
 Java Au Naturel by William C. Jones 18-1 18-1

18 Priority Queues And Heaps

Overview

You need to study at least the first part of Chapter Seventeen (Trees) before you study
this chapter:

• Section 18.1 introduces the concept of a priority queue and discusses situations in

which they can be useful, particularly file compression. A priority queue has the
operations add (Object), removeMin(), peekMin(), and isEmpty().

• Section 18.2 presents the Comparator interface for generalizing ordering of data.
• Section 18.3 develops two implementations of the PriQue interface using arrays, one

based on the insertion sort and the other based on the selection sort.
• Section 18.4 gives two corresponding implementations of PriQue using linked lists.
• Section 18.5 presents a fifth implementation that is more efficient when there are only

a few different priority levels.
• Sections 18.6-18.7 describe how priority queues can be used directly for sorting. The

TreeSort and HeapSort algorithms are discussed, as well as two implementations of
PriQue based on binary trees and heaps. TreeSort is a variation of QuickSort.

• Sections 18.8-18.9 discuss the MergeSort algorithm for linked lists and go on to use
a priority queue for sorting sequential files using the merging process. Two different
implementations of sequential file sorting are presented.

18.1 File Compression Using Huffman Codes

All communications between spies employed by the ISPY Spy Company, Inc., are
restricted to a vocabulary of 1024 very useful words. Each spy carries a dictionary in
which each of the 1024 words has a 10-digit binary code, used in their digital messages
(note that there are 1024 different 10-digit binary numbers, since 210 = 1024).

The company, having lost a few spies to the enemy due to messages taking too long to
transmit, hires you to come up with a better plan for codes. You obtain a list of the
frequency of use of each word in the last 10,000 messages and then develop a computer
program that assigns binary codes to the 1024 words so that the average length of a
message decreases by 23%, thereby saving the company an average of 2.7 spy lives per
year and earning for yourself a $54,000 bonus.

At least, that is what you would do if you knew about the Huffman code algorithm. This
algorithm provides the best possible assignment of binary codes as measured by
average message length. The idea is that the words that are used frequently in spy
messages (such as "war" and "kill") are assigned binary codes shorter than 10 binary
digits (bits), while words used rarely (such as "peace" and "love") are assigned binary
codes longer than 10 bits. That lowers the weighted average.

The algorithm begins by constructing 1024 2-node binary trees, each with a word in the
left leaf of the root and the frequency with which that word occurs in the root (so each
tree is "left-handed", in that it has an empty right subtree). These 1024 trees are put into
a priority queue data structure. Among the services offered by a priority queue to the
public are methods with the following headings for adding a data value to the structure
and for removing and returning the data value with the lowest frequency:

 public void add (Object ob)
 public Object removeMin()

 Java Au Naturel by William C. Jones 18-2 18-2

Next you repeat the following process 1023 times:

1. Remove from the priority queue the two trees with the smallest frequencies.
2. Combine those two trees into a single tree whose root contains the sum of the two

frequencies.
3. Add that new combined tree to the priority queue data structure.

Eventually, this leaves the priority queue with a single binary tree containing all the
words. The binary codes to be assigned to each word are easily derived from that tree
by a process described later in this section.

Comparison with stacks and queues

A priority queue can be used for storing many kinds of data values, not just for storing
binary trees that have a number in the root node. A priority queue uses a method that
compares two data values to determine which has higher priority for removal from the
data structure; in the case of the binary trees, a lower frequency gives a higher priority.

Assume you keep a pile of jobs to do, adding each new job you get to the top of the pile.
The following contrasts priority queues with stacks and queues in terms of the way you
choose the next job to carry out:

• If you always take the job on top, you are following a Last-In-First-Out principle

(LIFO for short): Always take the job that has been in the pile for the shortest period
of time. A data structure that implements this principle is called a stack.

• If you always take the job on the bottom, you are following a First-In-First-Out
principle (FIFO for short): Always take the job that has been in the pile for the
longest period of time. A data structure that implements this principle is called a
queue.

• If you always take the job that has the highest priority, you are following a Highest-
Priority principle: Always take the job in the pile that has the highest priority rating
(according to whatever priority criterion you feel gives you the best chance of not
getting grief from your boss). A data structure that implements this principle is called
a priority queue.

The interface for priority queues

We will develop several different implementations of priority queues in this chapter. We
specify what is common to all by defining a PriQue interface. An interface describes
what operations the object can perform but does not give the coding. So it describes an
abstract data type. The PriQue interface is in Listing 18.1 (see next page). A PriQue
object has an operation to add an element to the data structure, an operation to remove
an element, and two query methods: one to see what would be removed if requested,
and one to tell whether the data structure has any elements to remove.

As an example of how a priority queue is used, the following coding applies the Huffman
logic to a priority queue initially containing many of the 2-leaf binary trees. It leaves the
priority queue with the single combined binary tree:

 public void combineIntoOneTree (PriQue par)
 { TreeNode one = (TreeNode) par.removeMin();
 while (! par.isEmpty())
 { TreeNode two = (TreeNode) par.removeMin();
 two.combineHuffmanly (one);
 par.add (two);
 one = (TreeNode) par.removeMin();
 }
 par.add (one);
 } //=======================

 Java Au Naturel by William C. Jones 18-3 18-3

Listing 18.1 The PriQue interface

public interface PriQue // not in the Sun library
{
 /** Tell whether the priority queue has no more elements. */
 public boolean isEmpty();

 /** Return the object removeMin would return without modifying
 * anything. Throw an Exception if the queue is empty. */
 public Object peekMin();

 /** Delete the object of highest priority and return it.
 * Priority is determined by a Comparator passed to the
 * constructor. Throw an Exception if the queue is empty. */
 public Object removeMin();

 /** Add the given element ob to the priority queue, so the
 * priority queue has one more element than it had before.
 * Precondition: The Comparator can be applied to ob. */
 public void add (Object ob);
}

For the given coding to work, you need to add a combineHuffmanly method to the
TreeNode class of Chapter Seventeen that attaches the left subtree of two as the right
subtree of one and then makes one the new left subtree of two. The method must
also store the sum of the two frequencies in the root of two. This method is left as an
exercise.

When you are done, you will have a "left-handed binary tree" (i.e., the right subtree is
empty) with all 1024 words at the leafs and frequency values in the other nodes. Assign
to each word the binary code corresponding to the path from itsRoot.itsLeft to the word,
using 0 for a turn to the left and 1 for a turn to the right. For instance, if a word is stored
in the leaf at (itsRoot.itsLeft).itsLeft.itsRight.itsLeft.itsRight.itsRight, its binary code will be
01011. This is provably the best possible correspondence of words to binary codes.

Figure 18.1 shows a smaller situation with eight words and their frequencies out of 100
occurrences ("peace" occurs 4 times and "war" appears 28 times). The first iteration of
the Huffman algorithm combines the two rarest words, "peace" and "love", into one tree
with frequency 9 and inserts it after the 7-tree and the 8-tree. The next iteration
combines "push" and "hit" into one tree with frequency 15 and inserts it after the 10-tree.
The third iteration would combine the 9-tree with the 10-tree.

 Figure 18.1 Huffman algorithm applied two times to 8 words

 Java Au Naturel by William C. Jones 18-4 18-4

Figure 18.2 shows the binary codes that would be assigned to each of eleven 1-letter
"words" if the final binary tree were what is shown on the left of the figure.

Figure 18.2 A final Huffman tree and the resulting binary codes

File compression

Another situation in which Huffman coding is valuable is file compression. Consider a
file of perhaps a million bytes of data. One byte is eight binary bits, so a byte ranges in
value from -128 through 127. The UNIX file compression algorithm reads in the file and
counts how many times each of the 256 byte values occurs. These frequencies are used
in the Huffman coding algorithm to assign one sequence of bits to each byte value so that
the more frequently-occurring byte values are assigned shorter bit sequences than the
rarer byte values. This reduces the average bits per byte.

This process can lower the total size of the file by fifty percent or more. You can send the
file, now perhaps less than half-a-million bytes, along with a 1K description of the
encoding used, over the internet to another program that can decode the file using that
description. The overall logic is in the accompanying design block.

STRUCTURED NATURAL LANGUAGE DESIGN for file compression
1. Read the given file, counting how many times each of the 256 different byte patterns
 occurs in that file. Each byte pattern is a "word" for purposes of this algorithm.
2. Put 256 different frequency+word binary trees into a priority queue, where higher
 priorities are given to trees with lower frequency.
3. Apply the Huffman process to obtain a single large binary tree that has 256
 leaves, with one word in each leaf.
4. Calculate the binary code for each word from the path through the tree to that word.
 Some will be shorter than 8 bits and some longer but the average should be below 8.
5. Write a new file in which each byte pattern is replaced by its binary code.
6. Send the encoded file along with the short description of encoding.

Exercise 18.1 Write an independent method public static void transfer
(PriQue one, PriQue two): It transfers all elements from the first parameter into
the second parameter. Precondition: Both parameters are non-null.
Exercise 18.2 After the third iteration of the Huffman algorithm for the example in Figure
18.1, what frequency is in the newly-inserted tree's root and what is in its left subtree?
Exercise 18.3 (harder) Write the public void combineHuffmanly (TreeNode
par) TreeNode method as described in this section. Precondition: par is not null.
Exercise 18.4* Perform the fourth and fifth iterations of the Huffman algorithm for Figure
18.1 and show the sequence of binary trees.
Exercise 18.5* Perform the rest of the iterations of the Huffman algorithm for Figure 18.1
and show the sequence of binary trees. How much better is the average length of
messages than the 3-bits-per-word length of messages without the coding?
Exercise 18.6** Write a program that applies the Huffman algorithm to any set of words
and frequencies. Print a list of the words and binary codes, in their order left to right in
the final binary tree. Use the TreeNode class, the String class for the words, and the
Integer class for the frequencies. Note that this algorithm relies on the ability to store
either of two kinds of Objects in a TreeNode.

 Java Au Naturel by William C. Jones 18-5 18-5

18.2 Comparator Objects

A priority queue is appropriate when you have a number of jobs to do, each with its own
priority. As time becomes available to do a job, you select the one with the highest
priority. Whenever you receive another job to do, you add it to the list of jobs on hand.
An example of this situation is a printer queue: A high-speed printer that serves a large
number of users is continually receiving new print jobs to do, but prints those with highest
priority first.

We assume that the priority is determined by an int-valued method named compare
belonging to a java.util.Comparator object: For a given Comparator test,
test.compare(x,y) returns a negative number if x has higher priority than y, a
positive number if x has lower priority than y, and zero if they have the same priority.
In other words, finding the value of higher priority corresponds to finding the smaller value
(so priority 1 is the highest priority). The Sun library Comparator interface is shown in the
upper part of Listing 18.2. The middle part of this listing contains a description of the two
constructors that any PriQue implementation should have. The bottom part defines the
most commonly-used kind of Comparator, the one that corresponds to compareTo.

Listing 18.2 The Comparator interface and how PriQues use it

public interface java.util.Comparator // in the Sun library
{
 /** Tell whether one has higher priority than two. Throw
 * a ClassCastException if they cannot be compared with
 * each other. */
 public int compare (Object one, Object two);
}
//##

// the two standard constructors for an implementation of PriQue
public class Whatever implements PriQue
{
 private java.util.Comparator itsTest;

 public Whatever (java.util.Comparator givenTest)
 { itsTest = givenTest;
 } //=======================

 public Whatever()
 { itsTest = new Ascendor();
 } //=======================
}
//##

public class Ascendor implements java.util.Comparator
{
 public int compare (Object one, Object two)
 { return ((Comparable) one).compareTo (two);
 } //=======================
}

 Java Au Naturel by William C. Jones 18-6 18-6

When you construct a new PriQue object, you usually supply to the constructor the
Comparator object you want that priority queue to use. So one constructor has a
Comparator parameter that is assigned to an instance variable of the priority queue.

An appropriate Comparator class for the Huffman tree situation, assuming roots of trees
contain Integers, is as follows. Then you would create the PriQue object to hold Huffman
trees using e.g. PriQue queue = new ArrayOutPriQue (new HuffmanComp())
(ArrayOutPriQue will be defined shortly as an implementation of PriQue):

 public class HuffmanComp implements java.util.Comparator
 {
 public int compare (Object one, Object two)
 { return ((Integer) ((TreeNode) one).getData()).intValue()
 - ((Integer) ((TreeNode) two).getData()).intValue();
 } //=======================
 }

The compare method sounds almost like the standard compareTo method that any
Comparable class of objects has. Sometimes we will use the standard compareTo
method to determine priority. As a convenience, an implementation of PriQue should
have a constructor with no parameters, so that the new priority queue will use the
standard compareTo method that belongs to the Comparable objects being stored in
the priority queue. For instance, if you want to store String objects in alphabetical order,
you can use PriQue queue = new ArrayOutPriQue(). This uses an Ascendor
object (defined in Listing 18.2) to do the comparing.

The reason for using some Comparator's compare method rather than the data values'
compareTo method is that we sometimes want to prioritize a class of objects on one
criterion and sometimes on another. Comparators allow us to pass as a parameter an
object that brings with it the appropriate compare function. Such an object is called a
functor or function object, since its only purpose is to supply a function. Functors have
instance methods but usually do not have instance variables.

Relation to stacks and (ordinary) queues

The PriQue methods correspond to the stack and queue methods described in Chapter
Fourteen:

• isEmpty is the same as StackADT's isEmpty and QueueADT's isEmpty.
• add corresponds to push and enqueue;
• peekMin corresponds to peekTop and peekFront;
• removeMin corresponds to pop and dequeue;

The only real difference is in the effect of removeMin and pop and dequeue: pop
delivers the object that has been in the data structure for the shortest period of time,
dequeue delivers the object that has been in the data structure for the longest period of
time, and removeMin delivers the object that has the highest priority. A PriQue
implementation is stable if, in case of ties in priority, the element that has been in the
data structure the longest is always removed first.

Another example

Suppose you have several classes with a getCost() method, all declared to
implement this Priceable interface:

 public interface Priceable
 { public int getCost();
 }

 Java Au Naturel by William C. Jones 18-7 18-7

Then you could use PriQue queue = new ArrayOutPriQue (new ByCost());
 to create the priority queue, with higher costs indicating higher priority, if you have the
following definition:

 public class ByCost implements java.util.Comparator
 {
 public int compare (Object one, Object two)
 { return ((Priceable) two).getCost()
 - ((Priceable) one).getCost();
 } //=======================
 }

Whatever Comparator you define, it should have the properties of a total ordering. This
means that, given two objects referenced by sam and sue for which compare(sam,
sue) does not throw an Exception, the following should be true:

• If sam.equals(sue) is true, then compare(sam,sue) should be zero.
• The value of compare(sue,sam) should be the negative of compare(sam,

sue) (i.e., one is positive and the other is negative, or else both are zero).
• If compare(sam,x) is positive and compare(x,sue) is positive, then

compare(sam,sue) should be positive too. This is transitivity.

If the compare method you define can have compare(sam,sue) be zero only when
sam.equals(sue) is true, it is said to be consistent with equals. If the compare
method you define is not consistent with equals, then instances of some standard
library classes (such as SortedSet) may refuse to let you add certain objects to the data
structure.

Exercise 18.7 The java.awt.RectangularShape class in the Sun standard library has
several subclasses such as Rectangle2D and Ellipse2D. The RectangularShape class
has two instance methods getX() and getY() to retrieve the x- and y-coordinates of
its upper-left corner on a Graphics page. A Graphics page has its non-negative
coordinates numbered from 0 up starting at the upper-left corner of the page. Create a
Comparator for RectangularShape objects so that higher objects have higher priority or, if
both objects are at the same height, the one that is further right takes priority.
Exercise 18.8* Essay: Explain why any compare method that has the properties of a
total ordering will also have this property: If compare(x,y) is negative and
compare(y,z) is negative, then compare(x,z) is negative too.
Exercise 18.9* For the BigCircle class shown in Listing 17.13, write a constructor that
has a Comparator object as a parameter. Use that Comparator object in the coding of
the get method for BigCircles.

 Java Au Naturel by William C. Jones 18-8 18-8

18.3 Implementing Priority Queues With Arrays

One obvious way to manage the values in a priority queue is to store them in a partially-
filled array in the order in which they will be taken out, so that the next value to remove is
always at itsItem[itsSize-1] (analogous to ArrayStack in Listing 14.2). This plan
almost completely determines the coding for the four methods. Listing 18.3 contains this
ArrayOutPriQue class. Note that isEmpty, peekMin, and removeMin are coded
exactly the same as isEmpty, peekTop, and pop for ArrayStack. Reminder:
IllegalStateException is in the java.lang package.

Listing 18.3 An array implementation of PriQue, partially done

public class ArrayOutPriQue implements PriQue
{
 private Object[] itsItem = new Object[10];
 private int itsSize = 0;
 private java.util.Comparator itsTest;

 public ArrayOutPriQue (java.util.Comparator givenTest)
 { itsTest = givenTest; //1
 } //=======================

 public ArrayOutPriQue()
 { itsTest = new Ascendor(); //2
 } //=======================

 public boolean isEmpty()
 { return itsSize == 0; //3
 } //=======================

 public Object peekMin()
 { if (isEmpty()) //4
 throw new IllegalStateException ("priority Q is empty");
 return itsItem[itsSize - 1]; //6
 } //=======================

 public Object removeMin()
 { if (isEmpty()) //7
 throw new IllegalStateException ("priority Q is empty");
 itsSize--; //9
 return itsItem[itsSize]; //10
 } //=======================

 public void add (Object ob)
 { if (itsSize == itsItem.length) //11
 { } // left as an exercise //12
 int k = itsSize; //13
 while (k > 0 && itsTest.compare (ob, itsItem[k - 1]) >= 0)
 { itsItem[k] = itsItem[k - 1]; //15
 k--; //16
 } //17
 itsItem[k] = ob; //18
 itsSize++; //19
 } //=======================
}

 Java Au Naturel by William C. Jones 18-9 18-9

If the add method is called when itsSize is itsItem.length, you need to
increase the size of the array. This part of the coding of add is left as an exercise. In
any case, when the add method is called, you move values up until you open up a spot
where the new value goes to keep all values in order; it generally goes at an index k
such that itsTest.compareTo (ob, itsItem[k - 1]) < 0.

Figure 18.3 illustrates the process (small numbers indicate high priority): Adding an
element of priority 5 requires shifting the three elements of higher priorities 4, 2, and 1
further toward the rear of the array to make room for the 5 between the 6 and the 4.

indexes of components: 0 1 2 3 4 5 6

current status of the array: 8 6 4 2 1 no data no data
call add(5): 8 6 5 4 2 1 no data
call removeMin(): 8 6 5 4 2 no data no data

 Figure 18.3 For ArrayOutPriQue: Call add(5), then call removeMin()

Internal invariant for ArrayOutPriQues
• The int value itsSize is the number of elements in the abstract priority queue.

These elements are stored in the array of Objects itsItem at the components
indexed 0 up to but not including itsSize.

• If k is any positive integer less than itsSize, then the element at index k has
either equal or higher priority than the element at index k-1; and if their priorities are
equal, the element at index k has been in the queue longer. In particular, the
element at index itsSize-1 has the highest priority of all elements in the priority
queue.

Storing the elements in the order they come in

An alternative implementation for a priority queue is to just put the next value added in
the array at index itsSize. That way, data values remain in the order they are put in
the structure. This means that isEmpty and add are coded the same as are
isEmpty and push for ArrayStack.

When the peekMin method is called, you have to search through the array to find the
value of highest priority and return it. In case of a tie, you select the one with the smaller
index (since it came in earlier). Coding for the peekMin method of this ArrayInPriQue
class of objects could be as shown in the upper part of Listing 18.4 (see next page).

If two elements are tied for the highest priority, this removeMin method does not
necessarily return the one that has been on the queue for the longest time, so it is not a
stable PriQue implementation (whereas ArrayOutPriQue is). Correcting this defect is left
as an exercise. Notation: "ArrayIn" reminds you they are stored in an array in the order
of input to the data structure; "ArrayOut" reminds you they are stored in an array in the
order of output from the data structure.

The call of itsTest.compare can invoke the compare method that uses a String's
compareTo method or the compare method that uses a Priceable object's getCost
method or any of a number of other possible codings. It is therefore a polymorphic
method call.

 Java Au Naturel by William C. Jones 18-10 18-10

Listing 18.4 The ArrayInPriQue class of objects, partially done

public class ArrayInPriQue implements PriQue
{
 private Object[] itsItem = new Object[10];
 private int itsSize = 0;
 private java.util.Comparator itsTest;

 // the two constructors and isEmpty are as for ArrayOutPriQue
 // the add method is left as an exercise

 public Object peekMin()
 { return itsItem[searchMin()]; //1
 } //=======================

 private int searchMin()
 { if (isEmpty()) //2
 throw new IllegalStateException ("priority Q is empty");
 int best = 0; //4
 for (int k = 1; k < itsSize; k++) //5
 { if (itsTest.compare (itsItem[k], itsItem[best]) < 0)//6
 best = k; //7
 } //8
 return best; //9
 } //=======================

 public Object removeMin()
 { int best = searchMin(); //10
 itsSize--; //11
 Object valueToReturn = itsItem[best]; //12
 itsItem[best] = itsItem[itsSize]; //13
 return valueToReturn; //14
 } //=======================
}

Exercise 18.10 Write the missing part of the add method for ArrayOutPriQue.
Exercise 18.11 Write the entire add method for ArrayInPriQue.
Exercise 18.12 Revise the removeMin method for ArrayInPriQue so it always returns
elements of equal priority in first-in-first-out order (i.e., maintain stability). Do so by
replacing the next-to-last statement by coding that moves elements down while keeping
their original order.
Exercise 18.13* Essay: Explain why you may delete both two-line if-statements
beginning if(isEmpty()) in Listing 18.3 without violating the specifications for
PriQue, but you may not delete the two-line if-statement in Listing 18.4.
Exercise 18.14* Write out the internal invariant for the ArrayInPriQue class.
Exercise 18.15* Write a complete implementation of PriQue for which the element of
highest priority is always kept in itsItem[itsSize-1] and the rest are in the order in
which they were entered. Note that this makes the peekMin method execute very
quickly. Do not try to make this implementation stable.
Exercise 18.16* A while-condition that makes two tests (as for the while-condition in the
add method of Listing 18.3) is moderately slower than a loop that makes one test.
Rewrite that loop to first test itsTest.compare (ob, itsItem[0]) and then
execute one of two different loops, each with a condition that only makes one test.

 Java Au Naturel by William C. Jones 18-11 18-11

18.4 Implementing Priority Queues With Linked Lists

You can store the elements of a priority queue in a linked list instead of in an array. This
section discusses two different ways to do this, analogous to the two ways implemented
in the previous section. We put a private nested Node class in each of these linked list
implementations, to maintain encapsulation.

Implementing PriQue with a linked list in the order elements go out

You could keep the data in order of priority, with the highest-priority data in the first Node
of the linked list. Then when you want to remove it or just get it, you have it immediately
available. This NodeOutPriQue class needs an instance variable to record the first Node
on the linked list; call it itsFirst. The only tricky part is the add method, since it has
to put the given element into the linked list after every value of equal or higher priority.

The coding of add is much easier if you always keep an extra Node at the end of the
linked list with null data in that trailer node. So a NodeOutPriQue priority queue is empty
whenever itsFirst.itsNext is null, not when itsFirst is null. The coding for
isEmpty and removeMin is in the upper part of Listing 18.5 (see next page). We omit
the coding for the two constructors (they are the same as usual) and peekMin (it is left
as an exercise).

For the add method, you need to search through the linked list for the Node that
contains the value that should come after the given element in the list. Have a variable
p refer to that Node. The statement p = p.itsNext moves p from whichever Node
it is on to the next Node. The loop stops at the trailer node if not before, i.e., when
p.itsNext == null. Then you can insert the given element ob in that Node p and
make a new Node after p to contain the data value that was in p, as follows:

 p.itsNext = new Node (p.itsData, p.itsNext);
 p.itsData = ob;

This would not work if ob is to be added at the end of a standard linked list, since then
p would be null. But with the trailer node, when ob is to be added at the end, the
statement above copies the information from the trailer node into a new trailer node and
has ob replace the null data in the old trailer node. The coding is in the lower part of
Listing 18.5. Figure 18.4 shows stages in the execution of the add method, where the
numbers indicate the priority of the data value.

 Figure 18.4 Adding a new element of priority 2 in NodeOutPriQue

 Java Au Naturel by William C. Jones 18-12 18-12

Listing 18.5 The NodeOutPriQue class of objects, partially done

public class NodeOutPriQue implements PriQue
{
 private Node itsFirst = new Node (null, null); // trailer node
 private java.util.Comparator itsTest;

 public boolean isEmpty()
 { return itsFirst.itsNext == null; //1
 } //=======================

 public Object removeMin()
 { if (isEmpty()) //2
 throw new IllegalStateException ("priority Q is empty");
 Node toDiscard = itsFirst; //4
 itsFirst = itsFirst.itsNext; //5
 return toDiscard.itsData; //6
 } //=======================

 public void add (Object ob)
 { Node p = this.itsFirst; //7
 while (p.itsNext != null //8
 && itsTest.compare (ob, p.itsData) >= 0) //9
 { p = p.itsNext; //10
 } //11
 p.itsNext = new Node (p.itsData, p.itsNext); //12
 p.itsData = ob; //13
 } //=======================

 private static class Node
 {
 public Object itsData;
 public Node itsNext;

 public Node (Object data, Node next)
 { itsData = data; //14
 itsNext = next; //15
 }
 } //======================
}

Implementing PriQue with a linked list in the order elements come in

The next implementation is NodeInPriQue, which implements a priority queue similar to
ArrayInPriQue: Add each element to the front of the linked list as it comes in; when you
need to produce the element of highest priority, search through the list to find it. Each
NodeInPriQue object is to have an instance variable itsFirst to note the first Node
on its linked list. Like NodeOutPriQue, the linked list is made with a private nested Node
class and a trailer node.

The private searchMin method goes through the linked list to find the node containing
the data value of highest priority. If the queue is empty, the searchMin coding throws
an Exception when p.itsNext is evaluated, as it should. The peekMin method
simply returns the data value in the node that searchMin finds. This coding is in the
middle part of Listing 18.6 (see next page).

 Java Au Naturel by William C. Jones 18-13 18-13

Listing 18.6 The NodeInPriQue class of objects, using trailer nodes

public class NodeInPriQue implements PriQue
{
 private Node itsFirst = new Node (null, null); // trailer node
 private java.util.Comparator itsTest;

 // the 2 constructors are the same as usual (see Listing 18.2)
 // the private Node class is the same as for NodeOutPriQue

 public boolean isEmpty()
 { return itsFirst.itsNext == null; //1
 } //=======================

 public Object peekMin()
 { return searchMin().itsData; //2
 } //=======================

 private Node searchMin()
 { Node best = itsFirst; //3
 for (Node p = itsFirst.itsNext; p.itsNext != null; //4
 p = p.itsNext) //5
 { if (itsTest.compare (p.itsData, best.itsData) <= 0) //6
 best = p; //7
 } //8
 return best; //9
 } //=======================

 public Object removeMin()
 { Node best = searchMin(); //10
 Object valueToReturn = best.itsData; //11
 Node toDiscard = best.itsNext; //12
 best.itsData = toDiscard.itsData; //13
 best.itsNext = toDiscard.itsNext; //14
 return valueToReturn; //15
 } //=======================

 public void add (Object ob)
 { itsFirst = new Node (ob, itsFirst); //16
 } //=======================
}

An empty NodeInPriQue object is constructed with itsFirst being a reference to a
trailer node with null for itsData and null for itsNext. Adding another data value
just requires creating a new node to contain it and putting it at the beginning of the list:

 itsFirst = new Node (ob, itsFirst);

The removeMin method does the same as peekMin except that it also deletes the
value to be returned. You have to avoid changing the order of the remaining elements.
To delete the element in a Node referenced by best, it is sufficient to replace it by the
element in the Node following best and then delete the Node following best. This is

 Java Au Naturel by William C. Jones 18-14 18-14

where the existence of the trailer node comes in handy. It guarantees that there will
always be a Node following best, the trailer node if nothing else. The coding for the
removeMin method is in the lower part of Listing 18.6.

Reminder Nesting only affects visibility: Methods inside NodeInPriQue can access the
public variables of the Node class but outside methods cannot. So the principle of
encapsulation is not violated by making Node's instance variables public.

An alternative to having a trailer node is to search through the list for the Node before the
one that contains the highest-priority element and set that Node's itsNext value to the
one after the one containing the highest-priority element. This is more complicated, so
we leave that for a (hard) exercise. You could try it if you want, however, so you will
understand why this book prefers to use a trailer node.

Exercise 18.17 Write the peekMin method for NodeOutPriQue.
Exercise 18.18 Rewrite the removeMin method for NodeInPriQue to not use a local
variable for the Node to be deleted.
Exercise 18.19 How would you revise the add method for NodeOutPriQue if you were
not to allow two elements with equal priority to be in the priority queue?
Exercise 18.20 Add a method public int size() to the NodeOutPriQue class: The
executor counts and returns the number of values currently in the priority queue.
Exercise 18.21 Add a method public String toString() to the NodeOutPriQue
class: The executor returns the concatenation of the string representation of each
element currently in the queue with a tab character before each element, in order front to
rear. This is very useful for debugging purposes.
Exercise 18.22 Write a method public void removeAbove (Object ob) that
could be added to NodeOutPriQue: The executor removes all values from the stack that
have higher priority than the parameter. Precondition: itsTest applies to ob.
Exercise 18.23 (harder) Same as the previous exercise, except for NodeInPriQue.
Exercise 18.24 (harder) Rewrite the add method for NodeInPriQue to add the given
element in the second position of the linked list if the list is not empty and the element
does not have higher priority than the data in the first Node. This will be used in the next
exercise.
Exercise 18.25* Rewrite the removeMin method for NodeInPriQue so that, in
conjunction with the add method of the preceding exercise, the element that is to be
removed next is always itsFirst.itsData and the rest are in the order they were
added. Note that this makes peekMin execute much faster.
Exercise 18.26* Explain why the condition in the private searchMin method of Listing
18.6 should not be written with < 0 instead of <= 0 for the comparison.
Exercise 18.27* Write out the internal invariant for the NodeOutPriQue class.
Exercise 18.28* Write a method public void removeBelow (Object ob) that
could be added to NodeOutPriQue: The executor removes all values from the priority
queue that have lower priority than the given element. Precondition: itsTest applies
to ob.
Exercise 18.29* Same as the preceding exercise, but for NodeInPriQue.
Exercise 18.30* Rewrite the full implementation of NodeInPriQue so that each element
is added to the end of a linked list but without looping (i.e., the reverse ordering). Hint:
Add an instance variable that keeps track of the last node in the linked list.
Exercise 18.31* Essay: Explain why both of the linked list implementations of PriQue in
this section are stable.
Exercise 18.32** Rewrite the full implementation of NodeOutPriQue without a trailer
node, so that the number of Nodes equals the number of elements.
Exercise 18.33** Rewrite the full implementation of NodeInPriQue without a trailer node,
so that the number of Nodes equals the number of elements.
Exercise 18.34** Write a method public void add (NodeOutPriQue queue)
that could be in NodeOutPriQue: The executor interweaves queue 's elements in priority
order and sets queue to be empty. Do not call on the existing add method.

 Java Au Naturel by William C. Jones 18-15 18-15

Part B Enrichment And Reinforcement

18.5 Implementing Priority Queues With Linked Lists Of Queues

Some situations have only a few priority levels. For instance, you might have only five
different priority levels with hundreds of elements at each level. If you add an element
with low priority, you may have to go through many hundreds of elements to find the
place where your given element is to be inserted.

In such a situation, the logic would execute substantially faster if you had just five regular
queues, one for each priority level. Then you could go to the correct queue in at most five
steps and quickly append the given element at the end of that queue. You could have a
linked list of queues instead of a linked list of elements. You keep these queues in order
of the priorities of the elements on them. The queue with the highest priority is first in the
linked list.

This NodeGroupPriQue implementation uses a private nested Node class where
itsData is a NodeQueue value instead of an Object value. Reminder: NodeQueue,
an implementation of QueueADT, has these four methods for working with a FIFO queue:

• q.isEmpty() tells whether the queue has elements.
• q.enqueue(ob) adds ob to the rear of the queue.
• q.dequeue() removes and returns the element at the front of the queue.
• q.peekFront() returns the element at the front of the queue without removing it.

Each NodeGroupPriQue object has an instance variable itsFirst that keeps track of
the linked list of queues; all of the queues on the list are to be non-empty. It is highly
convenient to have a trailer node at the end of this linked list. Figure 18.5 shows roughly
how this whole thing is structured: A NodeGroupPriQue's itsFirst is a Node whose
itsData is a NodeQueue whose itsFront and itsRear are Nodes in a linked list
of data (but the first kind of Node is a nested class; the second kind is stand-alone).

 Figure 18.5 Linked list of Nodes p for which p.itsData is a NodeQueue

The isEmpty, peekMin, and removeMin methods

The isEmpty method only needs to check that itsNext for the first Node on the
linked list is null. The element to be returned by the peekMin method is the front
element of the queue with the highest priority. Since that is the first queue in the linked
list, you return the peekFront value for that queue (since the queue is known to be
non-empty). This coding is in the upper part of Listing 18.7 (see next page). Note that it
will throw an Exception if there is no data, which is what it should do.

The removeMin method is about the same as the peekMin method except it returns
itsFirst.itsData.dequeue(), which removes the front element on the queue of
elements of highest priority. The call of removeMin might leave that first queue empty.
Since the internal invariant of this implementation requires that you only store non-empty
queues, you must discard the first queue if it has become empty as a consequence of
dequeueing an element from it. This coding is in the middle part of Listing 18.7.

 Java Au Naturel by William C. Jones 18-16 18-16

Listing 18.7 The NodeGroupPriQue class of objects

public class NodeGroupPriQue implements PriQue
{
 private Node itsFirst = new Node (null, null); // trailer node
 private java.util.Comparator itsTest;

 // the 2 constructors are the same as usual (see Listing 18.2)

 public boolean isEmpty()
 { return itsFirst.itsNext == null; //1
 } //=======================

 public Object peekMin()
 { return itsFirst.itsData.peekFront(); //2
 } //=======================

 public Object removeMin()
 { Object valueToReturn = itsFirst.itsData.dequeue(); //3
 if (itsFirst.itsData.isEmpty()) // after the dequeue //4
 itsFirst = itsFirst.itsNext; // lose the queue //5
 return valueToReturn;
 } //=======================

 public void add (Object ob)
 { Node p = this.itsFirst; //6
 while (p.itsNext != null //7
 && itsTest.compare (ob, p.itsData.peekFront()) > 0)
 { p = p.itsNext; //9
 } //10
 if (p.itsNext == null //11
 || itsTest.compare (ob, p.itsData.peekFront()) < 0)
 { p.itsNext = new Node (p.itsData, p.itsNext); //13
 p.itsData = new NodeQueue(); //14
 } //15
 p.itsData.enqueue (ob); //16
 } //=======================

 private static class Node
 {
 public QueueADT itsData;
 public Node itsNext;

 public Node (QueueADT data, Node next)
 { itsData = data; //17
 itsNext = next; //18
 }
 } //======================
}

You should compare the coding throughout this Listing 18.7 with the coding for
NodeOutPriQue in the earlier Listing 18.5 to see how similar they are. In fact, if no two
elements can have the same priority, the NodeGroupPriQue implementation becomes
the same as NodeOutPriQue except for an awful lot of extraneous creating and
discarding of queue objects. Figure 18.6 (see next page) is the UML class diagram for
the NodeGroupPriQue class.

 Java Au Naturel by William C. Jones 18-17 18-17

 Figure 18.6 UML class diagram of the NodeGroupPriQue class

The add method

To add an element, you need to search for the first Node that contains a queue whose
elements do not have higher priority than the given element. Of course, you do not go
beyond the last Node in the linked list, which is the trailer node. So the condition for the
while-statement is the logical equivalent of the following:

 p.itsNext != null && ob > p.itsData.peekFront()

By contrast, the while-condition for NodeOutPriQue was the equivalent of the following,
because you needed to go past not only elements of higher priority but also those of the
same priority that had been on the linked list longer:

 p.itsNext != null && ob >= p.itsData

Once you find the right Node p, see if it has a queue of elements with the same priority
as the element you are supposed to add. If not (because the Node is empty or it has a
queue of elements with lower priority), insert a new empty queue just before the queue in
the Node you have found. In either case, you should now enqueue the given element
onto that queue. This coding is in the lower part of Listing 18.7.

A variation

The implementation of PriQue just described works well as long as you know there are
only a few different priority values, on the order of 5 to 20. You do not have to know what
those values are.

Now if you know that the priority values are int values in the range from 1 to e.g. 100, you
can have an implementation that uses an array of QueueADT objects, one for each int
value. Adding a new element would involve finding its priority value pv and then storing
that element on the queue at index pv in the array. And removing the element of
highest priority would require searching the array for the first non-empty queue and
dequeueing the front element on that queue. This is left as a major programming project.

Exercise 18.35 List the changes that Listing 18.7 would require if the itsData field of
the Node class were declared as Object rather than as QueueADT.
Exercise 18.36* Write out the internal invariant for NodeGroupPriQue.
Exercise 18.37* Revise the Node class for Listing 18.7 to have a third instance variable
itsKey, which is any element that is or has been on the queue stored in itsData. Use
this revision to rewrite the add method to execute faster.

 Java Au Naturel by William C. Jones 18-18 18-18

18.6 Sorting Using Priority Queues; The TreeSort Algorithm

A priority queue can be used to sort a large number of values. If you add them one at a
time to the priority queue without ever calling removeMin, and then remove them one at
a time until the priority queue is empty, they come out in the order determined by
compare. If you have an Ascendor object (i.e., using compareTo), they come out in
their natural ascending order. Specifically, the following method would sort the values in
an ordinary queue, assuming that the given priority queue is initially empty:

 public static void sort (QueueADT source, PriQue piq)
 { while (! source.isEmpty()) // Loop #1
 piq.add (source.dequeue());
 while (! piq.isEmpty()) // Loop #2
 source.enqueue (piq.removeMin());
 }

In other situations, you might want a method to sort all the values in an array:

 public static void sort (Object[] source, PriQue piq)
 { for (int k = source.length - 1; k >= 0; k--) // Loop #1
 piq.add (source[k]);
 for (int k = 0; k < source.length; k++) // Loop #2
 source[k] = piq.removeMin();
 }

Either of the following statements does an InsertionSort, since the priority queue's add
method inserts each value into its current list of values in ascending order and the
removeMin method does virtually no work for these two "outie" implementations:

 sort (source, new ArrayOutPriQue());
 sort (source, new NodeOutPriQue());

Either of the following statements does a SelectionSort, since the priority queue's
removeMin method runs through the entire list of values to select the minimum one and
the add method does virtually no work for these two "innie" implementations:

 sort (source, new ArrayInPriQue());
 sort (source, new NodeInPriQue());

For the two InsertionSort cases, each call of add is a big-oh of N operation and each
call of removeMin is big-oh of 1. So Loop #1 of the sort method takes big-oh of N2
time, but Loop #2 takes big-oh of N time. For the two SelectionSort cases, each call of
removeMin is a big-oh of N operation and each call of add is big-oh of 1. So Loop #2
of the sort method takes big-oh of N2 time, but Loop #1 takes big-oh of N time.

When you use the priority queue implementation described at the end of the preceding
section to sort values, for situations where priorities are int values in a limited range, you
are using a BucketSort (which is more thoroughly described in Section 13.7).

Using the QuickSort logic

The QuickSort algorithm suggests another way to implement a priority queue that can
execute much faster on average than the four elementary implementations mentioned
above. You do it by keeping track of all the pivot elements used in sorting the elements
so far. When you want to add another element x, you compare it with the first pivot (the
first element that was added to the priority queue). If x has higher priority than the first
pivot, it goes to the left of the first pivot; otherwise x goes to the right of the first pivot.

 Java Au Naturel by William C. Jones 18-19 18-19

In the first case you compare x with the pivot that was used to split up the group of
elements with higher priority than the first pivot. In the second case you compare x with
the pivot that was used to split up the group of elements without higher priority than the
first pivot. Either way, you put x to the left of that second pivot if x has higher priority
than it, otherwise you put it to the right of that second pivot.

This continues until you see that x goes to one side of a pivot that does not already
have any elements on that side. Then you put x in that position; it will be the pivot for
future additions to the data structure at that point. However, if you use an array, you now
have to move a lot of elements to make room for the new element, often more than half
of them. This is a big-oh of N operation, which loses all the advantage of the QuickSort.
Also, how are you going to keep track of all those pivot relationships?

Using TreeNodes

The standard solution is to use TreeNodes to store the values. In a TreeNode, itsData
is the pivot for its group of elements. itsLeft refers to the TreeNode containing the
pivot that was used for all elements that were compared with itsData and found to be
of higher priority. itsRight refers to the TreeNode containing the pivot for all the
elements that were compared with itsData and found to be of lesser or equal priority.
A priority queue with this implementation could be called TreePriQue; see Listing 18.8.

Listing 18.8 The TreePriQue class of objects

public class TreePriQue implements PriQue
{
 private TreeNode itsRoot = TreeNode.ET;
 private java.util.Comparator itsTest;

 // the 2 constructors are the same as usual (see Listing 18.2)

 public boolean isEmpty()
 { return itsRoot.isEmpty();
 } //=======================

 public Object peekMin()
 { return itsRoot.firstNode().getData();
 } //=======================

 public void add (Object ob)
 { if (itsRoot == TreeNode.ET)
 itsRoot = new TreeNode (ob);
 else
 itsRoot.add (ob, itsTest);
 } //=======================

 public Object removeMin()
 { if (isEmpty())
 throw new IllegalStateException ("priority Q is empty");
 TreeNode[] newRoot = {itsRoot};
 Object valueToReturn = itsRoot.removeFirst (newRoot);
 itsRoot = newRoot[0];
 return valueToReturn;
 } //=======================
}

 Java Au Naturel by William C. Jones 18-20 18-20

The first element added to the priority queue, with which you compare all other elements,
is stored in a TreeNode named itsRoot. This is the only piece of information that the
priority queue object has to keep track of. So you tell whether a priority queue is empty by
seeing whether itsRoot value is ET. If you ask the priority queue to get the element
of the highest priority, it asks itsRoot to find out and tell it (unless itsRoot is ET, in
which case it throws an Exception). This coding is in the upper part of Listing 18.8. It
calls the firstNode method given for the TreeNode class in Listing 17.2.

When you ask a TreePriQue object to add another element, there are two cases: If the
TreePriQue object is empty, then the new element is added as the root value. Otherwise
it asks itsRoot to add the element. This coding is in the middle part of Listing 18.8. It
calls the add method in the TreeNode class, which is coded later in this section.

When you ask a TreePriQue object to remove the element of highest priority, it asks
itsRoot to do so for it. But if it is empty, it throws an Exception. You could just code
the removeMin method for a structure as return itsRoot.removeFirst()
except for one problem: Sometimes it is the data in the root that is to be deleted, in
which case you have to change itsRoot to be the root of whatever tree remains. So
the TreeNode removeFirst method has to return two values: the valueToReturn
and the new value of itsRoot. But a Java method can only return one value.

If you pass itsRoot as a parameter, any change that the method makes to the formal
parameter does not change the value of the actual parameter itsRoot. A standard
solution to the problem of getting two return values is to make one parameter be an array
with one component. The method called can then change the value stored in that
component if it needs to. The calling method can then use that new value to do what it
has to do. This coding is in the lower part of Listing 18.8.

Figure 18.7 shows what we want to have happen when elements are added to and
removed from the tree. Each little circle represents a TreeNode. The circle with the
priority code 6 in it is itsRoot. The circle with the priority code 3 in it is
itsRoot.itsLeft and the higher circle with the 8 in it is itsRoot.itsRight.
Figure 18.7 traces the action of adding a value with priority 4, then adding a value with
priority 7, then removing the value with the highest priority.

 Figure 18.7 Effect on TreeNodes of some TreePriQue method calls

For the example in this figure, the removeFirst method would not change the
parameter. But if the root node with the priority code 6 in it had no nodes to its left, a call
of removeFirst would change the parameter: root[0] = the node with the 8.

Additions to the TreeNode class

The two new methods required for the TreeNode class are in Listing 18.9 (see next
page). The firstNode method and the getData method are in Listing 17.2.

The removeFirst method first verifies that there is a data value to the left of the
executor (line 1). If not, it must return the data value in the executor, and also "return"
the TreeNode that will replace the executor in the TreePriQue structure (line 2; this
"return" is done via the 1-element array parameter).

 Java Au Naturel by William C. Jones 18-21 18-21

Listing 18.9 Additions to accomodate TreePriQue

// The following 2 methods are added to the TreeNode class

 /** Delete and return the first data value in a non-empty
 * tree. If that data value is in the executor, assign
 * to root the TreeNode to the executor's right. */

 public Object removeFirst (TreeNode[] root)
 { if (itsLeft == ET) //1
 { root[0] = this.itsRight; //2
 return this.itsData; //3
 } //4
 TreeNode p = this; //5
 while (p.itsLeft.itsLeft != ET) //6
 p = p.itsLeft; // p becomes parent of leftmost node //7
 Object valueToReturn = p.itsLeft.itsData; //8
 p.itsLeft = p.itsLeft.itsRight; // it may be ET //9
 return valueToReturn; //10
 } //=======================

 /** Add ob to the tree, keeping the binary search property.
 * Precondition: this is not an empty tree. */

 public void add (Object ob, java.util.Comparator test)
 { if (test.compare (ob, itsData) < 0) //11
 { if (itsLeft == ET) //12
 itsLeft = new TreeNode (ob); //13
 else //14
 itsLeft.add (ob, test); //15
 } //16
 else //17
 { if (itsRight == ET) //18
 itsRight = new TreeNode (ob); //19
 else //20
 itsRight.add (ob, test); //21
 } //22
 } //=======================

If the executor of removeFirst has a TreeNode to its left (which therefore contains a
higher-priority element than this.itsData), it can find the parent of the furthest-left
Node and assign it to p (lines 5-7). It can then return the data value in p.itsLeft,
since that data value has the highest priority of any. But first it must delete the Node
p.itsLeft from the tree structure, replacing it by whatever was to the right of it (either
null or another TreeNode). This coding is in the upper part of Listing 18.9.

The add method in the lower part of Listing 18.9 shows what a nonempty TreeNode
object does when you ask it to add an element named ob: First it sees whether ob
has higher priority than itsData (line 11). If so, ob goes to its left. If it does not have
a TreeNode to its left (line 12), it can make a new one to hold ob (line 13), otherwise it
can ask the TreeNode to its left to add ob (line 15). If ob goes to the right of the
TreeNode executor, it works things out the same way but on the right instead of on the
left. To accomplish all of this, the add method needs to have the Comparator object so
it can make comparisons. So that Comparator object is passed as a parameter.

 Java Au Naturel by William C. Jones 18-22 18-22

The TreeSort algorithm

The TreeNode implementation of a priority queue gives yet another way to sort an array
of data: Add the values one at a time to a TreePriQue object until they are all in there.
Then remove them one at a time; they will come out in order.

This TreeSort algorithm is essentially the QuickSort algorithm but with links rather than
arrays. It executes about as fast as the QuickSort algorithm, but it takes up more space
(one extra TreeNode of space for each data object means you need at least 3*N object
references for N pieces of data). Both adding and removing are big-oh of log(N)
operations on average for random sequences of data values. You can guarantee big-oh
of log(N) as the worst-case behavior if you use a red-black or AVL tree, as described in
Chapter Seventeen.

The coding in Listing 18.10 shows how the TreeSort algorithm could be written in the
standard form used throughout Chapter Thirteen: You are to put the first size values
of the array named item in ascending order using compareTo. It uses the traversal
method from Listing 17.9. Obviously, it would be more efficient to have the last four lines
transfer the data directly to the array instead of using a queue. This is left as an exercise.

Listing 18.10 Another sorting algorithm for the CompOp class

 public static void treeSort (Comparable[] item, int size)
 { if (size <= 1)
 return;
 java.util.Comparator itsTest = new Ascendor();
 TreeNode root = new TreeNode (item[0]);
 for (int k = 1; k < size; k++)
 root.add (item[k], itsTest); // coded in Listing 18.9
 NodeQueue queue = new NodeQueue();
 root.inorderTraverseLR (queue); // coded in Listing 17.9
 for (int k = 0; k < size; k++)
 item[k] = (Comparable) queue.dequeue();
 } //=======================

Historical Note Older programming languages that did not have the interface concept
used "procedural parameters" instead. Specifically, you could write a method one of
whose parameters was the compare method heading. The coding for your method
called on compare as needed. A statement that called your method had to pass in a
reference to the implementation of compare that it wanted your method to use. Java
passes Comparator objects as parameters instead of passing compare methods.

Exercise 18.38 How would you code a worstData method for the TreeNode class to
find the element with the lowest priority in a non-empty tree?
Exercise 18.39 (harder) It is often useful for debugging programs to have a method that
prints all the values in a data structure. Write one for Listing 18.9 using
System.out.println: Print all values in and below a given non-empty TreeNode in
order of priority (left to right).
Exercise 18.40* Replace the last four lines of the treeSort method by coding that
transfers the data values in the tree directly to the array. Have it call a recursive
independent class method not in the TreeNode class. Write that method.
Exercise 18.41* Give an example of a sequence of data values that causes both add
and removeMin to execute in big-oh of N time for a TreePriQue.
Exercise 18.42** Explain why TreePriQue is stable, and thus treeSort is a stable
sorting algorithm, even though the quickSort it is based on is not.

 Java Au Naturel by William C. Jones 18-23 18-23

18.7 Implementing Priority Queues Using Heaps; The HeapSort
Algorithm

Adding one element to an ArrayOutPriQue or NodeOutPriQue object has a worst-case
execution time that is big-oh of N, where N is the number of items already in the data
structure. Removal is quite fast at big-oh of 1. For an ArrayInPriQue or NodeInPriQue
object, adding has a worst-case execution time that is only big-oh of 1, but worst-case
execution time for removal is big-oh of N.

This section shows you how to use a "heap" as the basis for a priority queue that
executes very fast. Adding one value to the heap has a worst-case execution time that is
big-oh of log(N), where N is the number of elements currently in the priority queue. And
removal of one value from the heap also has a worst-case execution time that is big-oh of
log(N). This is a great improvement over the InsertionSort and SelectionSort
implementations discussed in the previous section, or even the TreeSort (which has
average case big-oh of log(N) for both, but worst-case is big-oh of N for each).

Implementing a priority queue as a heap

The heap logic requires that you think of each component in an array as having two
components as its "children". Specifically, the first component, itsItem[0], has the
next two components at indexes 1 and 2 as its children. Those two have the next four, at
indexes 3 through 6, as their children -- 3 and 4 are the children of 1, and 5 and 6 are the
children of 2. Those four have the next eight components as their children -- 7 and 8 are
the children of 3, 9 and 10 are the children of 4, 11 and 12 are the children of 5, etc.

Figure 18.8 shows this relationship as a sort of genealogy tree.
You start with one "node" of the tree at the top, then draw two
children below it, then two children below each of those,
repeating for as many elements as you have to store. Then you
number the top node 0, number the next level with the next two
integers 1 and 2, number the third level with the next 4 integers (3
through 6), number the fourth level with the next 8 integers (7
through 14), etc.
 Figure 18.8 A tree

When you look at which numbers are "children" of which other numbers, you see that it
can be expressed as a formula: The children of index n are indexes 2*n+1 and
2*n+2. We also say that the elements at indexes 2*n+1 and 2*n+2 of the array are
the children of the element at index n. Also, we say the element at index n is their
parent; the formula for the parent of an index k is therefore (k - 1) / 2.

Our heap-based implementation HeapPriQue uses a partially-filled array (instance
variables Object[] itsItem and int itsSize). You keep the array organized so
that no child has higher priority than its parent. This is the heap property. That means
that the data value with maximum priority is in itsItem[0].

Adding a data value to the heap

Whenever you add another element to the priority queue whose data is already in
itsItem[0] through itsItem[itsSize-1], you start at itsItem[itsSize] and
have the new data value "sift up" towards index 0. This means that you compare it with
its parent (which would be at itsItem[(itsSize-1)/2]). If the parent has equal or
higher priority than the new value, put the new data value in itsItem[itsSize].
Otherwise move the parent down to that component, then compare the new data value
with the parent of the parent. Repeat until you can insert the new data value in a way
that maintains the heap property.

 Java Au Naturel by William C. Jones 18-24 18-24

Figure 18.9 illustrates this process for the first nine values added. The values inside the
components are integers, to simplify the description, though of course objects are
normally used. On each iteration (reading left to right on each level), one additional
component is brought into compliance by swapping it up the tree until it is greater than all
of its children. Data values are added in the order 15, 18, 12, 16, 17, 14, 11, 10, 13.

 Figure 18.9 Adding values to the array, maintaining a heap

The coding in Listing 18.11 (see next page) embodies this logic for the add method.
Compare it carefully with the coding for ArrayOutPriQue's add method in Listing 18.3.
It is exactly the same except that k - 1 has been replaced by (k - 1) / 2
throughout. In other words, it looks like the insertInOrder logic except that each
additional step is twice as close to index 0 as the step before instead of being just 1
component closer. For instance, when add is called for whatever element is at index
127, it is inserted into the sequence of values at indexes 63, 31, 15, 7, 3, 1, and 0. That
makes the add method a big-oh of log(N) process instead of big-oh of N. An exercise
makes this coding more efficient though not as clear.

Removing a data value from the heap

Whenever you remove a data value from the priority queue, you remove it from
itsItem[0]. Then you readjust the array to be a heap without the removed value. This
coding is in the lower part of Listing 18.11. The readjusting of the array is left to a private
method named siftDown.

To readjust the array, take itsItem[itsSize-1] from the rear part of the array and
insert it somewhere in the rest of the array; we will call that value toInsert.

Removing the highest-priority data value from index 0 left an empty component.
Compare its two children at indexes 1 and 2 to see which has higher priority. That child
(call it kid) moves up to index 0, which leaves an empty spot where it was. You then
compare the two children of that empty spot to see which has higher priority and move
that one up to the empty spot, leaving another empty spot on the third level (at index 3, 4,
5, or 6). The moving-up part is coded as itsItem[empty] = itsItem[kid].

 Java Au Naturel by William C. Jones 18-25 18-25

Listing 18.11 The HeapPriQue class of objects, partially done

public class HeapPriQue implements PriQue
{
 private Object[] itsItem = new Object[10];
 private int itsSize = 0;
 private java.util.Comparator itsTest;

 // the two constructors and isEmpty are as for ArrayOutPriQue

 public Object peekMin()
 { if (isEmpty()) //1
 throw new IllegalStateException ("priority Q is empty");
 return itsItem[0]; //3
 } //=======================

 public void add (Object ob)
 { if (itsSize == itsItem.length) //4
 { } // left as an exercise in an earlier section //5
 int k = itsSize; //6
 while (k > 0 && itsTest.compare (ob, //7
 itsItem[(k - 1) / 2]) < 0) //8
 { itsItem[k] = itsItem[(k - 1) / 2]; //9
 k = (k - 1) / 2; //10
 } //11
 itsItem[k] = ob; //12
 itsSize++; //13
 } //=======================

 public Object removeMin()
 { if (isEmpty()) //14
 throw new IllegalStateException ("priority Q is empty");
 Object valueToReturn = itsItem[0]; //16
 itsSize--; //17
 if (itsSize >= 2) //18
 siftDown (itsItem[itsSize]); //19
 else if (itsSize == 1) //20
 itsItem[0] = itsItem[1]; //21
 return valueToReturn; //22
 } //=======================
}

Keep this up until either the empty spot does not have two children or else both of its
children have lower priority than toInsert has. Then put toInsert in the empty
spot and stop. This coding is in Listing 18.12 (see next page). For example, in the final
tree on the bottom-right of Figure 18.9, removing 10 would require that 11 move to index
0 (since 11 is smaller than its sibling 12), then 13 to index 1 (since 13 is smaller than its
sibling 17), then 16 to index 3 (since 16 is smaller than its sibling 18). Figure 18.10
shows this application of removeMin and the next one as well (see next page).

Programming Style In Listing 18.12, some people would say that lines 8 and 9 should be
replaced by a break statement. That would immediately terminate the loop and
proceed with the statement at line 15. However, using a break statement to exit a loop
generally makes coding harder to understand. In this case, the coding as shown actually
executes faster without the break statement. You will not see the break statement
used in this book. Any loop complex enough for a break statement is complex enough
to put in a separate method where you use a return statement in place of a break.

 Java Au Naturel by William C. Jones 18-26 18-26

Listing 18.12 The private siftDown method for HeapPriQue

 /** Given that itsItem[0]..itsItem[itsSize] is a heap,
 * in effect replace itsItem[0] by toInsert and then make
 * the minimal changes to swap toInsert down so that
 * itsItem[0]...itsItem[itsSize-1] is a heap again. */

 private void siftDown (Object toInsert)
 { int empty = 0; //1
 int kid = 1; // empty's child on the left //2
 while (kid < itsSize) // there are two children //3
 { if (itsTest.compare (itsItem[kid + 1], //4
 itsItem[kid]) < 0) //5
 kid++; // use the child on the right //6
 if (itsTest.compare (toInsert, itsItem[kid]) < 0) //7
 { itsItem[empty] = toInsert; //8
 return; //9
 } //10
 itsItem[empty] = itsItem[kid]; //11
 empty = kid; //12
 kid = 2 * empty + 1; // empty's child on the left //13
 } //14
 itsItem[empty] = toInsert; //15
 } //=======================

 Figure 18.10 Two consecutive calls of the siftDown method

The HeapSort algorithm

A method to sort a given array of a given number of Comparable values using the
HeapSort logic calls on a HeapPriQue constructor that assigns the given array to
itsItem, then repeatedly applies the add method to create the initial heap. Finally, it
repeatedly applies the siftDown method to get the data in descending order. Writing
the constructor itself is left as an exercise. Execution time is big-oh of N*log(N).

 Java Au Naturel by William C. Jones 18-27 18-27

 public static void heapSort (Comparable[] item, int size)
 { new HeapPriQue (item, size);
 } //=======================

For this repeated application of siftDown, note that the picture shows the values
coming out of the array in the order 10, 11, etc., smallest to largest. But for the special
constructor, we can put the values in the components that are opening up at the high
indexes of the array (10 into index 8, later 11 into index 7, etc.). Of course, then they are
in descending order, not ascending order. So all you need to do is reverse the meaning
of the compare method to first obtain a heap with the larger values towards index 0, then
repeatedly apply siftDown to get the values in ascending order. This is a very easy
adjustment to make.

If the values are now in ascending order, they are in fact a heap with smaller values (i.e.,
higher priority) towards index 0. You can then continue to add and remove values to that
heap, or simply stop if all you wanted was to have the values in ascending order.

Note the similarity with the SelectionSort logic: We select the largest of the remaining
values and swap it with the element in the component where that largest value goes. But
the process of selecting and then readjusting the heap executes in big-oh of log(N) time
rather than in big-oh of N time. The reason is that the adjusting to restore the heap
condition jumps through the index values, doubling the size of the jump at each iteration.
By contrast, the SelectionSort has to go through every single value.

Comparison with other sorting methods

As the preceding discussion shows, the HeapSort requires big-oh of N*log(N) time, even
in the worst case. This is far better worst-case performance than the QuickSort logic,
which can sometimes degenerate to big-oh of N2 execution time. Of course, the
MergeSort also has big-oh of N*log(N) worst-case execution time, but it requires an extra
array for storage, which doubles the storage requirements. The HeapSort does not
require any significant extra storage (two or three variables for kid, empty, etc.).

On the other hand, the HeapSort is the most complex of these three sorting methods,
and it is the slowest in terms of average execution time. HeapSort is also difficult to
understand, particularly the fact that, after you organize all the values into a heap, they
are still not sorted. A sample run with 20 different random sets of 100,000 Double values
gave average execution times of 2.69 seconds for HeapSort, 1.45 seconds for QuickSort
(Listing 13.5), and 1.35 seconds for MergeSort (Listing 13.6). In fact, the MergeSort beat
the QuickSort in 18 of the 20 runs.

Exercise 18.43 Rewrite the add method of Listing 18.11 so that (k - 1) / 2 is
only calculated once for each value of k. Use a local int variable named parent.
Exercise 18.44 Write out a complete trace of the execution of heapSort on the array
of values {3, 7, 4, 6}.
Exercise 18.45 Explain why the coding would on average execute more slowly if the
tests in lines 18 and 20 of the removeMin method were done in the opposite order.
Exercise 18.46 (harder) Count the maximum number of possible comparisons of
elements that heapSort makes when size is 3, then count them when size is 7.
Exercise 18.47* Explain why the ArrayOutPriQue implementation of a priority queue
keeps the highest-priority element at the largest index in the array, but the HeapPriQue
implementation keeps it at index 0, the smallest index in the array.
Exercise 18.48* Show that, if you make a heap and then perform an InsertionSort on it,
you still have big-oh of N2 execution time for the worst case. Hint: What is the worst
case for the order of the elements in the lower half of the array?

 Java Au Naturel by William C. Jones 18-28 18-28

Exercise 18.49* A faster version of the heapSort has the first stage make item[k]
through item[size-1] a heap for values of k decreasing from size/2 to 0. Write a
private method heapify (Comparable[] item, int size) to do this. Explain
why this first stage then executes in big-oh of N time.
Exercise 18.50** Write the new HeapPriQue constructor called by the heapSort
constructor. Hint: The Comparator object should be the reverse of Ascendor, so that the
initial heap has the largest value in index 0. Then each value removed from the heap
should go directly to the end of the array. The final result is then in ascending order.
Exercise 18.51** Determine whether HeapPriQue is stable and give sound reasons.

18.8 MergeSort For A Linked List; Recurrence Relations

This section provides you more practice with linked lists and recursion, as well as
reviewing the merge sort logic. This review is preparatory to the next section, which
discusses a good method for sorting data values in a very large file.

Most sorting algorithms for arrays can be coded for linked lists as well. Clearly, the logic
in NodeOutPriQue can easily be shaped to provide a linked list InsertionSort and the
logic in NodeInPriQue can easily be shaped to provide a linked list SelectionSort. We
next develop the MergeSort for linked lists.

The easiest version of merge sort for a linked list is done with a header node. For
instance, the HeaderList class at the end of Chapter Fourteen uses header nodes. That
is, a HeaderList object has two instance variables, itsData and itsNext, where itsNext is a
HeaderList object. But we do not store data in the first node on the list.

So a public instance method to sort such a list could be coded as follows. This coding
passes the part of the list after the header node, as well as the number of data values in
that list, to a recursive method named sorted. That method will use the header node
this to store information during execution of the merging part of the algorithm:

 public void sort()
 { itsNext = sorted (itsNext, size());
 } //=======================

For the MergeSort logic, we are to divide the list into two lists of equal size (or differing by
1 if necessary), sort each one separately, and then merge them back together into one
list sorted in ascending order. First, we return the linked list immediately if it has less
than two elements, since it is already sorted. Otherwise, we run half-way down the list
and set end to the Node at the half-way point (node number size / 2). The second
half of the list starts in end.itsNext. We break the list into the two equal parts, call the
sorted method for each part, and then call a private merged method to merge the
two sorted lists into one long sorted list. This coding is in the upper part of Listing 18.13
(see next page). It could be part of the HeaderList class if we just change "Node" to
"HeaderList" throughout.

In this merged method, one and two denote the two sorted linked lists to be
combined and placed on the completely sorted list. We add nodes from one and two
to the rear of the list that begins with the header node this. When we exit the method,
we return the first node after the header node this, which will be the first node in the
completely sorted list.

 Java Au Naturel by William C. Jones 18-29 18-29

Listing 18.13 The MergeSort logic for a linked list with no data in the first Node

 public void sort()
 { itsNext = sorted (itsNext, size()); //1
 } //=======================

 private Node sorted (Node item, int size)
 { if (size < 2) //2
 return item; //3
 int halfSize = size / 2; //4
 Node end = item; //5
 for (int k = 1; k < halfSize; k++) //6
 end = end.itsNext; //7
 Node secondHalf = end.itsNext; //8
 end.itsNext = null; //9
 return merged (sorted (item, halfSize), //10
 sorted (secondHalf, size - halfSize)); //11
 } //=======================

 private Node merged (Node one, Node two)
 { Node rear = this; // last node of sorted //12
 while (one != null && two != null) //13
 { if (((Comparable) one.itsData) //14
 .compareTo (two.itsData) <= 0) //15
 { rear.itsNext = one; //16
 one = one.itsNext; //17
 } //18
 else //19
 { rear.itsNext = two; //20
 two = two.itsNext; //21
 } //22
 rear = rear.itsNext; //23
 } //24
 rear.itsNext = (one == null) ? two : one; //25
 return this.itsNext; //26
 } //=======================

So the merged logic repeatedly looks at the first node on each of one and two;
whichever contains the smaller data is attached to the rear of the sorted list and detached
from its own list (that is, detached from the one list or the two list). When one of the
lists runs out of Nodes, the remainder of the other list is attached to the rear of the sorted
list and the result is returned. This coding is in the lower part of Listing 18.13. Figure
18.11 shows how a list of eight data values would be sorted using this coding.

 Figure 18.11 Stages in the execution of the merge sort

 Java Au Naturel by William C. Jones 18-30 18-30

Recurrence relations

If you study the coding in Listing 18.13 carefully, you see that the maximum number of
comparisons of data made by the MergeSort coding for n data values can be expressed
by a recursive formula, written directly from the recursive coding. This is called a
recurrence relation:

 compsMS (n) = 0 if n <= 1, otherwise
 compsMS (n) = compsMS (n/2) + compsMS (n - n/2) + (n - 1)

Any recurrence relation implies a corresponding recursive method for calculating the
value. Call this method with any value of n to have the computer calculate it for you:

 public static int compsMS (int n) // for MergeSort
 { return n <= 1 ? 0
 : compsMS (n / 2) + compsMS (n - n / 2) + (n - 1);
 } //=======================

Four more recurrence relations

The TreeSort coding towards the end of Section 18.6 adds data values one at a time to a
binary search tree and then traverses the tree to obtain the values in order. When is the
minimum number of comparisons for all the additions made? When half of the data
values compared with the data in any given TreeNode go to the left and the rest go to the
right. In that case, the number of comparisons made in building a tree of n nodes would
be expressed by the following recurrence relation. Note that the first data value goes in
the root and each data value thereafter is compared with the root, which makes n-1 root
comparisons:

 compsTS (n) = 0 if n <= 1, otherwise
 compsTS (n) = compsTS (n/2) + compsTS (n - n/2) + (n - 1)

This is of course the same recurrence relation for compsMS, so the best case for
TreeSort is the same as the worst case for MergeSort.

The InsertionSort repeatedly inserts a new value in an existing list of values where it goes
in ascending order. So the maximum number of comparisons made can be expressed by
the following recurrence relation (this is also the recurrence relation for SelectionSort):

 compsIS (n) = 0 if n <= 1, otherwise
 compsIS (n) = compsIS (n - 1) + (n - 1)

The HeapSort repeatedly inserts a new value in a heap of values to maintain the max-
heap property. For instance, inserting the 64th value (at index 63) will require
comparisons with at most the values at indexes 31, 15, 7, 3, 1, and 0. That is, the
number of comparisons is at most log2(n). So an upper limit on the number of
comparisons made during the insertion process that builds the heap can be expressed by
the following recurrence relation:

 compsHSBuild (n) = 0 if n <= 1, otherwise
 compsHSBuild (n) = compsHSBuild (n - 1) + log2(n)

If you do the HeapSort directly on n data values without using a priority queue, you can
build the initial heap faster. Define the "subheap at index k" to be the value at index k
plus its two children plus their children, etc., going no further than n of course. Then you
build the subheap at a given index k only after you have built the subheap for both of its
children. A bit of thought and drawing pictures expresses the number of comparisons
required in the worst case by the following recurrence relation, at least for any n that is 1
less than a power of 2 (i.e., n being one of 1, 3, 7, 15, 31, 63, etc.):

 Java Au Naturel by William C. Jones 18-31 18-31

 compsHSBuild2(n) = 0 if n <= 1, otherwise
 compsHSBuild2(n) = 2*compsHSBuild2(n/2) + 2*log2((n + 1)/2)

Closed forms of recurrence relations

We would like to have an upper bound on the value of compsXX(n) as a function of n,
without the recursive call of the function. This is called a closed form. We can prove by
induction that compsMS is bounded above by n*log2(n) (and thus so is compsTS, since
they have the same recurrence relation). We use here the facts that log2(2) is 1, log2(1)
is 0, and log2(n/x) = log2(n) - log2(x):

To Prove compsMS(n) <= n * log2(n) for any n >= 1 that is a power of 2.
Basic Step when n = 1: compsMS(n) is zero, which is less-equal 1 * log2(1).
Inductive Step To show that compsMS(n) <= n * log2(n) in situations where n > 1 and we
know the relation is true for all smaller powers of 2, we reason as follows:

 compsMS(n) = 2 * compsMS(n/2) + (n - 1) // combines the first two terms
 <= 2 * (n/2 * log2(n/2)) + (n - 1) // since it is true for smaller powers of 2
 = n * (log2(n/2)) + (n - 1)
 = n * (log2(n) - log2(2)) + (n - 1)
 = n * log2(n) - n * 1 + n - 1 = n * log2(n) - 1 < n * log2(n)

Conclusion The truth of the assertion for all positive powers of 2 follows by the Induction
Principle from the Basis Step and the Inductive Step.

We can also prove by induction that compsHSBuild is bounded above by n*log2(n):

To Prove compsHSBuild(n) <= n * log2(n) for any n >= 1.
Basic Step when n = 1: compsHSBuild(n) is zero, which is less-equal 1 * log2(1).
Inductive Step To show that compsHSBuild(n) <= n * log2(n) in situations where n > 1
and we know the relation is true for all smaller values of n, we reason as follows:

 compsHSBuild(n) = compsHSBuild(n-1) + log2(n) // known recurrence relation
 <= (n-1) * log2(n-1) + log2(n) // since it is true for smaller values of n
 <= (n-1) * log2(n) + log2(n)
 = n * log2(n)

Conclusion The truth of the assertion for all positive n follows by the Induction Principle
from the Basis Step and the Inductive Step.

The proofs that compsIS(n) <= (n-1)2 and that compsHSBuild2(n) < 2*n are left as
exercises. The latter fact shows that this way of building a heap executes in big-oh of N
time.

Exercise 18.52 (harder) Rewrite the merged method to not use a header node or
create any extra nodes.
Exercise 18.53** Revise the merged method on the precondition that one's first Node
contains the smallest data value. Run down the one list, inserting Nodes from two's list
wherever appropriate, then return the one list. Rewrite the sorted method to use this
new merged method by calling it from two different places in the coding. Is this a faster
implementation of the MergeSort logic?
Exercise 18.54** Prove that compsIS(n) <= (n-1)2 for all positive values of n.
Exercise 18.55** Prove that compsHSBuild2(n) = 2*n - 2*log2(n+1) for all positive
numbers that are 1 less than a power of 2.
Exercise 18.56** Write a recurrence relation for the number of comparisons required for
binary search in an array and prove inductively a good upper limit on them.

 Java Au Naturel by William C. Jones 18-32 18-32

18.9 External Sorting: File Merge Using A Priority Queue

Sometimes we have so much data to put in sorted order that we cannot fit it all into RAM.
Say it is stored in a hard-disk file and there are 2 million records to sort (a record is the
set of current values of instance variables of an object). Our problem is to produce a new
hard-disk file (we will call it SORTED.DAT) that contains all of those records in ascending
order of IDs.

The piles-of-files algorithm

It is desirable to do as much of the sorting as possible in RAM, so a reasonable first step
is to read as many values as we can into RAM, sort them, and write them out to a file.
Then we read some more and write those to another file, etc. For instance, if we can
handle 10,000 records at a time in RAM, we could end up with our original 2 million
records in 200 different files. Then we could merge them together into one large file as
shown in the accompanying design block (numFiles is 200 for this example).

STRUCTURED NATURAL LANGUAGE DESIGN for merging 200 files
1. Read the first record from each file into the corresponding component of an array of
 numFiles Comparable objects. Call the array item.
2. Find the smallest of those array components. Say it is at index k.
3. Write item[k] to the SORTED.DAT file.
4. If file number k is now empty, delete its entry from the array, otherwise get another
 value from the corresponding file k to go in item[k].
5. Repeat steps 2 through 4 until done.

The total execution time for this algorithm is what is required for:
(a) the internal sorting, 200 groups of 10,000, plus
(b) reading and writing 2 million records 2 times each, and also
(c) making 199 comparisons 2 million times for a total of 398 million comparisons.
That last calculation generalizes to N * (N / 10000) for N records, so overall this is
a big-oh of N-squared algorithm.

Object design

This design block is far too specific. We should not be making a commitment to unsorted
arrays of values at this point in the design, or to a specific kind of file. To start with, we
should just require some kind of file object that can provide the next object in a sequential
file when asked or accept a new object to add to the end of the file. A reasonable object
design is the following:

 public class ObjectFile // for generic files of objects
 { // Open the file of that name for output; open a temporary file if the name is "".
 public ObjectFile (String name) { }
 // Add ob to the end of the file.
 public void writeObject (Object ob) { }
 // Change over to providing input, not output.
 public void openForInput() { }
 // Retrieve the next available object in the file.
 public Object readObject() { return null; }
 // Switch back to providing output, not input.
 public void openForOutput() { }
 // Tell whether the input file has no more values.
 public boolean isEmpty() { return false; }
 }

 Java Au Naturel by William C. Jones 18-33 18-33

We can then leave the details of how this is done in terms of the Sun standard library for
the coding of this class's methods. You might want to look into Sun's ObjectInputStream
class and serialization for a good way to implement this class.

To sort the data 10,000 units at a time (or whatever is appropriate), we basically need an
object that provides two services: It can read 10,000 or so values from a given ObjectFile
that has been opened for input; and it can write those 10,000 or so values in order to a
given ObjectFile that has been opened for output. It could be as follows:

 public class ObjectFileSorter // for sorters of ObjectFiles
 { // Create the object capable of holding max values.
 public ObjectFileSorter (int max) { }
 // Read max values from the given file, except stop reading at the end of the file.
 public void readManyFromFile (ObjectFile file) { }
 // Write all values you have to the given file in increasing order using compareTo.
 public void writeManyToFile (ObjectFile file) { }
 }

The upper part of Listing 18.14 (see next page) shows the structure of the object that
converts one very large unsorted file to a very large sorted file. For the constructor, you
supply the names of the unsorted file and the sorted file. Both are initially open for output
(according to the specifications for the ObjectFile class), so you have to open the
unsorted file for input.

The makeSortedFiles method in the middle part of Listing 18.14 creates an
ObjectFileSorter object from a numeric parameter that tells how many objects you want
to have in the sorter at one time. Then it repeatedly reads 10,000 (or whatever) values
from the unsorted file, writes them in sorted order to a temporary output file, and adds the
temporary file along with its first value to a data structure named itsData.

For the process of merging 200 files (or however many we have), we need a kind of data
structure that can store pairs consisting of a file plus the next available value from that
file. When we get a value from this object, we want to receive the pair with the smallest
value using the compareTo method. A priority queue class is acceptable for this
purpose.

A priority queue can also do most of the task required of an ObjectFileSorter. That is,
readManyFromFile can repeatedly read a data value and add it to a priority queue.
And writeManyToFile can repeatedly call removeMin for that priority queue and
write the result to the file.

Using only four files

A prime difficulty with this piles-of-files algorithm is that many systems do not allow you to
keep more than a dozen or so files open at any one time. So we next present a method
that only uses four files.

Stage 1 (for the makeSortedFiles method) Write the sorted groups of 10,000 (or
whatever) alternately to just 2 files. That is, the first group goes into file one, the second
into file two, the third into file one again, the fourth into file two again, the fifth into file
one, the sixth into file two, etc. So for the example of 2 million data values, you end up
with 100 groups of 10,000 in each of the 2 files.

 Java Au Naturel by William C. Jones 18-34 18-34

Listing 18.14 File merge with piles of files

import ObjectFile;
import ObjectFileSorter;
import PriQue;

public class ManyFilesMerger
{
 private ObjectFile itsInFile; // the original unsorted input
 private ObjectFile itsOutFile; // the final sorted output
 private HeapPriQue itsData = new HeapPriQue();

 public ManyFilesMerger (String inf, String outf)
 { itsInFile = new ObjectFile (inf); // for output //1
 itsInFile.openForInput(); // but we need input //2
 itsOutFile = new ObjectFile (outf); // for output //3
 } //==

 /** Step 1: Make many files, each sorted. */

 public void makeSortedFiles (int maxToSort)
 { ObjectFileSorter sorter = new ObjectFileSorter (maxToSort);
 while (! itsInFile.isEmpty()) //5
 { ObjectFile tempFile = new ObjectFile (""); //6
 sorter.readManyFromFile (itsInFile); //7
 sorter.writeManyToFile (tempFile); //8
 tempFile.openForInput(); //9
 itsData.add (new Pair (tempFile.readObject(),tempFile));
 } //11
 } //==

 /** Step 2: Merge the many files into just one sorted file.*/

 public void mergeFiles()
 { while (! itsData.isEmpty()) //12
 { Pair p = (Pair) itsData.removeMin(); //13
 itsOutFile.writeObject (p.itsData); //14
 if (! p.itsFile.isEmpty()) //15
 { p.itsData = p.itsFile.readObject(); //16
 itsData.add (p); //17
 } //18
 } //19
 } //==

 private static class Pair implements Comparable
 { public Object itsData;
 public final ObjectFile itsFile;

 public Pair (Object data, ObjectFile file)
 { itsData = data; //20
 itsFile = file; //21
 }

 public int compareTo (Object ob)
 { return ((Comparable) this.itsData).compareTo //22
 (((Pair) ob).itsData); //23
 }
 } //==
}

 Java Au Naturel by William C. Jones 18-35 18-35

It will be difficult to make use of this data unless you can tell where one group of 10,000
ends and the next begins. So you need a special object value, different from any other,
that you can use to mark the boundary between groups. Call this value itsSentinel.
You will also find it convenient to have exactly the same number of groups in each of the
two files; so if the last group goes in file one, just write itsSentinel again to two.
That makes it an empty group of sorted values. The implementation for this part of the
algorithm is in the upper and middle parts of Listing 18.15 (see next page).

Stage 2 (for the mergeFiles method) is the merging process:

1. Open files one and two for input and create two additional files out1 and out2

for output.
2. Combine the first 10,000 from file one with the first 10,000 from file two and write

the resulting sorted group of 20,000 to file out1. This requires less than 20,000
comparisons using the standard merging logic.

3. Combine the second 10,000 from file one with the second 10,000 from file two
and write the resulting sorted group of 20,000 to file out2. Again, you only need
less than 20,000 comparisons.

4. Repeat steps 2 and 3 alternately until files one and two are empty. Now you
have 50 groups of 20,000 in each of the two files out1 and out2.

5. Open files one and two for output and files out1 and out2 for input.
6. Combine the first 20,000 from file out1 with the first 20,000 from file out2; write

those 40,000 to one.
7. Combine the second 20,000 from file out1 with the second 20,000 from file out2;

write them to file two.
8. Repeat steps 6 and 7 alternately until files out1 and out2 are empty. Now you

have 25 groups of 40,000 in each of the files one and two.

Surely you can see where this is going. After the two passes through the data described
above, you have six more passes to get it down to one completely sorted file of 2 million
in just one file. You then write all of its values to the output file (except for the sentinel
value at the end, of course). Note that you will occasionally get a group left over that has
no group to be merged with (when you have an odd number of groups), in which case
you just copy it into the appropriate file. The bottom part of Listing 18.15 contains this
logic, except that the key merging logic is left as an exercise.

The total execution time for this algorithm is what is required for:
(a) the internal sorting, 200 groups of 10,000, plus
(b) reading and writing 2 million records 9 times each, and also
(c) making 2 million comparisons 8 times each for a total of 16 million comparisons.
The 9 and the 8 in this analysis are log2 (200) + 1 and log2(200). This generalizes to
N * log2(N / 10000) for N records, so overall this is a big-oh of N * log(N)
algorithm. But in real-life situations, it is slower than the piles-of-files method described
first, since reading and writing disk records is excruciatingly slow.

Exercise 18.57 The ManyFilesMerger object in Listing 18.14 expects that a client class
will call first the makeSortedFiles method and, directly after that, the mergeFiles
method. What happens if a client class calls mergeFiles first?
Exercise 18.58 (harder) Still referring to the situation in the preceding exercise, what
happens if a client class calls makeSortedFiles twice in a row without calling
mergeFiles?
Exercise 18.59* Modify Listing 18.15 so that no client class can call mergeFiles
before it calls makeSortedFiles and no client class can call either of those methods
twice in a row. Hint: Add a boolean instance variable that tells whether
makeSortedFiles has been called without an immediately following call of
mergeFiles; use it appropriately.
Exercise 18.60*** Write the recursive coding for mergeToOneFile in Listing 18.15.

 Java Au Naturel by William C. Jones 18-36 18-36

Listing 18.15 File merge with just four files

import ObjectFile;
import ObjectFileSorter;
import PriQue;

public class FourFilesMerger
{
 private ObjectFile itsInFile; // the original unsorted input
 private ObjectFile itsOutFile; // the final sorted output
 private ObjectFile one, two; // two scratch files
 private Object itsSentinel; // sentinel value to mark the end

 public FourFilesMerger (String inf, String outf, Object sent)
 { itsInFile = new ObjectFile (inf); // for output //1
 itsInFile.openForInput(); // but we need input //2
 itsOutFile = new ObjectFile (outf); // for output //3
 itsSentinel = sent; //4
 } //==

 public void makeSortedFiles (int maxToSort)
 { ObjectFileSorter sorter = new ObjectFileSorter (maxToSort);
 one = new ObjectFile (""); // for output //6
 two = new ObjectFile (""); // for output //7
 while (! itsInFile.isEmpty()) //8
 { sorter.readManyFromFile (itsInFile); //9
 sorter.writeManyToFile (one); //10
 one.writeObject (itsSentinel); //11
 if (! itsInFile.isEmpty()) //12
 { sorter.readManyFromFile (itsInFile); //13
 sorter.writeManyToFile (two); //14
 } //15
 two.writeObject (itsSentinel); //16
 } //17
 } //==

 public void mergeFiles()
 { if (one != null && ! one.isEmpty()) //18
 { one = mergeToOneFile (one, two, //19
 new ObjectFile (""), new ObjectFile ("")); //20
 Object data = one.readObject(); //21
 while (! one.isEmpty()) //22
 { itsOutFile.writeObject (data); //23
 data = one.readObject(); //24
 } //25
 } //26
 } //==

 /** Return a file containing all the values in increasing
 * order, plus a sentinel at the end. */

 private ObjectFile mergeToOneFile (ObjectFile in1,
 ObjectFile in2, ObjectFile out1, ObjectFile out2)
 { return null; // left as an exercise
 } //==
}

 Java Au Naturel by William C. Jones 18-37 18-37

18.10 Review Of Chapter Eighteen

Ø Stacks, queues, and priority queues are data structures that allow you to add an

element, remove a particular element, see if they are empty, or see what you would
get if you removed an element. The particular element you get depends on the
structure: A priority queue gives you the element of highest priority (in case of a tie,
the element that has been there longest). The PriQue interface has the methods
isEmpty(), add(ob), removeMin(), and peekMin().

Ø A java.util.Comparator object has a method compare(Object, Object) that
returns an int with the same meaning as for the standard compareTo method. This
kind of functor object gives you full flexibility in choosing how things are prioritized.

Ø A priority queue implementation is stable if, in case of ties in priority, the element that
has been in the data structure the longest is always removed first.

Ø This chapter presented several implementations of PriQue: ArrayOutPriQue and
NodeOutPriQue (based on the InsertionSort), ArrayInPriQue and NodeInPriQue
(based on the SelectionSort), NodeGroupPriQue (when there are very few different
priority levels), TreePriQue (based on the QuickSort or its equivalent TreeSort), and
HeapPriQue (based on the HeapSort logic).

Ø A HeapSort arranges the elements in an array so each element is greater than or
equal to its two "children", then repeatedly moves the first element out and readjusts
the heap structure. The children of index k are index 2*k+1 and 2*k+2.

Answers to Selected Exercises

18.1 public static void transfer (PriQue one, PriQue two)
 { while (! one.isEmpty())
 two.add (one.removeMin());
 }
18.2 The third iteration combines the trees with 9 and 10 in their roots to obtain a tree with 19 in its root.
 This 19-node would be inserted between 16 and 22. Its left subtree would be a frequency of 9 with
 "gun" in its right subtree and the existing "peace"-4-"love" subtree as its left subtree.
18.3 public void combineHuffmanly (TreeNode par) // in the TreeNode class
 { par.itsRight = this.itsLeft;
 this.itsLeft = par;
 this.itsData = new Integer (((Integer) this.itsData).intValue() + ((Integer) par.itsData).intValue());
 }
18.7 Use the following Comparator class:
 public class ByPosition implements java.util.Comparator
 { public int compare (Object one, Object two)
 { RectangularShape a = (RectangularShape) one;
 RectangularShape b = (RectangularShape) two;
 return a.getY() != b.getY() ? a.getY() - b.getY() : b.getX() - a.getX();
 }
 }
18.10 Object[] toDiscard = itsItem;
 itsItem = new Object [itsItem.length * 2];
 for (int k = 0; k < itsSize; k++)
 itsItem[k] = toDiscard[k];
18.11 public void add (Object ob)
 if (itsSize == itsItem.length)
 { } // same as for the preceding exercise
 itsItem[itsSize] = ob;
 itsSize++;
18.12 Replace the next-to-last statement in the removeMin method by the following:
 for (int k = best; k < itsSize; k++)
 itsItem[k] = itsItem[k + 1];
18.17 public Object peekMin()
 { if (isEmpty())
 throw new IllegalStateException ("priority Q is empty");
 return itsFirst.itsData;
 }
18.18 Replace lines 12-14 of NodeInPriQue's removeMin method by the following two:
 best.itsData = best.itsNext.itsData;
 best.itsNext = best.itsNext.itsData;

 Java Au Naturel by William C. Jones 18-38 18-38

18.19 In the add method in Listing 18.5, replace the while-loop by the following four lines:
 while (p.itsNext != null && itsTest.compare (ob, p.itsData) > 0) // note change in the second condition
 p = p.itsNext;
 if (p.itsNext != null && itsTest.compare (ob, p.itsData) == 0)
 return;
18.20 public int size()
 { int count = 0;
 for (Node p = itsFirst; p.itsNext != null; p = p.itsNext)
 count++;
 return count;
 }
18.21 public String toString()
 { String valueToReturn = "";
 for (Node p = itsFirst; p.itsNext != null; p = p.itsNext)
 valueToReturn += '\t' + p.itsData.toString();
 return valueToReturn;
 }
18.22 public void removeAbove (Object ob) // in NodeOutPriQue
 { while (itsFirst.itsNext != null && itsTest.compare (itsFirst.itsData, ob) < 0)
 itsFirst = itsFirst.itsNext;
 }
18.23 public void removeAbove (Object ob) // in NodeInPriQue
 { while (itsFirst.itsNext != null && itsTest.compare (itsFirst.itsData, ob) < 0) // check the first one
 itsFirst = itsFirst.itsNext;
 if (itsFirst.itsNext != null)
 { Node p = itsFirst;
 while (p.itsNext.itsNext != null) // so the next node has data to be compared
 if (itsTest.compare (p.itsNext.itsData, ob) < 0)
 p.itsNext = p.itsNext.itsNext;
 else
 p = p.itsNext;
 }
 }
18.24 public void add (Object ob) // revision for NodeInPriQue
 { if (! isEmpty() && itsTest.compare (ob, itsFirst.itsData) >= 0)
 itsFirst.itsNext = new Node (ob, itsFirst.itsNext);
 else
 itsFirst = new Node (ob, itsFirst);
 }
18.35 In peekMin write: return ((QueueADT) itsFirst.itsData).peekFront();
 In removeMin write: Object valueToReturn = ((QueueADT) itsFirst.itsData).dequeue();
 Also in removeMin write: if (((QueueADT) itsFirst.itsData).isEmpty())
 In add replace "p.itsData." by "((QueueADT) p.itsData)." in all three places.
18.38 public Object worstData()
 { return itsRight == ET ? itsData : itsRight.worstData();
 }
18.39 public void printData()
 { if (isEmpty())
 return;
 itsLeft.printData();
 System.out.println (itsData.toString());
 itsRight.printData();
 }
18.43 Just before the while in line 7, define: int parent = (k - 1) / 2;
 Replace the phrase (k - 1) / 2 by parent in three places: lines 8, 9, and 10.
 Just before the end of the loop body at line 9, update: parent = (k - 1) / 2.
18.44 The add method swaps 3 and 7, leaves 4 where it is, then swaps 6 and 3. Result: {7, 6, 4, 3}.
 The siftDown method swaps 7 and 3, then swaps 3 with 6. Result: {6, 3, 4, 7}. The next call of
 siftDown swaps 6 and 4. The next call of siftDown swaps 4 and 3. Final result: {3, 4, 6, 7}.
18.45 Currently, itsSize >= 2 requires only 1 test, but itsSize < 2 requires 2 tests (at both lines 18 and 20).
 The swap would require 2 tests except when itsSize==1, which happens less often than itsSize >= 2.
18.46 3 when size is 3: 2 for add, 1 for siftDown. 25 when size is 7: 2*1+4*2 for the two levels of add,
 then (4*4-2)+1 for siftDown.
18.52 Change the last statement to be return result. Then insert the following at the beginning:
 Node result = ((Comparable) one.itsData).compareTo (two.itsData) < 0 ? one : two;
 if (result == one)
 one = one.itsNext;
 else
 two = two.itsNext;
18.57 Nothing happens if mergeFiles is called first, since itsData is empty until after makeSortedFiles
 executes.
18.58 In effect, nothing happens if makeSortedFiles is called twice. True, on the second time another
 new ObjectFileSorter object is created. But itsInfile is empty (caused by the preceding call of this
 method), so the method terminates immediately and the newly-created object is garbage collected.

