltalk.

Exercise 20.31** Rewrite the twelve rules for Smalltalk to make it an LL(1) grammar.

 Java Au Naturel by William C. Jones 20-36 20-36

20.7 Review Of Chapter Twenty

Ø This chapter describes various automata studied in a normal course in the Theory of

Computability and ways of describing them. A regular grammar describes a finite
automaton, and a context-free grammar describes a pushdown automaton.

Ø A Turing Machine is an even more general kind of automaton. The Church-Turing
Thesis is that a Turing Machine embodies all the computing capabilities of modern
computers, though it is of course slower.

Ø There are problems that can be unambiguously defined but cannot be solved by a
Turing Machine. For instance, no one can write a program that analyzes any given
program to tell whether it has an infinite loop (the Halting Problem).

Answers to Selected Exercises

20.1 private final int NUM_STATES = 4;
 private final int[][] del = { {q0, q1, q2, q3, ACCEPT}, {q1, q2, q3, q0, REJECT},
 {q2, q3, q0, q1, REJECT}, {q3, q0, q1, q2, REJECT} };
20.2 private final int NUM_STATES = 5;
 private final int[][] del = { {q1, q2, q3, q4, ACCEPT}, {REJECT, q2, q3, q4, ACCEPT},
 {q1, REJECT, q3, q4, ACCEPT}, {q1, q2, REJECT, q4, ACCEPT}, {q1, q2, q3, REJECT, ACCEPT} };
20.3 private final int NUM_STATES = 3;
 private final int[][] del = { {q1, q0, REJECT}, {q1, q2, REJECT}, {q1, q0, ACCEPT} };
20.7 S -> 0 A | 1 B | 2 C | 3 D; A -> 1 B | 2 C | 3 D; B -> 0 A | 2 C | 3 D; C -> 0 A | 1 B | 3 D;
 D -> 0 A | 1 B | 2 C;
20.8 S -> 0 T | 1 S; T -> 0 T | 1 U; U -> 0 T | 1 S | Ë;
20.9 S -> 1 S S | 0 T; T -> T 1 S | S 1 | S | Ë; // T has at least as many 0s as 1s.
20.10 A derivation is S => 0 S 2 => 00 S 22 => 00 T 22 => 001 T 22 => 001 22, so a trace of the ToPDA is:
 (q0, ^Z0) by Step 1; (q1, ^S Z0) by Step 2; (q1, ^0S2 Z0) by Step 3ba; (q1, 0^S2 Z0) by Step 3bb
 consuming 0; (q1, 0^0S22 Z0) by Step 3ba; (q1, 00^S22 Z0) by Step 3bb consuming 0;
 (q1, 00^T22 Z0) by Step 3ba; (q1, 00^1T22 Z0) by Step 3ba; (q1, 001^T22 Z0) by Step 3bb
 consuming 1; (q1, 001^22 Z0) by Step 3ba; (q1, 0012^2 Z0) by Step 3bb consuming 2;
 (q1, 00122^ Z0) by Step 3bb consuming 2; the stack empty, so we accept 00122.
20.15 Add the following statement at the end of both backUp() and backUp(byte replacement):
 if (thePos < 0) throw new RuntimeException("");
 Replace the last statement of accepts(Sentence input) by the following:
 try { return start(); } catch (RuntimeException e) { return REJECT; }
20.16 Code it the same as findZeroAtOtherEnd() except the last statement should be:
 return shouldSeeOne();
20.19 4-to-the-4th is 256; 4 to that power is 2512, which is about 10154 (as 210 is about 103).
 So the pyramid function produces 4 to the power of approximately 10154.
20.21 trunc (number x) returns number
 below := 0
 repeat
 below += 1
 until below > x
 return below - 1
 end
20.22 Rule 20: Definition --> := Expression | (VariableDeclarations) ReturnPart {Statement} end
 Rule 20a: Returnpart --> returns ReturnType | Ë
20.23 In rules 18, 19, and 20, replace "end" by "EndMarker", and add the rule EndMarker --> end | #
20.24 indexOf (String given) returns number
 for k := 0; k < this.size; k += 1
 if this.item[k].equals (given) return k
 endfor
 return -1
 end
20.25 Omit rule 14 and replace "Parameters" in rules 11, 13, 17, and 19 by "(RestOfParameters".
20.26 Expression is not perfectly-clear, so the compiler cannot decide between the two rules for Arguments
 simply by looking at the selectors for Expression. So Arguments does not fit our LL(1) definition.

