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17  Binary Trees 
 
 
Overview 
 
This chapter introduces a standard data structure called a binary tree.  You have seen 
that a node for a linked list contains data and also a reference to one other node (or to 
null, at the end of the sequence).  A node for a binary tree contains data and also 
references to two other nodes (or to null).   
 
• Sections 17.1-17.3 develop an application to keeping track of descendents of a 

particular person.  This application uses a family tree to store the ancestor 
relationships and discusses various ways of traversing the family tree. 

• Sections 17.4-17.6 implement the Mapping interface and iterators with a binary 
search tree, on the condition that data values be Comparable with each other. 

• Sections 17.7-17.8 discuss how to keep binary search trees decently balanced  -- 
red-black trees, AVL trees -- and prove useful properties of these trees. 

• Section 17.9 discusses more advanced applications of binary tree nodes, e.g., 2-3-4 
trees and B-trees. 

• Section 17.10 introduces Data Flow Diagrams as a tool for software design and 
applies it to a company that maintains a database of orders from customers. 

 

17.1 Analysis And Design Of The Genealogy Software 
 
Problem statement 
 
A client doing a genealogical study needs a program to track all of the blood descendents 
of one individual.  She will begin by entering that one individual's name.  Thereafter, she 
will enter the name of each person only after that person's parent has previously been 
entered.  She wants the program to be able to do two things at any point during and after 
this data entry process, upon request:  (a) list all children of a person who has already 
been entered, one child per line, and (b) display a list of all the people currently in the 
dataset, one person per line, with those further from the ancestor-of-all listed earlier. 
 
You are part of a software development group that takes on this assignment.  You begin 
by performing an analysis of the requirements for the software, then continue by 
developing a design for the software.  The design is in two parts:  The overall main logic 
and a description of the objects needed by the main logic, along with the services offered 
by those objects.  Services offered by a class of objects are usually expressed as the 
public methods that can be called for those objects. 
 
Analysis of requirements 
 
First you find out what details are missing from the problem statement, details that you 
will need to solve the problem.  Then you get clarification from the client:   
 
Question  In what order should the children of a given person be listed?   
Client's Answer  "I don't care."  So you wait until you develop the algorithm and use 
whatever is easiest.   
 
Question  How will the client be able to tell who is the child of whom in the full listing?   
Client's Answer  "Oops, I didn't think of that.  What do you suggest?"   
Our Response  Have each person's name indented three spaces further than its parent, 
and in such a way that you can visually find the parent of any person by going down the 
list to the first person who is "out-dented" further to the left than that person.  The client 
accepts the suggestion.   
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Question  What if the user asks for information about a person who is not already in the 
dataset?   
Client's Answer  Have the program say, "I'm sorry, that person is not in the family" and 
carry on. 
 
Question  How does the user indicate which of the possible choices is wanted?   
Client's Answer  Enter a single letter:  L = list, A = add, S = search, and E = exit. 
 
Question  What if two people have the same name? 
Client's Answer  Assume that the user will never do this and act accordingly. 
 
Main logic design 
 
This family-tree software could proceed as shown in the accompanying design block.  It 
gives the overall logic of the software expressed in ordinary English (though you may use 
whatever natural language you wish).  However, selection between alternative actions 
and repetitions of actions are indicated by indenting the subordinate actions. 
 

STRUCTURED NATURAL LANGUAGE DESIGN of the main logic 
1. Ask the user for the ancestor-of-all and store it in the dataset. 
2. Give directions on the four options available: list all, add one, search for one, exit. 
3. Repeat the following as long as the user does not choose the exit option... 
  3a. If the user's choice is to add one person then... 

   Get the parent and search the dataset for it.  If there... 
       Ask for the name of the child and add that person. 
  3b. If the user's choice is to search then... 
    Get the parent and, if there, list all of his or her children. 
  3c. If the user's choice is to list everyone then... 
    List all of the people of the dataset with proper indenting. 

 
 
Object design 
 
The master design makes it seem quite natural to have a Genealogy dataset object that 
allows the three capabilities corresponding to the three choices the user has.  The IO 
class developed in Listing 10.2 offers simple input/output services we will use here: 
IO.say prints a message using JOptionPane.showMessageDialog and 
IO.askLine prompts for String input using JOptionPane.showInputDialog.  This 
basic object design then leads to the coding in Listing 17.1 (see next page). 
 
 Genealogy (String lilith) 
  // constructor to create a dataset of parent-child relations with lilith at the root  
 public void addChild (String parent) 
  // if the given parent is in the dataset, ask for a child of that parent and then add it
 public void listChildren (String parent) 
  // list all children of the parent, unless the parent is not in the dataset 
 public void listEverybody() 
  // List all values in the dataset, 1 per output line, with all children of any data  
  // value X listed before X and in the order they were entered, and each indented  
  // 3 spaces further than X.  Also, for each child of X, the first line below that child 
  // that is indented less than the child is X itself. 
 
Exercise 17.1*  Discuss the drawbacks of allowing two people of the same name. 
Exercise 17.2*  How would the design change if the user were allowed an additional 
option, namely, to find the parent of a given person? 
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Listing 17.1  The main logic for the genealogy problem 
 
class GenealogyApp 
{  
 /** Read in names of members of a family with their 
  *  parent-child relationships.  Then answer questions about 
  *  what people are the children of what other people.  */ 
 
 public static void main (String[] args)   
 { String s = IO.askLine ("Enter the ancestor of everyone:"); 
  Genealogy family = new Genealogy (s); 
  IO.say ("Your choices: L = list everyone\n" 
    + "\t A = add a child of a person\n" 
    + "\t S = search for children of 1 person\n" 
    + "\t E = exit the program "); 
 
  String choice = IO.askLine ("Choose L, A, S, or E "); 
  while ( ! choice.equals ("E")) 
  { if (choice.equals ("A")) 
    family.addChild (IO.askLine  
       ("parent of the person to be added? ")); 
   else if (choice.equals ("S")) 
    family.listChildren (IO.askLine  
       ("parent of children to be listed? ")); 
   else // it must be "L" 
    family.listEverybody(); 
   choice = IO.askLine ("Choose L, A, S, or E "); 
  } 
  System.exit (0); 
 } //======================== 
} 
 
 

17.2 Implementing The Genealogy Software With Binary Trees 
 
The abstraction we are using here is a non-empty collection of data values organized into 
a general tree.  A general tree G has one data value known as its root value.  And the 
tree G has a number of subtrees, also general trees, which contain the other data values 
of G.  G could have 0 or 2 or 13 subtrees, as long as no two subtrees contain the same 
data value.  The root value of each subtree of G is a child of the root value of G. 
 
Implementing a general tree using a binary tree 
 
You can implement a general tree in coding quite easily as follows:  A TreeNode object 
stores the root data value of the general tree plus a linked list of its children, reading left-
to-right for the most-recently-added down to the first-one-added.  For a TreeNode X, 
X.itsLeft is the TreeNode containing the leftmost child of X.  Also, X.itsRight is 
a reference to the next child of the parent of X to X's right.  Concretely... 
 
• X.itsData is the root value of X. 
• C1 = X.itsLeft contains X's leftmost child, the last-added child of X.  
• C2 = C1.itsRight contains X's second child from the left, added just before 

C1.itsData. 
• C3 = C2.itsRight contains X's third child from the left, etc.   
 
Figure 17.1 is an example of a Genealogy dataset, with single letters for data values.  
The abstract general tree is on the right; the concrete TreeNodes are on the left.   
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If b is the TreeNode whose root value is B, 
then b.itsRight is the TreeNode with 
root value H and b.itsLeft is the 
TreeNode with root value C.  The TreeNode 
b.itsLeft.itsRight has root value D.  
The TreeNode class in Listing 17.2 (see next 
page) can be used to implement the 
Genealogy class. The coding in Listing 17.2 
contains some methods not needed for the 
Genealogy software, just to give you some 
feel for how to work with tree structures. All  
but the last one allow you to get information   Figure 17.1  TreeNodes vs. general 
about a tree but not modify it. 
 
We let ET, standing for Empty Tree, be one particular empty tree (i.e., having no data).  
This turns out to be advantageous at times; it is like a trailer node for linked lists.  The 
following coding adds newInfo to the left of a node, thus making newInfo the most 
recently added child of the node's data value.  It puts the current linked list of the 
children of the node off to the right of the newly-added child, and it automatically puts 
ET to the left of the newly-added node to signal that this child has no children (as yet): 
 
 TreeNode newNode = new TreeNode (newInfo); 
 newNode.itsRight = node.itsLeft; 
 node.itsLeft = newNode; 
 
The size method in the middle part of Listing 17.2 tells the number of data values in 
the TreeNode executor.  It is zero if the executor is empty, otherwise it is 1 for the 
executor's root value plus the number of all data values to the left of the executor plus the 
number of all data values to the right of the executor.  If you were to call b.size() for 
b being the node containing B in Figure 17.1, it would get 5 from its call of c.size() 
(c being the node containing C) and get 4 from its call of h.size() (h being the node 
containing H), and so it would return 10 (which is 1 + 5 + 4). 
 
The firstNode method in Listing 17.2 returns the node that is furthest left in the 
executor's tree, assuming that the executor is a non-empty tree.  This furthest-left node is 
(a) itself if the executor has an empty left subtree, otherwise it is (b) the furthest-left node 
of its left subtree. If you were to call a.firstNode() for a being the node containing 
A in Figure 17.1, it would call b.firstNode(), which would call c.firstNode(), 
which would return c. 
 
The deleteLastNode method in Listing 17.2 deletes the furthest node to the right in 
the executor's tree, assuming that the executor has a non-empty node to its right.  If the 
executor's right (call it R) has only the empty tree to its right, the executor replaces R by 
whatever is to R's left (which may or may not be empty).  Otherwise the executor asks R 
to delete the furthest node to the right of R.  If you were to call c.deleteLastNode() 
for c being the node containing C in Figure 17.1, it would see that d.itsRight is 
empty (d is the node containing D) and therefore set c.itsRight to be e (the node 
containing E). 
 
Binary trees 
 
The TreeNode class implements a binary tree structure.  A non-empty binary tree is a 
structure consisting of one data value (its root value) plus two trees called its left 
subtree and its right subtree.  It is represented in coding as a node object, called the 
root node of that tree.  There are two kinds of nodes, internal nodes and external nodes.  
An internal node has a minimum of three attributes (instance variables):  a data value 
stored there plus references to the root nodes of the left subtree and the right subtree.  A 
leaf node is an internal node for which both subtrees are empty.   
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Listing 17.2  The TreeNode class used by the Genealogy class 
 
public class TreeNode 
{ 
 public static final TreeNode ET = new TreeNode (null);  
 private Object itsData;  // the data value stored in this tree 
 private TreeNode itsLeft  = ET; // left subtree of this tree 
 private TreeNode itsRight = ET; // right subtree of this tree  
 
 
 public TreeNode (Object given) 
 { itsData = given; 
 } //======================== 
 
 public boolean isEmpty() 
 { return this.itsData == null; // generally, only ET 
 } //======================== 
 
 public Object getData() 
 { return itsData; 
 } //======================== 
 
 public TreeNode getLeft() 
 { return itsLeft; 
 } //======================== 
 
 public TreeNode getRight() 
 { return itsRight; 
 } //======================== 
 
 
 /** Return the number of data values in the tree. */ 
 
 public int size()   
 { return this.isEmpty() ? 0    
     :  1 + this.itsLeft.size() + this.itsRight.size(); 
 } //======================== 
 
 
 /** Return the leftmost node in the tree rooted at this.  
  *  Throw an Exception if this is an empty tree.  */ 
 
 public TreeNode firstNode()   
 { return itsLeft.isEmpty()  ?  this : itsLeft.firstNode(); 
 } //======================== 
 
 
 /** Precondition: this is a non-empty node with a non-empty  
     node to its right.  Postcondition: the rightmost node of  
     the subtree rooted at this is removed. */ 
 
 public void deleteLastNode() 
 { if (itsRight.itsRight.isEmpty()) 
   itsRight = itsRight.itsLeft; 
  else 
   itsRight.deleteLastNode(); 
 } //======================== 
} 
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An empty binary tree does not contain any data or any subtrees; it is an external node.  
In figures, internal nodes are typically drawn as ellipses and external nodes are drawn as 
rectangles.  Figure 17.2 shows all binary trees of 1 to 3 data values, though only the first 
three show the external nodes explicitly.  We often draw only internal nodes; it is 
understood that each node drawn with less than two subtrees has an external node for 
each undrawn subtree.  
 

 
 Figure 17.2  Eight binary trees, the first three with external nodes drawn 
 
A path in a tree from one node to another is a sequence of nodes beginning with the first 
and ending with the second such that, for each time node Y follows node X in the 
sequence, node Y is the root of a subtree of node X.  For instance, the fourth binary tree 
in Figure 17.2 has two paths of length 1 (from the A-node to the B-node and from the     
B-node to the C-node) and one path of length 2 (from the A-node via the B-node to the  
C-node).   
 
A binary tree has a limitation on the way in which nodes can be connected, namely, you 
cannot have two different paths from one internal node to another internal node, and you 
cannot have a path from an internal node to itself.  In particular, none of the nodes in the 
left subtree of a binary tree can be in the right subtree. 
 
Another method that could be in the TreeNode class is the following, which prints all the 
data values in a given binary tree in order from left to right.  The logic is (a) an empty tree 
has no data values to print, but (b) printing the data values in a non-empty tree requires 
that you first print all the data values in its left subtree in order from left to right, then print 
the root value, then print all the data values in its right subtree in order from left to right. 
 
 public void printInOrder()   // in the TreeNode class  
 { if (this.isEmpty())  
   return;  // a void method forbids returning with a value 
  itsLeft.printInOrder(); 
  System.out.println (itsData.toString()); 
  itsRight.printInOrder(); 
 } //======================== 
 
For the fourth tree in Figure 17.2, this method would print the data in the order B, C, A.  
For the eighth tree in Figure 17.2, this method would print the data in the order B, A, C. 
 
Exercise 17.3  State the order in which the printInOrder method would print the 
data in the fifth, sixth, and seventh trees in Figure 17.2. 
Exercise 17.4  Describe the action of c.size() on the tree in Figure 17.1, using the 
nomenclature of this section. 
Exercise 17.5  Describe the action of b.deleteLastNode() on the tree in Figure 
17.1, using the nomenclature of this section. 
Exercise 17.6  Write a TreeNode method that returns the rightmost node in the tree. 
Exercise 17.7  Write a TreeNode method that deletes the leftmost node in the tree. 
Exercise 17.8  State the big-oh of the average execution time of the printInOrder 
method and of the deleteLastNode method. 
Exercise 17.9*  Draw all binary trees with four data values. 
Exercise 17.10*  Draw all binary trees with five data values. 
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17.3 Searching Through A Binary Tree 
 
For the Genealogy software, you will sometimes need to search for the TreeNode that 
contains a particular person.  This search process can potentially go through every node 
in the entire genealogy dataset, since there are no ordering properties to speed the 
search.  If the search method finds the person somewhere in the dataset, the addChild 
method then asks the user for the child to be added for that person and puts the child in 
the dataset.  Similarly, the listChildren method searches the dataset for a user-
specified person and then lists all the children that person has, in last-in-first-out order. 
 
One way of searching a binary tree is breadth-first search.  This means that you first 
look at the data at the root, then at the data to the right of the root, then at the data to the 
left of the root, and only then at the data below them.  And only after checking out all of 
the data two steps away from the root would you search through the data that is three 
steps away from the root.  This kind of search can be controlled by a queue as shown in 
Listing 17.3.  Note that, even though the root node of a tree used for a Genealogy dataset 
is empty on its right, this coding checks the tree on the right anyway.  That allows this 
coding to be used for trees that have data on the right of the root node. 
 
 
Listing 17.3  A non-recursive search method in TreeNode using a queue 
 
 /** The search process implemented with a queue. Return the 
  *  TreeNode containing given, or ET if given is not there. 
  *  Precondition:  The executor is not empty. */ 
 
 public TreeNode search (Object given) 
 { QueueADT people = new NodeQueue();                     //1 
  people.enqueue (this);                                 //2 
  do                                                     //3 
  { TreeNode node = (TreeNode) people.dequeue();        //4 
   if (node.itsData.equals (given))                    //5 
    return node;                                     //6 
   if ( ! node.itsRight.isEmpty())                     //7 
    people.enqueue (node.itsRight);                  //8 
   if ( ! node.itsLeft.isEmpty())                      //9 
    people.enqueue (node.itsLeft);                   //10 
  }while ( ! people.isEmpty())                           //11 
  return ET;                                             //12 
 } //======================== 
 
 
QueueADT is described in Chapter Fourteen; all you really have to know for this chapter 
is that the enqueue method adds an Object value (its parameter) to the rear, the 
dequeue method removes an Object value from the front, and the isEmpty method 
checks to see whether you have a value to remove.  NodeQueue is one particular 
implementation of the QueueADT interface.   
 
Similarly, StackADT is described in Chapter Fourteen; all you really have to know for this 
chapter is that the push method adds an Object value (its parameter) to the top, the 
pop method removes an Object value from the top, and the isEmpty method checks 
to see whether you have a value to remove.  NodeStack is one particular implementation 
of the StackADT interface. 
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This search method first puts this root node in the queue.  Then it starts the loop, whose 
first action is to remove from the Queue node = this, which is at the first level of the 
binary tree.  It tests node.itsData.equals (given).  If true, it returns this node.  If 
false, it puts this.itsLeft in the queue (and also this.itsRight if it is called for 
some other tree that has a non-empty node to its right).  Now the node or nodes on the 
second level of the binary tree are in the queue. 
 
On the second time through the loop, the coding removes the node on the left of the 
root and processes it similarly.  It puts node.itsRight and node.itsLeft on the 
Queue, etc.  This is considered breadth-first whether you look at the right before the left 
or vice versa.  In the earlier Figure 17.1, this search process would visit the data values in 
this order:  A, then B (1 level away from the top), then H and C (2 levels away), then I and 
D (3 levels away), then K, J, and E (4 levels away), then F, then G.  Note that levels are 
expressed in terms of the binary tree structure, not the data structure itself. 
 
Depth-first search 
 
Depth-first search means that, after looking at the data in a particular node, you look at 
all the data in its subtree before you look elsewhere.  Concretely, first you check out the 
data in the root.  If you find what you want there, you quit.  Otherwise you search through 
the entire left subtree of the root, going down however many levels are necessary.  Only 
if you do not find what you are looking for there do you go on to the right subtree of the 
root and search through all of the levels of that subtree.   
 
A non-recursive depth-first search can be coded exactly the way it is done in Listing 17.3 
except you replace "Queue" by "Stack" and therefore "enqueue" by "push" and 
"dequeue" by "pop". In the earlier Figure 17.1, this search process would visit the data 
values in this order:  A, then B, then B's left subtree C, D, E, F, and G, then B's right 
subtree H, I, J, and K. 
 
For a recursive depth-first search, you would first check out the data in the root (if any; if 
the root is empty, then of course the result of the search is an empty tree).  If you do not 
find what you want in the root, call the search method recursively for the left subtree of 
the root and see what you get back from that call.  If you get back anything but the empty 
tree, you have found the desired TreeNode value and you do not need to search further.  
Otherwise, search the right subtree of the root and return whatever it produces.   
 
In Figure 17.3, the breadth-first coding in Listing 17.3 will look at the information in the 
following order (one level at a time):  54, 76, 28, 90, 64, 40, 17.  But depth-first search 
would look at the information in the following order:  54, 28, 17, 40, 76, 64, 90. 

 
 Figure 17.3  A binary tree with 7 nodes 
 
 
Traversals 
 
A recursive depth-first search is called left-to-right preorder traversal.  "Traversal" 
means you visit each node in the tree (potentially).  "Left-to-right" means that you visit the 
nodes in the left subtree before you visit any node in the right subtree; the alternative is 
right-to-left traversal.  "Preorder" means that you visit the root node of each subtree 
before you visit any of the nodes in its subtrees.  The alternatives to preorder are 
postorder traversal (visit the root node after you visit all the nodes of the subtrees) and 
inorder traversal (visit the root node in between visiting the nodes of the subtrees). 
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For instance, the printInOrder method coded at the end of the preceding section is 
a left-to-right inorder traversal.  An example of right-to-left inorder traversal is the 
following toString method to return a String value containing a representation of the 
values in the entire binary tree.  It is right-to-left because Java always evaluates the 
operands of the plus operator from left to right. 
 
 public String toString()  // in the TreeNode class 
 { if (this.isEmpty()) 
   return ""; 
  else 
   return " (" + itsRight.toString() + itsData.toString() 
       + itsLeft.toString() + ") "; 
 } //======================== 
 
For the binary tree in Figure 17.3, this toString method would return the String form 
of the right subtree followed by 54 followed by the String form of the left subtree.  The 
String form of the right subtree is "((90) 76 (64))".  The String form of the left subtree is 
"((40) 28 (17))".  So the output from a call of toString would be "(((90) 76 (64)) 54 
((40) 28 (17)))".  
 
Listing 17.4 (see next page) codes the Genealogy class, using the IO class from Listing 
10.2.  It calls on the search method in Listing 17.3 and a recursive listAll method 
in TreeNode that traverses the tree, listing all the data values with each value indented 
appropriately.  This listAll method is left as an exercise.  It is a right-to-left postorder 
traversal.  In the Genealogy class, itsRoot is a reference to the root of a binary tree 
containing the family members. 
 
Exercise 17.11  Consider a binary tree with the same structure as shown in Figure 17.3, 
but with different data values in the seven nodes.  If the order of the data values 
produced by the breadth-first search method in Listing 17.3 is A,B,C,D,E,F,G, then what 
is the order produced by the depth-first search method described in this section? 
Exercise 17.12  Consider a binary tree with the same structure as shown in Figure 17.3, 
but with different data values in the seven nodes.  If the order of the data values 
produced by the recursive depth-first search method described in this section is 
A,B,C,D,E,F,G, then what is the order produced by the breadth-first search method in 
Listing 17.3? 
Exercise 17.13  Is it possible to have a binary tree of seven nodes in which both of the 
algorithms mentioned in the preceding exercise produce exactly the same sequence of 
data values?  If so, what does it look like? 
Exercise 17.14 (harder)  What is the relation between the number of parentheses in the 
output of the toString method at the end of this section and the levels of the data 
values? 
Exercise 17.15**  Write the search function that must be added to the TreeNode class 
in order to make the Genealogy methods work correctly.  It does not assume that the 
dataset is ordered in any way.  You are to code it recursively as described in the text, 
without a stack or queue.  Be sure to have it stop the search as soon as it finds a match. 
Exercise 17.16** Genealogy's listEverybody method calls a recursive tree traversal 
method itsRoot.listAll("") with one parameter, which is a String containing the 
right number of blanks to indent the executor node's data.  Each data value should be 
indented 3 blanks for every generation it is removed from the root data.  Code listAll 
so that it prints all the data values stored in the right subtree of the root node, then prints 
all the data values stored in the left subtree of the root node, then prints the data in the 
root node. For instance, for the data in Figure 17.1, it will print A at the bottom of the list; 
it will print K, I, H, and B in that order, each indented 3 blanks (since they are the children 
of A), with K first; and it will print J just before I and indented 6 blanks. 
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Listing 17.4  The Genealogy class 
 
public class Genealogy   
{ 
 private TreeNode itsRoot;   // the root node of the tree 
 
 /** Create a dataset of parent-child relations with lilith as  
  *  the root data value and no other values in the dataset. */ 
 
 Genealogy (String lilith) 
 { itsRoot = new TreeNode (lilith);                       //1 
 } //======================== 
 
 /** If the given parent is in the dataset, ask for a child of  
  *  that parent and then add that child to the dataset. */ 
 
 public void addChild (String parent) 
 { TreeNode node = itsRoot.search (parent);               //2 
  if (node == TreeNode.ET)                               //3 
   IO.say ("I'm sorry, that person is not in the family"); 
  else                                                   //5 
   node.pushLeft (IO.askLine ("What's the child's name?")); 
 } //======================== 
 
 /** List all children of the parent. */ 
 
 public void listChildren (String parent) 
 { TreeNode node = itsRoot.search (parent);               //7 
  if (node == TreeNode.ET)                               //8 
   IO.say ("I'm sorry, that person is not in the family"); 
  else if (node.getLeft() == TreeNode.ET)                //10 
   IO.say ("None are in the dataset");                 //11 
  else                                                   //12 
  { TreeNode kid = node.getLeft();                      //13 
   String s = kid.getData().toString();                //14 
   for (kid = kid.getRight();  kid != TreeNode.ET;     //15 
                                 kid = kid.getRight())   //16 
    s += ", " + kid.getData().toString();            //17 
   IO.say (s);                                         //18 
  }                                                      //19 
 } //======================== 
 
 /** List all values in the dataset, one per output line,  
  *  with all children of any data value X listed before X  
  *  and in the order they were entered (right-to-left 
  *  postorder), and each indented 3 spaces further than X. */ 
 
 public void listEverybody()   
 { itsRoot.listAll ("");  // left as a recursive exercise //20 
 } //======================== 
} 
 
// The following method is added to the TreeNode class 
 
 public void pushLeft (Object newInfo) 
 { TreeNode newNode = new TreeNode (newInfo);             //21 
  newNode.itsRight = this.itsLeft;                       //22 
  this.itsLeft = newNode;                                //23 
 } //======================== 
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17.4 Implementing The Mapping Interface With Binary Search Trees  
 
The Mapping interface (Listing 16.4) simplifies Sun's standard library Map interface: 
 
 public Object put (Object id, Object value);  // add id/value 
 public boolean containsKey (Object id); // is this id in it? 
 public Object get (Object id); // return the value for this id 
 public Object remove (Object id); // remove the id/value 
 public boolean isEmpty();         // has it no id/value pairs? 
 public int size();                // how many id/value pairs? 
 public java.util.Iterator iterator(); // for listing all pairs 
 
One way to implement the Mapping interface is to use a binary search tree, as long as all 
the keys are from a class that implements Comparable (and so contains the usual 
compareTo method).  A nonempty tree contains one MapEntry, its root data, plus two 
subtrees, one on its left and one on its right.  An empty tree contains no entry or subtree.  
A MapEntry object (described in Listing 16.5) has two final Object instance variables 
whose values can be obtained using me.getKey() and me.getValue(). 
 
In a binary search tree, keys in a left subtree are less than the key for the root data, and 
keys in a right subtree are greater than or equal to the key for the root data.  Mappings do 
not allow duplicate keys.  So if Lkey is any key from a MapEntry data value in X's left 
subtree, and if Rkey is any key from a MapEntry data value in X's right subtree, then 
Lkey.compareTo (((MapEntry) X.itsData).getKey()) < 0 and also 
Rkey.compareTo (((MapEntry) X.itsData).getKey()) > 0. 
 
If the tree is well balanced, then about half of the entries will be in the left subtree and 
about half will be in the right subtree.  A perfectly balanced tree with 31 entries has 15 
entries in its left subtree and 15 entries in its right subtree (and so the root data would be 
the middle value as determined by compareTo).  Each of those subtrees has 7 entries 
in each of its two subtrees, etc.  The tree has a total of five levels; the fifth level has 16 
subtrees each with two empty subtrees.  Figure 17.4 shows such a tree. 

 
 Figure 17.4  Example of a balanced binary search tree with 31 entries 
 
Searching in a binary search tree 
 
When you search for a particular key in this 31-node tree, you only need to look at at 
most five different entries before you find the entry you are looking for (or find that it is not 
in the data structure at all).  Specifically, you compare the given id with the root data 
54.  That tells you whether to look in its left subtree or in its right subtree (unless it equals 
the root data).  Either way, you are in a subtree with only 15 possibilities left instead of 
the original 31.  When you compare the given id with the root of the subtree you are in, 
it tells you whether to look in its left subtree or in its right subtree.  That reduces the 
number of possibilities to 7, again cutting them in half (unless you have already found it 
on the first two levels).  This process continues for at most five levels. 
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There are only ten levels in a balanced binary tree with a thousand entries and only 
twenty levels in a balanced binary tree with a million entries.  So you can find a value you 
are looking for by looking at only twenty different values among a million entries.  That is 
just not possible with a linked list.  Of course, you get the same speed using binary 
search in an ordered array (in Section 13.3).  A balanced binary search tree has a close 
correspondence with an ordered array (this is why it is called a binary search tree):  The 
root data is roughly the middle value in the array; the root data of the left subtree is 
roughly the value a quarter of the way up from the bottom of the array; etc. 
 
Inserting in a binary search tree 
 
The drawback to using an ordered array is that putting a new entry in the array or taking 
an existing one out is so slow.  If you have a million entries, you may have to make 
almost a million assignments of variables to make room for a new one that is near the 
front of the array.  And you may have to make almost a million assignments to move 
entries down when you remove an existing one that is near the front of the array. 
 
With a binary search tree, you only have to make less than half-a-dozen assignments to 
put a new entry in the data structure or remove an existing entry, once you find where it 
goes.  That is an enormous amount of time saved.  And that is true even if you have a 
million million million entries. 
 
Our BintMap implementation of Mapping is in Listing 17.5 (see next page) has just one 
instance variable, the TreeNode stored in itsRoot.  Each TreeNode in the binary 
search tree stores a MapEntry value in itsData (though itsData is declared as 
type Object). To simplify coding comparisons of Comparable id values with the key 
value in itsData, we use the compare method defined in the bottom of Listing 17.5. 
 
Since the Object class has a hashCode method, we could instead use each ID's int 
hashCode value (described in Section 16.7) to decide where a data value is stored.  
Then the IDs would not have to be Comparable; they would just have to come from a 
class of objects that overrides the Object hashCode method appropriately. 
 
Each TreeNode X has references to its two subtrees, X.itsLeft and X.itsRight.  
The nodes at the roots of those two subtrees are the left child and right child of X.  X is 
their parent.  If a node has no data to its left, itsLeft is an empty tree (normally ET), 
and similarly for itsRight. 
 
The lookUp method 
 
The size and isEmpty methods for a BintMap simply return itsRoot.size() 
and itsRoot.isEmpty(), respectively (calling methods in Listing 17.2).  The 
containsKey method returns false if the id parameter is null or if the root node 
has no data.  Otherwise containsKey calls a recursive lookUp method in the 
TreeNode class to return the node that has itsData.getKey() equal to id (if any).  
The logic of the lookUp method follows the structure of a binary search tree: 
 
• If the id is less than the root data, the search should be made in the left subtree, 

and the result that search produces is what the method returns.   
• If the id is larger than the root data, the search should be made in the right subtree, 

and the result that search produces is what the method returns. 
• The only case left is that the id equals the root data, in which case your search is 

successfully completed and you can return this current node.  
 
For the get method, if the id is null or if the executor is empty of data or if lookUp 
returns null, get returns null, otherwise get returns the value part of the id/value pair 
in the node that lookUp returns.   
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Listing 17.5  The BintMap class, partially done 
 
//Methods throw a RuntimeException for non-Comparable ids. 
 
public class BintMap implements Mapping 
{ 
 private TreeNode itsRoot; 
 
 
 public BintMap() 
 { itsRoot = TreeNode.ET; 
 } //====================== 
 
 public int size() 
 { return itsRoot.size(); 
 } //====================== 
 
 public boolean containsKey (Object id) 
 { return id != null && ! this.isEmpty() 
                && itsRoot.lookUp ((Comparable) id) != null; 
 } //====================== 
 
 public Object get (Object id) 
 { if (id == null || this.isEmpty()) 
   return null; 
  TreeNode loc = itsRoot.lookUp ((Comparable) id); 
  return (loc == null)  ?  null   
          :  ((MapEntry) loc.getData()).getValue(); 
 } //======================      
} 
 
 
 
// The following 2 methods are added to the TreeNode class 
 
 /** Return null if id is nowhere in the subtree rooted at 
  *  this node.  Otherwise return the TreeNode containing id. 
  *  Precondition: id is not null, nor is this.itsData; also, 
  *  this tree is a binary search tree. */ 
 
 public TreeNode lookUp (Comparable id) 
 { if (compare (id, itsData) < 0) 
   return itsLeft.isEmpty() ? null : itsLeft.lookUp (id); 
  if (compare (id, itsData) > 0) 
   return itsRight.isEmpty() ? null : itsRight.lookUp (id); 
  return this;  // this is the node with the id 
 } //====================== 
 
 private static int compare (Comparable id, Object data) 
 { return id.compareTo (((MapEntry) data).getKey()); 
 } //====================== 
 
 
Example for lookUp If the root node in Figure 17.4 performs lookUp for the id 47, 
it asks the node to its left containing 28 to perform lookUp, which asks the node to its 
right containing 40 to perform lookUp, which asks the node to its right containing 47 to 
perform lookUp, which returns itself.  But if the id had been 45, the node containing 
47 would then have asked the node to its left containing 43 to perform lookUp, which 
would have seen ET to its right and therefore returned null. 
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The put method 
 
The put method for the BintMap class is in Listing 17.6.  After first checking that the id 
parameter is not null and the BintMap is not completely empty, put calls a recursive 
TreeNode method structured similarly to lookUp.  Closely compare putRecursive 
with lookUp.  Note the indirect recursion:  putRecursive calls one of two other 
methods, each of which can call putRecursive again. 
 
Listing 17.6  The put method for the BintMap class 
 
 public Object put (Object id, Object value) 
 { if (id == null)                                        //1 
   return null;                                        //2 
  if (this.isEmpty())                                    //3 
  { itsRoot = new TreeNode (new MapEntry (id, value));  //4 
   return null;                                        //5 
  }                                                      //6 
  return itsRoot.putRecursive ((Comparable) id, value);  //7 
 } //====================== 
 
// The following 3 methods are added to the TreeNode class 
 
 /** Add the id/value pair to the non-empty binary search tree. 
  *  Return the value the id previously had (null if none). */ 
 
 public Object putRecursive (Comparable id, Object val) 
 { if (compare (id, itsData) < 0)    // go left           //8 
   return putInLeftSubtree (id, val);                  //9 
  if (compare (id, itsData) > 0)    // go right          //10 
   return putInRightSubtree (id, val);                 //11 
  Object valueToReturn = ((MapEntry) itsData).getValue();//12 
  itsData = new MapEntry (id, val);                      //13 
  return valueToReturn;                                  //14 
 } //====================== 
 
 private Object putInLeftSubtree (Comparable id, Object val) 
 { if (itsLeft.isEmpty())                                 //15 
  { itsLeft = new TreeNode (new MapEntry (id, val));    //16 
   return null;                                        //17 
  }                                                      //18 
  else                                                   //19 
   return itsLeft.putRecursive (id, val);              //20 
 } //====================== 
 
 private Object putInRightSubtree (Comparable id, Object val) 
 { if (itsRight.isEmpty())                                //21 
  { itsRight = new TreeNode (new MapEntry (id, val));   //22 
   return null;                                        //23 
  }                                                      //24 
  else                                                   //25 
   return itsRight.putRecursive (id, val);             //26 
 } //====================== 
 
The executor of the putRecursive method puts the MapEntry in the left or right 
subtree depending on whether the id is smaller or larger than its data.  But if it is equal, 
it simply replaces the corresponding value.  Putting a value in the left subtree consists in 
calling the putRecursive method unless the left subtree is empty, in which case it is 
replaced by a one-node subtree containing the new MapEntry value.  Putting a value in 
the right subtree is line-for-line analogous. 
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Example for put If the root node in Figure 17.4 performs putRecursive for the id 
45, it asks the node to its left containing 28 to perform putRecursive, which asks the 
node to its right containing 40 to perform putRecursive, which asks the node to its 
right containing 47 to perform putRecursive, which asks the node to its left containing 
43 to perform putRecursive, which sees that 45 goes to its right where it has an 
empty subtree, so it creates a new node to its right and stores the 45 in it. 
 
The remove method 
 
The hardest method to implement for a binary search tree is the remove method.  This 
method requires that you search through the tree to find a data value whose key matches 
the one given by the parameter.  Then you remove it without altering the relationships of 
the other data values to each other.  You are to return null if the search fails. 
 
If the root node is empty or the id is null, you can simply return null.  Otherwise you 
need to find the node that contains the data with that id; lookUp will do this for you.  If 
lookUp returns null, the id is not in the BintMap.  Otherwise, you can extract the data 
from that node, remove that data from the binary tree, and return the data's value.  This 
logic is in the upper part of Listing 17.7. 
 
 
Listing 17.7  The remove method for the BintMap class 
 
 public Object remove (Object id) 
 { if (id == null || this.isEmpty())                      //1 
   return null;                                        //2 
  TreeNode loc = itsRoot.lookUp ((Comparable) id);       //3 
  if (loc == null)                                       //4 
   return null;                                        //5 
  MapEntry data = (MapEntry) loc.getData();              //6 
  loc.removeData();                                      //7 
  return data.getValue();                                //8 
 } //====================== 
 
 
// The following method is added to the TreeNode class 
 
 /** Precondition: The executor is a non-empty binary search  
  *  tree.  Postcondition:  The data in the executor node is 
  *  removed, leaving a binary search tree 1 node smaller.  */ 
 
 public void removeData() 
 { if (itsRight.isEmpty())                                //9 
  { itsData  = itsLeft.itsData;                         //10 
   itsRight = itsLeft.itsRight;                        //11 
   itsLeft  = itsLeft.itsLeft;                         //12 
  }                                                      //13 
  else if (itsRight.itsLeft.isEmpty())                   //14 
  { itsData  = itsRight.itsData;                        //15 
   itsRight = itsRight.itsRight;                       //16 
  }                                                      //17 
  else                                                   //18 
  { TreeNode p = this.itsRight;                         //19 
   while ( ! p.itsLeft.itsLeft.isEmpty())              //20 
    p = p.itsLeft;                                   //21 
   this.itsData = p.itsLeft.itsData;                   //22 
   p.itsLeft = p.itsLeft.itsRight;                     //23 
  }                                                      //24 
 } //====================== 



                                     Java Au Naturel by William C. Jones                                              17-16 

 

17-16

 

For the removeData method:  Removing the data value in a linked list is easy – you 
simply copy the values from the next node into the current node, thereby replacing its 
data value by the next node's data and then bypassing the next node.  You can also do 
this in a binary tree if the current node only has a left subtree, i.e., its right subtree is 
empty (this is in lines 9-12).  What do you do if the right subtree is not empty?  You obtain 
a replacement data value from the right subtree. 
 
With which value in the current node's right subtree do you replace the current node's 
data?  Only the data in the leftmost node, since that is the data value that comes 
immediately after the current node's data value.  And since that leftmost node has an 
empty left subtree, you may replace it by its own right subtree without altering the 
ordering relationships of the data values.  Study Listing 17.7 carefully to see this. 
 
Example for remove In the small binary seach tree figure at right:  
To remove data H, lines 10-12 copy F and its two subtrees into the H-node.  
To remove data B, lines 15-16 copy C and its right subtree into the B-node.  
To remove data C instead, lines 19-21 set p to the F-node; line 22 copies D 
into the C-node; and line 23 assigns the right subtree of the D-node to be 
the left subtree of the F-node (the original D-node is thereby deleted). 
 
Creating a balanced tree from an array 
 
If you have a filled array of one or more MapEntry values in ascending order (every 
component having a MapEntry value), you could create a nicely balanced binary tree 
from those values by calling the following method in the TreeNode class with the 
statement make(item, 0, item.length - 1): 
 
 public static TreeNode make (Object[] item, int lo, int hi)  
 { int middle = (lo + hi + 1) / 2;  // halfway from lo to hi 
  TreeNode root = new TreeNode (item[middle]); 
  if (lo < middle) 
   root.itsLeft = make (item, lo, middle - 1); 
  if (middle < hi) 
   root.itsRight = make (item, middle + 1, hi); 
  return root; 
 } //======================== 
 
Exercise 17.17  Rewrite the lookUp method to only call compare at most one time 
for each pair of values, instead of wasting execution time calling it twice. 
Exercise 17.18  Rewrite the removeData method so that it checks for an empty left 
subtree and makes the easy removal in that case.  Does this improve overall execution 
time? 
Exercise 17.19 (harder)  Write a TreeNode method public TreeNode copy():  The 
non-empty executor returns a new binary search tree containing exactly the same entries 
as the executor's binary search tree and in the same relative positions.  Use recursion. 
Exercise 17.20 (harder)  Write a TreeNode method public int under 
(Comparable id):  The executor tells how many of its MapEntries have a key less 
than that of the given key.   
Exercise 17.21*  Write a BintMap method public Comparable firstKey() that 
returns the smallest key.  Return null if the executor is empty.  Use recursion. 
Exercise 17.22*  Rewrite the lookUp method in Listing 17.5 without using recursion. 
Exercise 17.23*  Write a recursive TreeNode method public TreeNode reverse():  
the executor returns a new binary tree with the same entries in the opposite order.   
Exercise 17.24**  Write a recursive BintMap method public boolean equals 
(BintMap given): The executor tells whether the BintMap parameter has the same 
key/value pairs in the same order and the same positions in the tree as the executor. 
Exercise 17.25**  Write out the internal invariant for the BintMap class. 
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17.5 Implementing The Iterator Interface For A Binary Search Tree  
 
A Mapping needs an Iterator object so a client can obtain the values in the Mapping one 
at a time.  An obvious implementation is to keep track of the TreeNode that contains the 
information to be returned by a call of next().  This is like what the array 
implementation and the linked list implementation in Chapter Sixteen did: 
 
In ArrayMap, next() returns itsItem[itsPos] if itsPos < itsSize. 
In NodeMap, next() returns itsPos.itsData  if itsPos.itsData != null. 
 
For the BintMap class, we could have next() return itsPos.itsData where 
itsPos is a TreeNode, just as we did for the NodeMap class.  This coding is in Listing 
17.8 (see next page).  Our Mapping iterators disallow remove to make this chapter 
simpler.  When we need to move on to the next TreeNode, we do one of two things: 
 
• If the right subtree of itsPos contains any data, then the  

next value is the first value in that right subtree.  So we set 
itsPos to be the leftmost node in that right subtree.   

• Otherwise, the next value after the one in itsPos is a value 
that is on the path from the root node down to itsPos.  It will 
be in a node that contains itsPos in its left subtree, since the 
value in itsPos comes before it.  If there are two or more 
nodes on that path that have itsPos in the node's left 
subtree, we want the one that is furthest down the path. 

 
              Figure 17.5 Binary search tree 
 
The algorithm described above is left-to-right inorder traversal of the nodes, which is in 
ascending order using compareTo.  An iterator is not required to produce the data 
values in this order, but it is preferable.  Figure 17.5 shows a binary search tree with nine 
values in it.  The effects of the first few accesses to the iterator are as follows: 
 
• The constructor sets itsPos to refer to the leftmost node, which contains 1.   
• A call of next() returns that 1 and then, when it sees that itsPos.itsRight is 

not the empty tree, sets itsPos to the leftmost node in that right subtree, which 
contains 2.   

• Another call of next() returns that 2 and then, when it sees that itsPos has an 
empty right subtree, starts from the root to search down the tree for itsPos.  It 
notes that itsPos is to the left of the node containing 5, and of the node containing 
4, and of the node containing 3.  Since the node containing 3 is lowest in the tree of 
all of those, it sets itsPos to that node containing 3.   

• Another call of next() returns that 3 and then, when it sees that itsPos has an 
empty right subtree, starts from the root to search down the tree for itsPos. It notes 
that itsPos is to the left of the node containing 5 and also of the node containing 
4.  Since the latter is lower in the tree, it sets itsPos to that node containing 4.  

 
Listing 17.8 uses a throw statement when someone calls a method that should not be 
called (remove), or calls a method under conditions when it should not be called (next 
when hasNext() is false).  That is a bug in the coding that calls it.  Notification of the 
bug is through the following kind of statement, which immediately terminates the method 
containing the statement: 
 
 throw new RuntimeException ("some explanatory message"); 



                                     Java Au Naturel by William C. Jones                                              17-18 

 

17-18

 

Listing 17.8  The MapIt class inside the BintMap class, providing iterators 
 
 public java.util.Iterator iterator()    // member of BintMap  
 { return new MapIt (this.itsRoot);                       //1 
 } //====================== 
 
 
 private static class MapIt implements java.util.Iterator 
 { 
  private TreeNode itsPos; 
  private TreeNode itsRoot; 
 
 
  public MapIt (TreeNode given) 
  { itsRoot = given;                                    //2 
   itsPos = given.isEmpty() ? null : given.firstNode();//3 
  } //====================== 
 
 
  public boolean hasNext() 
  { return itsPos != null;                              //4 
  } //====================== 
 
 
  public Object next() 
  { if ( ! hasNext())                                   //5 
    throw new java.util.NoSuchElementException       //6 
               ("iterator has no next element!");    //7 
   Object valueToReturn = itsPos.getData();            //8 
   itsPos = itsPos.nextIn (itsRoot);                   //9 
   return valueToReturn;                               //10 
  } //====================== 
 
  public void remove() 
  { throw new UnsupportedOperationException ("no remove!"); 
  } //====================== 
 }      
 
 
// The following method is added to the TreeNode class 
 
 /** Return the next TreeNode after the executor that appears  
  *  in left-right inorder traversal; return null if there is  
  *  none. Precondition: The executor is not empty, . */ 
 
 public TreeNode nextIn (TreeNode ancestor) 
 { if ( ! this.itsRight.isEmpty())                        //12 
   return this.itsRight.firstNode();                   //13 
  Comparable id = (Comparable) ((MapEntry) itsData).getKey(); 
  TreeNode lastLeftTurn = null;                          //15 
  while (ancestor != this)                               //16 
  { if (compare (id, ancestor.itsData) > 0)             //17 
    ancestor = ancestor.itsRight;                    //18 
   else                                                //19 
   { lastLeftTurn = ancestor;                         //20 
    ancestor = ancestor.itsLeft;                     //21 
   }                                                   //22 
  }                                                      //23 
  return lastLeftTurn;                                   //24 
 } //====================== 
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Using parent pointers 
 
The nextIn method has to go through several nodes, starting from the root of the tree 
and moving down to the current position, in order to move on to the next position.  It 
would be helpful if we could avoid the time it takes to execute that loop.  One way is to 
have each node keep track of its parent.  That is, we put another instance variable in the 
TreeNode class in addition to itsLeft, itsRight, and itsData: 
 
 private TreeNode itsParent = null;  // add to TreeNode 
 
Whenever you consider storing additional information in an object, you should consider 
two things:  What do you gain and what do you lose?  This is like decisions in a business 
venture:  What is your added revenue and what are your added costs?  You need to 
make sure you will be making a profit if you make a change. 
 
What you gain by adding parent information is a faster implementation of the Iterator 
next method.  None of the other methods in the BintMap class profit from having the 
parent information.  What you lose is the space required to store the added information 
and the time required to update the information when needed. 
 
Parent information changes whenever you add or remove a node in the binary tree.  So 
for the put logic in Listing 17.6, set the parent of the root node to null and add the 
following statements directly after the two statements that mention new TreeNode 
(lines 16 and 22): 
 
 this.itsLeft.itsParent = this;   // after line 16 
 this.itsRight.itsParent = this;  // after line 22 
 
For the remove logic in Listing 17.7, you need to change the record of the parent in the 
nodes directly below the one whose data you are changing.  Specifically, you add these 
three lines right after deleting a data value whose right subtree is empty: 
 
 if (this.itsData != null)    // after line 12 
 { this.itsLeft.itsParent = this; 
  this.itsRight.itsParent = this; 
 } 
 
The only other change required in Listing 17.7 is that each node that is moved up into 
another node's position has to have its parent information corrected.  So have the 
following statement after deleting the node to the right of this.  Its new right child may 
be empty, but it does not matter what an empty node thinks its parent is: 
 
 this.itsRight.itsParent = this;  // after line 16 
 
Finally, put this statement after deleting a node to the left of p: 
 
 p.itsLeft.itsParent = p;         // after line 23 
 
The only advantage of having this parent information is that you may now make the 
nextIn method execute faster, by replacing everything after the first two lines by the 
following coding to handle the case when this.itsRight is empty: 
 
 Node p = this; 
 while (p.itsParent != null && p.itsParent.itsLeft != p) 
  p = p.itsParent; 
 return p.itsParent; 
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Implementing an Iterator with a threaded binary search tree 
 
Adding a parent pointer as just described saves execution time, but even more time 
would be saved if we had an itsNext value stored in each node, instead of an 
itsParent value, where itsNext tells the node containing the very next value in 
sequence in the tree.  Then we could replace the entire body of the nextIn method in 
Listing 17.8 by one statement: 
 
 itsPos = itsPos.itsNext;  // new body of nextIn 
  
On the other hand, we need to go to more trouble to adjust the itsNext values each 
time we add or remove a node in the tree.  Specifically, we declare a new instance 
variable in the TreeNode class as follows (instead of having itsParent): 
 
 private TreeNode itsNext = null;  // add to TreeNode 
 
Then we assign it the correct value when we put a new data value in the tree.  For the 
put logic in Listing 17.6, we have to make some adjustments around lines 16 and 22.  
The adjustment for line 16 is left as an exercise; the adjustment for line 22 is to add the 
following two statements after it: 
 
 itsRight.itsNext = this.itsNext;  // after line 22 
 this.itsNext = itsRight; 
 
Some adjustment also has to be made for the remove logic in Listing 17.7, at lines 10, 
16, and 20.  Line 10 is left as an exercise.  The adjustment for the other two is 
straightforward – just add the following statement at line 16 and also at line 19: 
 
 this.itsNext = this.itsNext.itsNext;  // in removeData 
 
Historical Note  This kind of link is called a thread through the tree.  Back in the days 
when RAM was expensive, it was standard to put the itsNext values and the 
itsRight values in the same storage space and just add a boolean value to each node 
to tell what kind of value was in that storage space (and similarly for an itsPrevious 
value sharing space with the itsLeft value).  They would however only store 
something in itsNext when its right subtree was empty. 
 
Exercise 17.26  Write statements that delete a TreeNode node toDelete from a 
binary tree when toDelete is not empty and toDelete.itsRight is empty and 
toDelete.itsParent != null.  Assume you have the itsParent values. 
Exercise 17.27 (harder)  Write a private recursive TreeNode method so that you can 
replace everything in nextIn starting from TreeNode lastLeftTurn by the 
statement: return ancestor.lastLeft (null, id); and still do the same thing. 
Exercise 17.28 (harder)  Determine the amount of execution time saved by adding the 
parent information described in this section for a well-balanced tree. 
Exercise 17.29*  Essay:  What are the advantages and disadvantages of having each 
MapIt iterator create a stack and put on it all of the TreeNodes at which the iterator made 
a left turn on its way to the current position itsPos?  Compare this approach with using 
the itsNext instance variable. 
Exercise 17.30**  Revise the put logic at line 16 in Listing 17.6 to allow for the 
itsNext value. 
Exercise 17.31**  Revise the remove logic at lines 10 through 12 in Listing 17.7 to 
allow for the itsNext value. 
Exercise 17.32**  Implement the Iterator's remove method for Listing 17.8.  Hint:  You 
cannot simply call TreeNode's removeData method in Listing 17.7. 
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Part B  Enrichment And Reinforcement 
 
 

17.6 More Tree Traversals 
 
If you want to put all the data values from a binary tree on a queue for later use, you have 
a choice of six standard depth-first traversal processes.  You can process all the data in 
the left subtree either before or after all the data in the right subtree (left-to-right or right-
to-left).  Whichever of these two you choose, you can process the data in the root either 
before all subtree data (preorder traversal), or after all subtree data (postorder traversal), 
or in between the data of the two subtrees (inorder traversal).   
 
Figure 17.6 shows three of these standard traversals.  Start at the down-arrow at the top 
of one of the figures and follow the dotted line.  Process each of the seven data values 
when you come to the little rectangle pointing to it.  For the left-to-right preorder traversal, 
the order of processing is 17, 13, 11, 15, 22, 20, 25.  For the left-to-right inorder traversal, 
the order of processing is 11, 13, 15, 17, 20, 22, 25.  For the right-to-left postorder 
traversal, the order of processing is 25, 20, 22, 15, 11, 13, 17. 
 

 
Figure 17.6  Three of the six standard traversals (start at the down-arrow) 
 
 
The following right-to-left postorder traversal method, illustrated on the right side of 
Figure 17.6, could be in the TreeNode class, with the parameter being any QueueADT 
object to which you want to add all the data values: 
 
 public void postorderTraverseRL (QueueADT queue)// in TreeNode 
 { if (isEmpty()) 
   return; 
  itsRight.postorderTraverseRL (queue); 
  itsLeft.postorderTraverseRL (queue); 
  queue.enqueue (itsData); 
 } //======================== 
 
There are five more analogous methods, one for each kind of standard depth-first 
traversal.  Note that the queue produced by a preorder traversal of a binary search tree 
can be used to produce an exact copy of that tree, with the same parent-child relations. 
 
The most commonly-used traversal of a binary tree is left-to-right inorder traversal (as 
shown in the middle of Figure 17.6).  This produces the data values in the natural order 
(i.e., using compareTo) if the tree is a binary search tree.  An iterator could be made for 
BintMap using this traversal:  When the iterator is constructed, it traverses the entire tree 
recursively and puts the data values on a queue; each time next is called, the next 
data value is removed from the queue.   
 
The coding for this QueueMapIt iterator class for BintMap is in Listing 17.9 (see next 
page).  Note that next does not need an explicit throw statement, since the queue will 
throw a RuntimeException if anyone tries to take a data value from it when it is empty. 
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Listing 17.9  The QueueMapIt class, providing iterators for BintMap 
 
 public java.util.Iterator iterator()    // member of BintMap  
 { return new QueueMapIt (this.itsRoot); 
 } //====================== 
 
 
 private static class QueueMapIt implements java.util.Iterator 
 { 
  private QueueADT itsQueue = new NodeQueue(); 
 
 
  public QueueMapIt (TreeNode given) 
  { given.inorderTraverseLR (itsQueue);      
  } //====================== 
 
  public boolean hasNext() 
  { return ! itsQueue.isEmpty();                               
  } //====================== 
 
  public Object next() 
  { return itsQueue.dequeue();                          
  } //====================== 
 
  public void remove() 
  { throw new UnsupportedOperationException ("no remove!"); 
  } //====================== 
 }      
 
 
 
// The following method is added to the TreeNode class 
 
 /** Add to the given queue all data values in the standard 
  *  left-to-right inorder traversal. */ 
 
 public void inorderTraverseLR (QueueADT queue) 
 { if (isEmpty()) 
   return; 
  itsLeft.inorderTraverseLR (queue); 
  queue.enqueue (itsData); 
  itsRight.inorderTraverseLR (queue); 
 } //======================== 
 
 
This implementation of Iterators can be more efficient than the three kinds of 
implementations described in the preceding section.  For one thing, you do not have to 
update parent pointers or threading information for each insertion or deletion of data.  
However, if users often progress only a little way through most iterations, you waste the 
time spent making a complete traversal to fill in the queue. 
 
Yet another implementation of BintMap's iterator 
 
An alternative for iterating in left-to-right inorder traversal order is to have each iterator 
keep track of all the nodes at which it made a left turn on the way down the tree to its 
current position.  Those nodes, plus any nodes in the right subtrees of any of those "left-
turn nodes", are all the nodes that it has not yet returned from the next method.  If we 
keep the left-turn nodes on a stack, we can easily move back up the tree from one 
TreeNode to another.  Listing 17.10 has the coding (see next page). 
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Listing 17.10  The StackMapIt class, providing iterators for BintMap 
 
 public java.util.Iterator iterator()    // member of BintMap  
 { return new StackMapIt (this.itsRoot); 
 } //====================== 
 
 
 private static class StackMapIt implements java.util.Iterator 
 { 
  private StackADT itsStack = new NodeStack(); 
 
 
  public StackMapIt (TreeNode given) 
  { pushAllLefties (given, itsStack);      
  } //====================== 
 
  public boolean hasNext() 
  { return ! itsStack.isEmpty();                               
  } //====================== 
 
  public Object next() 
  { TreeNode pos = (TreeNode) itsStack.pop(); 
   pushAllLefties (pos.getRight(), itsStack); 
   return pos.getData(); 
  } //====================== 
 
  public void remove() 
  { throw new UnsupportedOperationException ("no remove!"); 
  } //====================== 
 
  /** push all nodes from the "left edge" of this tree. */ 
 
  private void pushAllLefties (TreeNode node, StackADT stack) 
  { while ( ! node.isEmpty()) 
   { stack.push (node); 
    node = node.getLeft(); 
   } 
  } //====================== 
 }      
 
The key concept for this StackMapIt class is that, at any given time, the next method 
has yet to return the data values (a) in any node in the stack or (b) in any node in the 
right subtree of any node in the stack.  When the iterator is created, it pushes onto the 
stack all the non-empty nodes down the "left edge" of the tree.  When next is called, it 
pops the top node (which, of all the nodes on the stack, is the node furthest down the 
tree).  It then pushes onto the stack all the non-empty nodes down the "left edge" of the 
popped node's right subtree.  Finally, it returns the data in the popped node. 
 
Exercise 17.33  Describe the effect of replacing "Left" by "Right" and vice versa 
throughout Listing 17.10. 
Exercise 17.34  Write the method public void preorderTraverseRL 
(QueueADT queue) analogous to the method in the lower part of Listing 17.9. 
Exercise 17.35*  Write the other three methods analogous to inorderTraverseLR. 
Exercise 17.36*  Rewrite the entire Listing 17.9 to use a NodeStack (methods push 
and pop instead of enqueue and dequeue) instead of a NodeQueue:  Construction 
of an iterator puts all of the data values on a stack so that the next method produces 
left-to-right inorder traversal and has only one statement. 
Exercise 17.37*  Revise the constructor in Listing 17.9 to obtain an iterator that goes 
through the tree in breadth-first order.  Use a modification of the logic in Listing 17.3. 
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17.7 Red-Black And AVL Binary Search Trees  
 
One problem with binary search trees is that they may become unbalanced as values are 
put into them and taken out of them.  We define a full tree to be a tree where every node 
with less than two subtrees is on the lowest level (and thus is a leaf with no subtrees).  
So the full tree with 3 nodes has 2 levels; the full tree with 7 nodes has 3 levels; and the 
full tree with 15 nodes has 4 levels.  In general, a full tree with 2k - 1 nodes has k levels.  
Figure 17.4 had an example of the full tree with 31 nodes.  Figure 17.7 shows full trees 
with 1 node, 3 nodes, 7 nodes, and 15 nodes. 
 

 
 Figure 17.7  Four full trees 
 
 
This book defines a tree to be near-full if it has the minimum possible number of levels 
for the number of data values in the tree.  For instance, any tree with at least 4 data 
values has to have at least 3 levels; any tree with at least 8 data values has to have at 
least 4 levels; and any tree with at least 16 data values has to have at least 5 levels.  In 
general, a tree with anywhere from 2k-1 data values up to and including 2k-1 data values 
is near-full if it has only k levels. 
 
In a near-full tree, the worst-case execution time to find a single value (execution time for 
containsKey or get) is big-oh of log(N).  The reason is that the search process 
requires looking at only one value on each level of the binary tree.  For example, since 
log2(32) is 5, if N is in the range from 16 to 31, log2(N) ranges from 4 to 5, and a near-full 
tree with N data values has 5 levels.  So it takes at most 5 comparisons to find a key you 
are searching for.  In general, you need at most log2(N+1) comparisons to find a data 
value in a near-full tree with N data values.  By contrast, a badly-balanced tree could 
require up to N comparisons.  Reminder:  This book uses log2(x) to mean the number of 
times you have to halve x (i.e., execute x /= 2.0) to get 1 or less.  In Java coding, 
log2(x) is the same as Math.ceil (Math.log(x) / Math.log(2)). 
 
The average search time for a non-empty data structure is the total search time divided 
by the number of data values in the data structure.  The total search time is the number 
of data values you have to look at before you find D, summed over all data values D in 
the data structure.   
 
Example:  The average search time for the first three full trees in Figure 17.7 is 1/1 for the 
first, 5/3 for the second, and 17/7 for the third.  The 17 in the value 17/7 is the sum of 1 
for the root node, 2 for each of the 2 second-level nodes, and 3 for each of the 4 third-
level nodes:  1 + 2*2 + 3*4 = 17.  A probabilistic analysis would show that, if you insert a 
random sequence of data values into a binary search tree, the average search time is 
1.38 * log2(N) where N is the number of data values in the tree. 
 
Balancing an existing binary search tree 
 
If you have any Mapping object that contains mutually Comparable objects in ascending 
order, you can create a new BintMap object with the same data values in the same order 
but in a near-full tree. The BintMap constructor in Listing 17.11 (see next page) does this.  
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Listing 17.11  The balancing constructor in BintMap, with a method in TreeNode 
 
 /** Precondition:  par has MapEntries in ascending order. */ 
 
 public BintMap (Mapping par) 
 { itsRoot = (par == null || par.isEmpty())               //1 
        ? TreeNode.ET                                    //2 
        : TreeNode.balanced (par.size(), par.iterator());//3 
 } //====================== 
 
 /** Return a near-full binary tree with the same ordering. 
  *  Precondition:  it has at least numNodes >= 1 values.  */ 
 
 public static TreeNode balanced (int numNodes, Iterator it) 
 { if (numNodes == 1)                                     //4 
   return new TreeNode (it.next());                    //5 
  TreeNode leftSide = balanced (numNodes / 2, it);       //6 
  TreeNode root = new TreeNode (it.next());              //7 
  root.itsLeft = leftSide;                               //8 
  int n = numNodes – 1 - numNodes / 2;                   //9 
  root.itsRight = (n == 0) ?  ET  :  balanced (n, it);   //10 
  return root;                                           //11 
 } //====================== 
 
If for instance the given Mapping object has 20 or 21 data values, the balanced 
method iterates through the first 10 data values and constructs a near-full BintMap 
named leftSide.  Then it makes a tree with the next (eleventh) data value in its root 
and leftSide as its left subtree.  Finally, it iterates through the remaining 9 or 10 data 
values and puts them in a near-full BintMap as the right subtree of the root. 
 
AVL trees 
 
It would be best if each call of put or remove for a binary search tree would check the 
tree to be sure that the change it makes does not make the tree too far out of balance.  If 
it would go too far out of balance, the method should make a small adjustment (on the 
order of big-oh of 1).  This can be done, but it requires a somewhat looser concept of 
balance:  This book defines a decently-balanced binary tree to be one with not more 
than twice as many levels as a near-full tree of the same number of nodes. 
 
Some computer scientists named Adelson-Velskii and Landis figured out a way to do this, 
so the result is called an AVL tree.  They add one more instance variable to the 
TreeNode class.  This number is the number of levels in the left subtree of a node minus 
the number of levels in the right subtree of that same node: 
 
 private int leftMinusRight = 0; 
 
The objective of the AVL algorithm is to keep this leftMinusRight number equal to 
0, 1, or -1 for every node in the tree at all times.  A binary search tree for which this 
property is true is called an AVL tree.  So each time put or remove is called, it must 
see whether any node has had this value changed to an unacceptable value and, if so, 
make some adjustment to bring the tree back to having the AVL property. 
 
When put is called for some AVL tree, it adds one node.  It should be clear that the 
leftMinusRight number only changes for nodes that are on the path from the root 
down to the added node.  If the addition of a node X loses the AVL property, consider the 
node P that is furthest down on the path from the root to X and has the wrong 
leftMinusRight number.  That number will clearly be 2 if X is in the left subtree of P 
and will be -2 if X is in the right subtree of P.   



                                     Java Au Naturel by William C. Jones                                              17-26 

 

17-26

 

To restore the AVL property, perform a rotation (which consists of moving a node from 
the side of P with more levels to the side with fewer levels).  In this description and in 
Figure 17.8, C denotes the child of P and G denotes C's child on the side of C that has 
more levels (the "grandchild" G will be X or an ancestor of X): 
 
1. Move node G to the other side of P (opposite from C) to be P's other child. 
2. Swap the data in G, P, and C around to get them in increasing order left to right. 
3. Attach the four subtrees of G, P, and C to those three nodes in the way that keeps 

their original order left to right. 

 
 
Figure 17.8  Rotations to correct an AVL tree, showing leftMinusRight values 
 
 
The coding is left as a major programming problem.  The next section proves logically 
that an AVL tree (also known as a height-balanced tree) is decently-balanced. The 
height of a binary tree is the number of nodes on the longest path from the root to a leaf.  
It is therefore the number of levels in the binary tree.  But first we discuss another kind of 
tree, a red-black tree.  We will also prove logically that a red-black tree is decently-
balanced (so the worst-case execution time for a search is never more than twice as 
much as in a near-full tree with the same number of nodes). 
 
Red-black trees 
 
A red-black tree is a binary search tree in which each node is considered to be colored 
either red or black.  We add a new instance variable to each node, as follows: 
 
 private boolean isRed = true; 
 
This says that each node is created red by default; we change its color to black when 
needed (by executing isRed = false).  A red-black tree must satisfy three properties:  
 
1. The root node is black, and external nodes are considered to be black. 
2. No red node is the child of a red node.  
3. The number of black nodes on each path from the root to some external node is the 

same as on any other path from the root to some external node. 
 
The first data value we put into a red-black tree is black, since it goes at the root.  Each 
additional data value we put in goes in a red node X.  There are three possible cases: 
 
1. If X is the child of a black node, the tree maintains the three red-black properties.   
2. If X is the child of a red node whose parent P has a black node on the other side, 

then perform a rotation as described previously for AVL trees.  
3. If X is the child of a red node whose parent P has a red node on the other side, then 

color both children of P black.  If P is not the root node of the whole tree, then color P 
red and apply this same logic (steps 1 through 3) to P in place of X.  

 
Figure 17.9 illustrates what happens if you add one data value at a time to an AVL tree or 
a red-black tree, each value larger than the one before.  When the 15 is added, it makes 
the tree unacceptable, which causes a rotation:  The node containing 15 becomes the left 
child of the root node.  Then the data values are moved around:  15 where 13 was, 13 in 
the root, and 11 to the left of the root. 
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Figure 17.9  Adding ever larger values to an AVL tree and to a red-black tree 
 
 
If you then added 17 to either of the balanced 3-node trees in Figure 17.9, it would be 
acceptable on the right of the 15-node in the AVL tree, but the red-black tree would 
require that you change the color on the 11-node and the 15-node to black. 
 
Coding the red-black insertion algorithm 
 
A partial coding of this algorithm for red-black trees is in Listing 17.12.  The line numbers 
from the put logic in Listing 17.6 have been kept so that you can see that there are only 
two kinds of changes:  (a) Lines 17, 20f, 23, and 26f return ET instead of null to signal 
the problem that the current node is red and has a red child; (b) Lines 20a-20e and lines 
26a-26e call special private methods fixLeftRedRed and fixRightRedRed to 
correct the problem when the current node is a black node with a red child that itself has 
a red child.  The putRecursive coding is the same as in Listing 17.6. 
 
 
Listing 17.12  The put logic in the TreeNode class, revised for red-black trees 
 
 private Object putInLeftSubtree (Comparable id, Object val) 
 { if (itsLeft.isEmpty())                                //15 
  { itsLeft = new TreeNode (new MapEntry (id, val));   //16 
   return this.isRed ? ET : null;                     //17' 
  }                                                     //18 
  else                                                  //19 
  { Object e = itsLeft.putRecursive (id, val);         //20' 
   if ( ! this.isRed && e == ET)                      //20a 
   { fixLeftRedRed();                                //20b 
    return null;                                    //20c 
   }                                                  //20d 
   else                                               //20e 
    return this.isRed && itsLeft.isRed ? ET : e;    //20f 
  }                                                     //20g 
 } //====================== 
 
 private Object putInRightSubtree (Comparable id, Object val) 
 { if (itsRight.isEmpty())                               //21 
  { itsRight = new TreeNode (new MapEntry (id, val));  //22 
   return this.isRed ? ET : null;                     //23' 
  }                                                     //24 
  else                                                  //25 
  { Object e = itsRight.putRecursive (id, val);        //26' 
   if ( ! this.isRed && e == ET)                      //26a 
   { fixRightRedRed();                               //26b 
    return null;                                    //26c 
   }                                                  //26d 
   else                                               //26e 
    return this.isRed && itsRight.isRed ? ET : e;   //26f 
  }                                                     //26g 
 } //====================== 
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These two private methods are left as exercises.  For instance, fixLeftRedRed() 
fixes the situation where the problem is on the left of the executor.  The overall logic is:   
 
 if (itsLeft.itsLeft.isRed && itsLeft.itsRight.isRed) 
  // make it red but make its two children black 
 else if (itsLeft.itsLeft.isRed) 
  // rotate that grandchild to itsRight and readjust 
 else  // itsLeft.itsRight is red 
  // rotate that other grandchild to itsRight and readjust 
 
This requires one other change:  The put method at the top of Listing 17.6 must make 
the root black again if it became red.  This is an exercise too.  The remove method for 
red-black trees is left as a major programming project. 
 
When the executor of putInLeftSubtree is a red node and the key is not already in 
the tree, then that executor acts as follows:  If its left subtree is empty, it creates a new 
red node to its left for the data and returns ET, which signals a problem.  If its left subtree 
is not empty, it asks the black node Z on its left to insert the data and then, if Z turns red 
as a consequence, returns ET to signal a problem.  Red nodes do not fix problems. 
 
When the executor of putInLeftSubtree is a black node and the key is not already 
in the tree, then that executor acts as follows:  If its left subtree is empty, it creates a new 
red node to its left for the data and returns null, which signals "no problem".  If its left 
subtree is not empty, it asks the node Z on its left to insert the data; if Z returns ET 
(signaling a problem) it fixes the problem and returns null, otherwise it returns what Z 
returned.  But fixing the problem may include turning itself red, which might cause a 
problem for its parent. 
 
Exercise 17.38  Calculate the average search time for the 15-node full tree. 
Exercise 17.39  Draw or precisely describe the trees of 4 or 5 nodes that 
makeBalanced produces. 
Exercise 17.40  Draw or precisely describe the trees of 6 or 7 nodes that 
makeBalanced produces. 
Exercise 17.41 (harder)  Revise the put method in the upper part of Listing 17.6 to 
make the root node black after each value is added to the tree. 
Exercise 17.42 (harder)  If you put five data values into an AVL tree, each larger than 
the one before, what does the tree look like?  What does it look like if you then add one 
more data value larger than all the others? 
Exercise 17.43 (harder)  If you put five data values into a red-black tree, each larger 
than the one before, what does the tree look like?  What does it look like if you then add 
one more data value larger than all the others? 
Exercise 17.44*  If you put seven data values into an AVL tree, each larger than the one 
before, what does the tree look like?  What does it look like if you then add one more 
data value larger than all the others?  Hint:  Continue Exercise 17.42. 
Exercise 17.45*  If you put seven data values into a red-black tree, each larger than the 
one before, what does the tree look like?  What does it look like if you then add one more 
data value larger than all the others?  Hint:  Continue Exercise 17.43. 
Exercise 17.46*  Write a recursive TreeNode method public int height():  The 
executor returns the height of its subtree; it returns 0 if empty. 
Exercise 17.47* Write a recursive TreeNode method public int howFar():  The 
executor tells the shortest distance to an external node (it is 1 if either subtree is empty). 
Exercise 17.48**  Write the fixLeftRedRed and fixRightRedRed methods called 
by Listing 17.12 (they are identical except for swapping "Left" and "Right"). 
Exercise 17.49**  Write the fixLeftRedRed and fixRightRedRed methods called 
by Listing 17.12,  but instead of actually moving the grandchild node, create a new node 
on the other side of P from C and later discard the grandchild node.  This takes fewer 
statements than the method described in the text.  Is it more efficient? 
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17.8 Inductive Reasoning About Binary Trees  
 
The definition of a binary tree is recursive, so most of the logic for binary trees is also 
recursive.  Let us review the definition of a binary tree (parts 1 and 2 are the reason for 
having ET as the external node instead of using null to represent an external node): 
 
1. There are two kinds of binary trees:  empty ones and non-empty ones. 
2. An empty binary tree has no data and no subtrees. 
3. A non-empty binary tree has one data value and two subtrees (which are also binary 

trees), called its left and right subtrees. 
 
Each binary tree corresponds in a fundamental way to its root node, which is external if 
the tree is empty and internal if the tree is not empty. 
 
An example of recursive logic for binary trees is the proof that, in every binary tree X, 
the number of external nodes is one more than the number of internal nodes:   
 
1. Basis Step  If X is empty, then X has one external node (its root node) and zero 

internal nodes, so the difference is 1 as the assertion says.   
2. Inductive Step  Say X is some non-empty tree and say we have already proven the 

assertion for every tree with fewer nodes than X.  Then each of X's two subtrees has 
1 more external node than internal nodes, since each has fewer nodes than X.  So 
together X's two subtrees have 2 more external nodes than internal nodes.  Since the 
root node is internal, that brings the difference for X down to 1 more external node 
than internal nodes. 

3. Conclusion The truth of the assertion for all binary trees follows by the Induction 
Principle from the Basis Step and the Inductive Step. 

 
When some people first see this kind of logic, they think that it is circular logic, since we 
prove something about a non-empty tree X by assuming we have already proven it about 
each of its subtrees.  But this is not circular logic, it is inductive logic, because each of 
the subtrees of X has fewer data values than X has.  The Basic Step of the proof shows 
that the assertion is true for trees with 0 data values (empty trees).  The Inductive Step of 
the proof shows that the assertion is true for any tree X with a positive number of data 
values as long as the assertion is true for all trees that have fewer data values than X 
has.  So for any n > 0, the Inductive Step deduces that the assertion is true for any 
n-node tree from the assertion being true for all trees with less than n nodes. 
 
How do you know that the assertion is true for any binary tree X?  Because it could be 
proven for each number of data values 0, 1, 2, 3, 4, 5, etc. in that order: 
 
• If X has 0 data values, the Basic Step shows the assertion is true for X. 
• If X has 1 data value, then its subtrees both have 0 data values, so the assertion is 

true for each of its subtrees, so the Inductive Step shows the assertion is true for X. 
• If X has 2 data values, then each of its subtrees has at most 1 data value, so the two 

preceding points show that the assertion is true for each of its subtrees, so the 
Inductive Step shows the assertion is true for X. 

• If X has 3 data values, then each of its subtrees has at most 2 data values, so the 
three preceding points show that the assertion is true for each of its subtrees, so the 
Inductive Step shows the assertion is true for X. 

• If X has 4 data values, then each of its subtrees has at most 3 data values, so the 
four preceding points show that the assertion is true for each of its subtrees, so the 
Inductive Step shows the assertion is true for X. 

• If X has 5 data values, then each of its subtrees has at most 4 data values, so the 
five preceding points show that the assertion is true for each of its subtrees, so the 
Inductive Step shows the assertion is true for X. 

• etc. 
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Minimum size of a red-black tree 
 
We define the black-height of a red-black tree to be the number of black nodes on each 
path from the root to an external node.  Figure 17.10 shows a red-black tree with a black-
height of 3.  We can prove that every non-empty red-black tree X with black-height k 
has at least 2k-1 internal nodes using induction on k as follows: 
 
1. Basis Step  If X has black-height 1, it has at least 1 node, and 1 is at least 21-1. 
2. Inductive Step  Say X has black-height h+1 where h is 1 or more, and say we have 

already proven the assertion for each red-black tree with black-height h.  We could 
then prove the assertion for X as follows:  The tree has a black root node R with two 
children.  A black child of R is the root of a red-black tree with black-height h, and a 
red child of R contains two subtrees that are red-black trees with black-height h. So 
the whole tree contains at least two separate subtrees each with at least 2h-1 nodes, 
besides the root itself, and therefore has at least 2*(2h-1)+1 nodes, which is 2h+1-1. 

3. Conclusion  The truth of the assertion for all non-empty red-black trees follows by the 
Induction Principle from the Basis Step and the Inductive Step. 

 

 
Figure 17.10  A red-black tree with black-height 3 and 5 total levels. 
 
 
Worst-case execution time for a search of a red-black tree 
 
Say you have a red-black tree with a positive number of nodes N.  Let k denote the black-
height of the tree.  Then the preceding proof showed that N is 2k-1 or more, so log2(N+1) 
is k when N is 2k-1 and is at least k+1 otherwise. This tree with black-height k has at most 
2*k levels, since you cannot have two red nodes in a row.  And in the special case when 
N is exactly 2k-1, the tree has only k levels.  Now 2*log2(N+1)-1 is 2*k-1 in the special 
case (when the number of levels is k) and is at least 2*k+1 otherwise (when the number 
of levels cannot be more than 2*k).  Conclusion:  The number of levels, and therefore the 
worst-case time for a search in a red-black tree, is at most 2*log2(N+1) - 1.  For instance, 
if N is 16 to 31, then log2(N+1) is 5 and so the worst-case search time is 2 * 5 - 1 = 9; the 
red-black tree cannot have 10 levels. 
 
Worst-case execution time for a search of an AVL tree 
 
We define size(h) to be the minimum possible number of data values in an AVL tree with 
h levels.  An AVL tree with 1 level has 1 data value, so size(1) is 1.  An AVL tree with 2 
levels must have either 2 or 3 data values, so size(2) = 2 (the minimum).   
 
If an AVL tree has h levels and h is more than 2, then one of its root's two subtrees must 
logically have h-1 levels, though the other subtree could have either h-1 or h-2 levels (not 
less, otherwise it would not have the AVL balance property).  So the minimum possible 
number of data values in the subtree with level h-1 is size(h-1) and the minimum possible 
in the other subtree is size(h-2).  Therefore, the minimum possible number of data values 
in the whole AVL tree is 1 + size(h-1) + size(h-2).  Clearly, size(h-1) is larger than size(h-
2).  So it follows that size(h) is larger than 1 + 2 * size(h-2).  This fact can be used to 
prove inductively that size(2*k) >= 2k for every positive k: 
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1. Basic Step  size(2) = 2 implies that size(2*1) >= 21, so the assertion is true for k==1. 
2. Inductive Step  To show that size(2*k) >= 2k in situations where k > 1 and we know 

that the formula is true for k-1, i.e., that size(2*(k-1)) >= 2k-1, we reason as follows:  
size(2*k) > 1 + 2 * size((2*k)-2) = 1 + 2 * size(2*(k-1)) >  2 * 2k-1 = 2 k.   

3. Conclusion The truth of the assertion for all positive integers k follows by the 
Induction Principle from the Basis Step and the Inductive Step. For instance: 

 
• The Basic Step showed that size(2*1) >= 21.  
• size(h) > 2 * size(h-2) implies that size(4) >= 2 * size(2), i.e., size(2*2) >= 22. 
• size(h) > 2 * size(h-2) implies that size(6) >= 2 * size(4), i.e., size(2*3) >= 23. 
• size(h) > 2 * size(h-2) implies that size(8) >= 2 * size(6), i.e., size(2*4) >= 24, etc. 
 
To find the longest path from the root to an external node in an AVL tree with N data 
values, define k to be log2(N+1), so that N < 2k.  Since we have proven that size(2*k) is 
at least 2k, the AVL tree must have less than 2*k levels, thus less than 2*log(N+1) levels.  
So the worst-case search time in an AVL tree is 2*log2(N+1) - 1.  For instance, if N is 16 
to 31, then log2(N+1) is 5 and so the worst-case search time is 2 * 5 - 1 = 9; the tree 
cannot have 10 levels.  This is the same result as for red-black trees. 
 
Exercise 17.50  Calculate size(3) and size(4).  Justify your answer. 
Exercise 17.51 (harder)  There is 1 binary tree with 1 data value; there are 2 binary 
trees with 2 data values and 5 binary trees with 3 data values.  Calculate the number of 
binary trees with 4 data values and the number with 5 data values.  Justify your answer. 
Exercise 17.52 (harder)  There are 4 red-black trees with a black-height of 1.  Calculate 
the number of red-black trees with a black-height of 2.  Justify your answer. 
Exercise 17.53*  Define rbsize(h) to be the minimum possible number of data values in a 
red-black tree with h levels, so rbsize(2) is 2 and rbsize(4) is 6.  Find rbsize(6), rbsize(8), 
and rbsize(10).  Find a formula for rbsize(2*n).  Also calculate size(4), size(6), size(8), 
and size(10).  Which kind of tree can be more unbalanced for a given number of levels, 
red-black or AVL?  
Exercise 17.54*  Prove by induction on the number of nodes that left-to-right inorder 
traversal of a binary search tree produces the data values in ascending order (each less 
than or equal to the next). 
Exercise 17.55*  Prove by induction on the number of nodes that size(2*k) >= 2k+1 - 2 for 
k >= 1. 
Exercise 17.56*  Prove by induction on k that a full tree with k levels has 2k - 1 nodes. 
Exercise 17.57**  Prove by induction on h that when h>= 7, size(h) <= 1.66*size(h-1) and 
size(h) >= 1.60*size(h-1).  Can you discover its relation to the golden mean 1.61803...? 
Exercise 17.58**  Explain why every height-balanced tree can be colored to make it a 
red-black tree that meets the conditions required, but not every red-black tree is height-
balanced. 
Exercise 17.59***  Write a method that calculates the number of binary trees with n data 
values for any given positive int n.  Hint: See Exercise 17.51.  Store intermediate results 
in an array (this use of an array, here and in the next exercise, is called dynamic 
programming). 
Exercise 17.60*** Write a method that calculates the number of red-black trees with a 
black-height of n for any given positive int n.  Hint: See Exercise 17.52.  Store 
intermediate results in an array. 
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17.9 2-3-4 Trees And B-Trees  
 
In a drawing of a red-black tree, draw a big circle around each internal black node so that 
the big circle includes its red subtrees (of which there are either 0 or 1 or 2).  So each big 
circle has either 2 or 3 or 4 subtrees pointing down from it.  Define a class of objects that 
represent these big circles in an implementation of Mapping:  up to 3 data values and up 
to 4 subtrees.  You could define such an object class as follows: 
 
 public class BigCircle 
 { private final int MAX = 4; // maximum number of subtrees 
  private MapEntry [] itsData = new MapEntry[MAX - 1]; 
  private BigCircle[] itsSubtree = new BigCircle[MAX]; 
 } 
 
We store the 1 or 2 or 3 data values of one big circle in increasing order in the MapEntry 
array, leaving the unused components equal to null.  That means: 
 
• If a black node X has 0 red subtrees, fill in only itsData[0] with the black node's 

data. Make itsSubtree[0] and itsSubtree[1] refer to the two subtrees in order 
left to right, except use null if the subtree is empty. 

• If the black node X has a black left subtree and a red right subtree, fill in 
itsData[0] with X's data and itsData[1] with the red node's data.  Make 
itsSubtree[0] the left subtree of X, itsSubtree[1] the left subtree of the red 
node, and itsSubtree[2] the right subtree of the red node. 

• If the black node X has a red left subtree and a black right subtree, fill in 
itsData[0] with the red node's data and itsData[1] with X's data.  Make 
itsSubtree[0] the left subtree of the red node, itsSubtree[1] the right subtree 
of the red node, and itsSubtree[2] the right subtree of X. 

• If the black node X has two red subtrees, fill in itsData[0] with the left red node's 
data and itsData[1] with X's data and itsData[2] with the right red node's data.  
Make itsSubtree contain the four subtrees of the red nodes in the proper order. 

 
Now we write coding to do exactly what the red-black tree does to implement a Mapping, 
except we use the array representations of BigCircles instead of the left-right 
representations of nodes.  Each of the BigCircle objects contains either 2 or 3 or 4 
subtrees, so this implementation of a Mapping is called a 2-3-4 tree.  Note that it is not a 
binary tree, because a BigCircle does not have just two subtrees and because it has 
more than one data value.  Figure 17.11 contains an example of a 2-3-4 tree with three 
levels, the exact analog of the red-black tree in the earlier Figure 17.10. 
 
 

 
Figure 17.11  A 2-3-4 tree equivalent to the red-black tree of Figure 17.10 
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The get method for 2-3-4 trees 
 
The get Mapping method is to search through the data structure for the MapEntry 
containing a given id and return the corresponding value.  It is to return null if the id 
is not in the data structure.  The coding of that get method for the BigCircle 
implementation could be as shown in Listing 17.13.  The completion of this BigCircle 
class is left as a major programming problem. 
 
Listing 17.13  The get method for the BigCircle class of 2-3-4 trees 
 
public class BigCircle implements Mapping 
{ 
 private final int MAX = 4;  // maximum number of subtrees 
 private MapEntry[] itsData = new MapEntry[MAX - 1]; 
 private BigCircle[] itsSubtree = new BigCircle[MAX]; 
 
 /** Return the value for this id, or null if not there. 
  *  Throw a RuntimeException if id is not Comparable. */ 
 
 public Object get (Object id) 
 { int k = 0; 
  for ( ;  k < MAX - 1 && itsData[k] != null;  k++) 
  { int comp = ((Comparable) id).compareTo  
                          (itsData[k].getKey()); 
   if (comp <= 0) 
    return (comp == 0)  ?  itsData[k].getValue() 
           : (itsSubtree[k] == null)  ?  null // a leaf 
             : itsSubtree[k].get (id); 
  } 
  return (itsSubtree[k] == null)  ?  null         // a leaf 
         : itsSubtree[k].get (id); 
 } //====================== 
} 
 
 
Another data structure sometimes used for a Map is a 2-3 tree, which is halfway between 
a binary search tree and a 2-3-4 tree:  Each node has 1 data value and 2 subtrees or 
else 2 data values and 3 subtrees, with the same ordering properties as for 2-3-4 trees, 
and all leaves are on the same level. 
 
B-trees 
 
When an operating system reads information from a data file, it normally gets the 
information in chunks of a particular number of bytes, usually a power of two.  For 
instance, an operating system may read in chunks of 4096 bytes.  Even if you only want 
a few hundred bytes of information, each read operation gets 4096 bytes. 
 
When you are reading information for a Mapping object from a file, it is most efficient if 
you can use most or all of the 4096 bytes you will get from each read operation.  To this 
end, you could have BigCircle objects with lots more than 4 subtrees.  Make them large 
enough that they will barely fit within 4096 bytes. 
 
Say you know that each record (one object's information) is 190 bytes long.  A reference 
to a subtree takes up 4 bytes of space, for a total of 194 bytes.  194 divided into 4096 is 
21.  So you could have as many as 21 data values in each BigCircle object, with the data 
values in increasing order of key values.  You would thus have up to 22 subtrees.  Then 
the get method for these really big circles could be the same as the one in Listing 
17.13, except that MAX would be 22 instead of 4.  Even better, you could use binary 
search to find the desired index. 
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This data structure is called a B-tree of order 22.  In general, a B-tree of order N has up 
to N subtrees in each node for some N, always with one less data value than it has 
subtrees.  A B-tree has two additional restrictions:  All leaf nodes must be on the bottom 
level, and all nodes except the root must have at least N/2 subtrees (rounded up if N is 
odd).  A 2-3-4 tree is just a B-tree of order 4. 
 
When you add a new data value to a B-tree structure, you put it in the appropriate leaf 
node on the bottom level.  There will only be one such place it can go in, according to the 
restrictions on ordering.  However, if the node where it goes is full (already has N-1 data 
values), there is no room for the additional data value.  In that case, you split the full leaf 
node into two nodes, with at least N/2 data values in the first node, the next (middle) data 
value moved up into the parent node, and the rest of them in the second node.  Both of 
these nodes become children of the parent node.  Of course, if that makes the parent 
node full, you have to split again, possibly going as far as splitting the root node. 
 
A B-tree of order 22 that organizes a data file with 400 million records (more than the 
population of the United States) would have at most nine levels:  It would have at least 1 
data value in the root, therefore at least 2 nodes on the second level with at least 11 
subtrees of each.  The third level would then have at least 22 nodes, so the fourth level 
would have at least 22*11 nodes, etc.  Each level multiples by 11, so the ninth level 
would have at least 22*116 nodes, about 39 million, with at least 10 data values in each 
of those leaf nodes. Since you would always keep the root node in memory, you can find 
a data value in only 8 disk accesses, instead of the 29 that even a near-full binary tree 
would require. 
 
Indexing 
 
A popular alternative is to use B-trees to hold an index to a random-access data file 
instead of the data itself.  Only the keys are stored in the B-tree; the full data record is 
only in a disk file.  Each leaf node contains the key for one record plus the file position 
telling where the full data record is in the data file.  All keys are in the leaf nodes.  In each 
non-leaf node, itsData[k] is the first key of itsSubtree[k+1]. 
 
Example  If keys are 10 bytes (e.g., Social Security Numbers), and file pointer values are 
4 bytes, then you only need 14 bytes per record.  Instead of the B-tree of order 22 just 
described, you would have room for 4096 / 14 = 292 subtrees in each "big circle" node.  
So you could use a B-tree of order 292 for the index.  So six levels would store a 
minimum of 292 * 146 * 146 * 146 > 900 million keys and file pointers on the sixth level.  
Even allowing for the extra disk access to retrieve the record itself, it would take only six 
disk accesses to find a data record in the random-access file, assuming you keep the 
root node in memory at all times. 
 
Exercise 17.61  How many 296-byte records could you store in a B-tree node if it is to 
barely fit into a disk block of 8192 bytes?  Show why. 
Exercise 17.62 (harder)  How many disk accesses (at most) would it take to find a single 
data value in a B-tree of order 100 used to store ten million records?  Show why. 
Exercise 17.63*  How many disk accesses (at most) would it take to find a single data 
value in a B-tree of order 200 used to store 60,000 records?  Show why. 
Exercise 17.64*  Rewrite the BigCircle get method in Listing 17.13 to first look at the 
middle one of three data values in the BigCircle.  Does this execute faster? 
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17.10 Data Flow Diagrams 
 
A small manufacturing company wants to hire you to create software to automate some 
of their operations.  A scenario of part of what this company does could go as follows: 
 
A customer places an order.  You verify that the information about the customer 
(address, references, preferences, etc.) is already in your files.  You check with your 
accounting department that the customer's credit is good.  You record the order, 
manufacture the product wanted, and ship it to the customer along with an invoice.  The 
customer sends you a check in payment, which you use to pay investors' dividends. 
 
The preceding paragraph is called a use case; it is a scenario that describes a possible 
sequence of events using the system you are to design.  If you are to model the entire 
business in software, then the business is the system and everything outside the system 
is its environment.  Figure 17.12 is a Data Flow Diagram that graphically shows the 
elements mentioned in this particular use case. 
 

  
 Figure 17.12  Data Flow Diagram for one use case 
 
 
A Data Flow Diagram (DFD) has four basic kinds of elements.  The first three in this list 
called the nodes of the diagram: 
 
1. A process, which is part of the system to be modeled, shown as a rectangle divided 

horizontally. You put the name and/or description of the system part in the lower 
section.  The middle node of Figure 17.12 is a process. 

2. An environment entity that interacts with the system, shown as a 3D-box-like figure. 
You put the name of the entity on the front of the box.  The nodes on the left and right 
of Figure 17.12 are environment entities. 

3. A data store, which is part of the system to be modeled, shown as a rectangle 
divided vertically and with the right side containing its name:  It stores a collection of 
information of a particular kind.  No data stores appear in Figure 17.12. 

4. A data flow, shown as an arrow between two nodes, of which one is almost always a 
process.  A data flow indicates information flowing from one node to another. Its 
name is above or beside the arrow.  Figure 17.12 has five data flows. 

 
Two additional use cases for the manufacturing company are as follows: 
 
You check the amount you have on hand of various parts you use to manufacture your 
product.  You see that you are short on one kind of part.  You  place an order with a 
supplier.  The supplier sends you boxes of parts and an invoice.  You send a check to 
pay the invoice. 
 
Investors contribute more capital to the operation, for which you issue stock.  Every three 
months, you calculate your profits.  Based on these calculations, you send a tax payment 
to the IRS and also dividend checks and a quarterly report to your investors. 
 
When you look over these and other use cases, including entering a description of the 
customer (address, etc.) in your files, you might come up with the Data Flow Diagram in 
Figure 17.13 (see next page) to describe the major interactions of the company with its 
environment. 
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Figure 17.13  Data Flow Diagram for the entire business 
 
The OrderHandling system 
 
Your client wants you to implement in software only the part of the operation that handles 
orders from customers and orders to suppliers.  So you can ignore some of the data 
flows described so far, such as dividends and payment of utility bills and taxes.  Start with 
some examples of use cases for this OrderHandling system: 
 
Use Case 1  A person wants to order products from your company.  You look up the 
name in your records and see that the customer is not recorded there.  So you get the full 
description of the customer (name, address, references, etc.) and store it in your data 
store of customers.  You then take the order and store it in your data store of orders.  You 
check your inventory and see that the product is there.  So you ship the product to the 
customer along with an invoice for payment, and at the same time notify the accounting 
department to expect payment since you have sent an invoice. 
 
Use Case 2  A person places an order.  You look up the name in your records and 
retrieve the customer's information from your customer data store (since it was previously 
recorded).  You then take the order and store it in your data store of orders.  You check 
inventory and see that the product is not there.  So you order it from the appropriate 
supplier (which in many cases will be a manufacturing department in the rest of the 
business, but treat it as a supplier for now).   
 
Use Case 3  A supplier ships parts to you along with an invoice.  You store it in your 
inventory and notify the accounting department to send payment to the supplier.   
 
Use Case 4  A manufacturing department sends you finished product.  You store it in 
your inventory.  
 
Use Case 5  You check your data store of orders not yet filled and find one for which you 
now have the required product.  So you ship the product to the customer along with an 
invoice for payment, and at the same time notify the accounting department to expect 
payment since you have sent an invoice. 
 
Further thought about the software and discussion with the client reveals that the 
customer will sometimes ask for the status of all of the customer's orders currently being 
processed, to verify its own records.  In addition, the rest of the business operation may 
query the system from time to time for a list of all orders pending, of all orders filled in the 
past year, of inventory changes during the year, etc. 
 
A very effective first step in the development of a software system is to describe its 
interactions with its environment, that is, with everything that is not the system to be 
developed.  From this point of view, the rest of the business is part of the environment.  
These interactions usually take the form of input to the system from external entities and 
output from the system to external entities, both of which can be expressed as data flows. 
 



                                     Java Au Naturel by William C. Jones                                              17-37 

 

17-37

 

Figure 17.14 is the only part of the overall operation of the company that concerns the 
OrderHandling system.  Note that the system is split off from the rest of the business in 
this Data Flow Diagram.  The names of the data flows have been made more precise:  
CustDescr is a description of one customer, SuppOrder is one order sent to a supplier, 
etc.  The reporting functions have been added to the Data Flow Diagram.  Minor 
"backflows" along certain arrows have been omitted, such as a confirmation message to 
the customer that the description or order has been received and a query for a report. 
 

  
 Figure 17.14  Data Flow Diagram for the OrderHandling software 
 
 
Detailed Analysis 
 
The next step in the analysis is to specify the exact form of the inputs and the outputs, 
the conditions under which they will occur, the sequence in which they occur, etc.  This 
information fleshes out the DFD by saying what happens.  Avoid saying how it happens; 
that is almost always a matter of design, so it comes later.  Treat the system as a "black 
box" whose contents and workings are a mystery. 
 
Analysis for this problem requires a full and precise description of the number and types 
of values entered, e.g., first and last name are strings of characters, the ZIP code is 
entered separately from the city and state, and the number of items ordered is a positive 
integer.  It also requires a full and precise description of the form of the reports.  This 
Requirements Specification Document should include examples and specifications for 
these things along with the Data Flow Diagram.  Test data should also be developed at 
this point.  We will not try to do it here for this problem.   
 
Design 
 
Now you start to divide up the proposed system into components.  Design is a matter of 
deciding which components you want to have and how they will interact.  For this 
OrderHandling software, some obvious choices are classes of CustomerOrder objects, 
SupplierOrder objects, Invoice objects, CustomerDescription objects, and 
SupplierDescription objects.   
 
You also need a data structure for long-term storage of the list of CustomerDescription 
objects for all current customers, the list of CustomerOrder objects still pending, and the 
analogous lists of SupplierDescription and SupplierOrder objects.  Reports are 
presumably simply long Strings of characters, and you already have a String object class.   
 
The two main processes of the system are managing the customer relations and 
managing the supplier relations.  These considerations lead to the Data Flow Diagram 
shown in Figure 17.15 (see next page).  The abbreviations CustOrder, SuppOrder, 
CustDescr, and SuppDescr make the diagram more compact.   
 
Number the process nodes 1, 2, 3, on up in whatever order you like, in the upper section 
of the node.  Number data store nodes D1, D2, D3, on up also.  We often append DS to 
the name to suggest a Data Store (also known as a Data Structure).  Use these numbers 
for cross-referencing with more detailed Data Flow Diagrams and with narrative 
specifications. 
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 Figure 17.15  Data Flow Diagram for second level of OrderHandling 
 
 
The middle and upper parts of Figure 17.15 are an explosion of the System node in the 
earlier Figure 17.14, since they are a more detailed replacement for that System node.  
You need to verify that all the data flows between the System node and its environment 
in Figure 17.14 are in the exploded view, and no others have been added.  A close check 
shows that the ten data flows of the earlier figure are present in the later one, although 
"report" occurs twice in the later one (since the two separate processes have separate 
kinds of reports). 
 
CRC cards 
 
A useful device for a preliminary specification is a Class/Responsibilities/Collaborations 
card, a CRC card for short.  You use an index card (no bigger than 4-by-6) on which you 
write the name of the class of objects at the top.  Then you list on the left side of the card 
the major responsibilities of that class -- what messages it can be sent and what action it 
should take in response.  You list on the right side of the card the collaborations of that 
class -- which other classes it sends messages to or otherwise uses. 
 
The CustomerManager kind of object (process #1) has four major responsibilities: 
 
1. Given a CustomerOrder object containing a CustomerID, see whether the 

CustomerDescription object is in the CustDescrDS.  If not, create one from data the 
customer provides and store it in the CustDescrDS.  Then store the CustomerOrder 
object in the CustOrderDS. 

2. Search the CustOrderDS for orders not yet filled.  For each one, check whether all 
products ordered are currently in the Inventory.  If so, create an Invoice object, send 
it to the customer along with the product ordered, and send a memo of the Invoice to 
the accounts-receivable department. 

3. Given a request from the customer for a status report, create and return it. 
4. Given a request from the rest of the business for any one of several kinds of 

summary reports, create and return it. 
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This process #1 has therefore collaborations with three data stores (CustDescrDS, 
CustOrderDS, and Inventory), with three passive data flows (CustomerOrder, 
CustomerDescription, and InventoryDescription objects) and with the rest of the 
business.  Now stubbed documentation for the CustomerManager class of objects can be 
developed as shown in Listing 17.14. 
 
 
Listing 17.14  CustomerManager class of objects, stubbed documentation 
 
public class CustomerManager           // stubbed 
{ 
 /** Verify that the customer's description is on file. 
  *  If not, obtain and file it.  Then file the order.  */ 
 
 public void storeOrder (CustomerOrder order)               { } 
 
 
 /** Find all orders that are currently unfilled.  
  *  Fill any such order for which all product is available. */ 
 
 public void fillAllPossibleOrders()                        { } 
 
 
 /** Return a description of all orders from this customer 
  *  that are currently unfilled. */ 
 
 public String getStatus (String customerID)   { return null; } 
 
 
 /** Return a description of all orders currently unfilled, 
  *  in order of customer ID. */ 
 
 public String getOrdersByID()                 { return null; } 
 
 
 /** Return a description of all orders currently unfilled, 
  *  in order of dates entered. */ 
 
 public String getOrdersByDate()               { return null; } 
 
 
 // many other report functions would go here 
} 
 
 
You develop CRC cards by walking through the scenarios given by use cases and seeing 
which classes and operations a software system should have.  A large number of people 
find that developing CRC cards is a far better way to develop an object design than data 
flow diagrams, since they have a concrete object (the 4-by-6 card) to help them anchor 
their thoughts.  Other people prefer developing data flow diagrams.  You need to attend a 
2- or 3-hour workshop on the use of CRC cards in order to truly appreciate them.  
Reading about them would not adequately convey their advantages. 
 
Exercise 17.65*  Write out two more use cases for the OrderHandling software. 
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17.11 Review Of Chapter Seventeen 
 
• A general tree has one or more data values and zero or more subtrees. 
• A binary tree is either (a) empty, in which case it has no data and no subtrees, or (b) 

non-empty, in which case it has one data value and two subtrees.  The data value is 
called its root value.  The two subtrees are called its left and right subtrees.   

• An internal node represents a non-empty binary tree and has a minimum of three 
attributes (instance variables):  a data value stored there plus references to the root 
nodes of the left subtree and the right subtree.  If both of the subtrees of an internal 
node are empty, it is called a leaf node.  An external node has no data value and no 
subtrees; it represents the empty binary tree. 

• A path in a tree from one node to another is a sequence of nodes beginning with the 
first and ending with the second such that, for each time node Y follows node X in the 
sequence, node Y is the root of a subtree of node X.  A binary tree cannot have two 
different paths from one node to another, nor any path from a node to itself. 

• Breadth-first search of a binary tree means that you first look at the data at the root, 
then at the data one step from the root, then at the data two steps from the root, etc. 
Depth-first search means that, after looking at the data in a particular node, you 
look at all the data in the subtree it is the root of before you look elsewhere. 

• Left-to-right preorder traversal is a depth-first search that, after it looks at a node 
X, looks at all the nodes in the left subtree of X, then looks at all the nodes in the right 
subtree of X.  "Traversal" means you visit each node in the tree (potentially).  "Left-to-
right" means that you visit all nodes in the left subtree before you visit any node in the 
right subtree; the alternative is right-to-left traversal.  "Preorder" means that you visit 
the root node of each subtree before visiting any of the nodes in its subtrees.  The 
alternatives to preorder traversal are postorder traversal (visit the root node after 
visiting all the nodes of the subtrees) and inorder traversal (visit the root node in 
between visiting the nodes of the subtrees). 

• In a binary search tree, the Comparable keys have a special relationship:  Every 
key in a left subtree is less than the key for the root and every key in a right subtree is 
greater than the key for the root.  Some applications (not Mappings) allow several 
data values that are equal or the equivalent.  In that case, a data value can be equal 
to another one in its right subtree. 

• If a node X represents a non-empty binary tree, the nodes at the roots of the 
subtrees of X are called the left child and the right child of X.  X is their parent. 

• A tree is full if every node with less than two subtrees is on the lowest level.  So the 
full tree with 3 nodes has 2 levels; the full tree with 7 nodes has 3 levels; and the full 
tree with 15 nodes has 4 levels.  In general, a full tree with 2k - 1 nodes has k levels.  
This book defines a tree to be near-full if it has the minimum possible number of 
levels for the number of data values in the tree. A binary tree can be considered to be 
decently-balanced if it does not have more than twice as many levels as a near-full 
tree of the same number of nodes. 

• The average search time for a non-empty data structure is the total search time 
divided by the number of data values in the data structure.  The total search time is 
the number of data values you have to look in order to find D, summed over all data 
values D in the data structure. 

• An AVL tree is a binary search tree in which, for any node X, the number of levels in 
the right subtree of X differs from the number of levels in the left subtree of X by at 
most 1.  An AVL tree is always decently-balanced. 

• A red-black tree is a binary search tree in which the root node is black, no red node 
is the child of a red node, and the number of black nodes on each path from the root 
to some external node is the same as on any other path from the root to some 
external node.  A red-black tree is always decently-balanced. 

• A B-tree of order N has up to N subtrees in each node for some fixed N, always with 
one less data value than it has subtrees.  A B-tree has two additional restrictions:  All 
leaf nodes must be on the bottom level, and all nodes except the root and the leaves 
must have a minimum of 0.5*N subtrees.  A 2-3-4 tree is just a B-tree of order 4. 
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Answers to Selected Exercises 
 
17.3  The fifth tree:  A, B, C.  The sixth tree:  C, B, A.  The seventh tree:  A, B, C. 
17.4  c.size() gets 0 from its call of c.itsLeft.size() and get 4 from its call of d.size(), so it returns 5. 
17.5  b.deleteLastNode() would see that h.itsRight is not empty, so it would call h.deleteLastNode(),  
  which would see that i.itsRight is not empty, so it would call i.deleteLastNode(),  
  which would see that k.itsRight is empty, so it would set i.itsRight to be the empty tree. 
17.6  public TreeNode lastNode() 
  { return itsRight.isEmpty()  ?  this  :  itsRight.lastNode(); 
  } 
17.7  It is the same as deleteLastNode except interchange the words "Right" and "Left". 
17.8  printInOrder executes in O(N) time, since it visits every node in the tree.   deleteLastNode executes  
  for the average binary tree in O(log(N)) time, since it navigates only one path down the tree. 
17.11 A, C, G, F, B, E, D.  A's left is C, C's left is G, A's right is B. 
17.12 A, E, B, G, F, D, C.  A's left is B, B's left is C, A's right is E. 
17.13 The tree could have 7 levels with 1 node on each level.  So no node has two children.  
17.14 The level of a data value is equal to the difference between the number of left parentheses that come 
  before it and the number of right parentheses that come before it.  In other words, read the output 
  from left to right, counting +1 for each left parenthesis and -1 for each right parenthesis, and when  
  you come to a data value, the net count so far is the level of that data value. 
17.17 public TreeNode lookUp (Comparable id) 
  { int comp = compare (id, itsData); 
   if (comp < 0) 
    return itsLeft.isEmpty()  ?  null  :  itsLeft.lookUp (id); 
   if (comp > 0) 
    return itsRight.isEmpty()  ?  null  :  itsRight.lookUp (id); 
   return this; 
  } 
17.18 Insert the following just before the "else if" in line 14: 
  else if (itsLeft.isEmpty()) 
  { itsData = itsRight.itsData; 
   itsLeft = itsRight.itsLeft;    // not the opposite order 
   itsRight = itsRight.itsRight; 
  } 
  This executes faster on average only if there are a significant number of nodes in the tree 
  with an empty left subtree and a right subtree of 2 or more levels.  So it is slower if the 
  tree is reasonably balanced, but faster if the tree is quite unbalanced. 
17.19 public TreeNode copy() 
  { TreeNode root = new TreeNode (itsData); 
   root.itsLeft = itsLeft.isEmpty()  ?  ET  :  itsLeft.copy(); 
   root.itsRight = itsRight.isEmpty()  ?  ET  :  itsRight.copy(); 
   return root; 
  } 
17.20 public int under (Comparable id) 
  { return this.isEmpty()  ?  0 
              :  compare (id, itsData) <= 0  ?  itsLeft.under (id) 
                        :  itsLeft.size() + 1 + itsRight.under (id); 
  } 
17.26 if (toDelete.itsParent.itsLeft == toDelete) 
   toDelete.itsParent.itsLeft = toDelete.itsLeft; 
  else 
   toDelete.itsParent.itsRight = toDelete.itsLeft; 
  toDelete.itsLeft.itsParent = toDelete.itsParent; 
17.27 private TreeNode lastLeft (TreeNode lastLeftTurn, Comparable id) 
  { int comp = compare (id, itsData); 
   return (comp == 0)  ?  lastLeftTurn 
       : (comp > 0)  ?  itsRight.lastLeft (lastLeftTurn, id) 
                : itsLeft.lastLeft (this, id); 
  } 
17.28 In a well-balanced tree with N values, a node X with no right subtree should only be in one of the two 
  bottom levels.  The successor of X will tend to be roughly two levels above X, computed as follows: 
  There is a 50% chance X's parent is its successor (i.e., X is to the left of its parent); a 25% chance 
  that X's "grandparent" is its successor; a 12.5% chance that X's "great-grandparent" is its  
  successor, etc.  That averages out to X's successor being about two levels above X.  X will also be 
  log(N)-1 nodes below the root node on average.  So the parent information allows next to find the  
  successor by going up about 2 levels instead of down log(N)-1 levels, so we save about log(N)-3  
  comparisons.  Since about half of the nodes will have no right subtree, that implies a total 
  of (N/2) * (log(N)-3) comparisons saved in traversing N nodes in a well-balanced tree. 
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17.33 The iterator would traverse the tree in a right-to-left inorder traversal (i.e., backwards). 
17.34 public void preorderTraverseRL (QueueADT queue) 
  { if (isEmpty()) 
    return; 
   queue.enqueue (itsData); 
   itsRight.preorderTraverseRL (queue); 
   itsLeft. preorderTraverseRL (queue); 
  } 
17.38 The total search time is 17 for the top three levels (already calculated in the text for that full tree) plus  
  8 times 4 for the fourth level, a total of 49.  So the average search time is 49/15. 
17.39 Start with the full tree with 3 nodes.  Add a left child of the left child of the root for the 4-node 
  tree.  Add also a left child of the right child of the root for the 5-node tree. 
17.40 The 7-node tree is the full tree with 7 nodes shown in Figure 17.7.  Omit the bottom-right node 
  (which contains 25 in Figure 17.7)  to get the 6-node tree. 
17.41 Add a makeBlack method to TreeNode that has the one statement isRed = false; then replace the last  
  line of the put method (line 7) by the following three statements: 
  Object valueToReturn = itsRoot.putRecursive ((Comparable) id, value); 
  itsRoot.makeBlack(); 
  return valueToReturn; 
17.42 To the full tree with values 11, 13, and 15 in Figure 17.9, add 17 to the right of the 15 to get the  
  4-node tree.  Adding 19 forces a rotation to put 17 in place of 15, 15 to 17's left, and 19 to 17's right. 
  That gives the 5-node tree.  Adding 21 then forces a rotation of 17 into the root, 13 as 17's left child,  
  11 as 13's left child, 15 as 13's right child, 19 as 17's right child, and 21 as 19's right child. 
17.43 To the full tree with values 11, 13, and 15 in Figure 17.9, add 17 to the right of the 15 and  
  color 11 and 15 black to get the 4-node tree.  Adding 19 forces a rotation to put 17 in place of 15,  
  red 15 to 17's left, and red 19 to 17's right.  That gives the 5-node tree.  Adding 21 then turns the 
  19-node black, the 15-node black, and the 17-node red without forcing a rotation. 
17.50 size(3) = 1 + size(2) + size(1) = 1 + 2 + 1 = 4.  size(4) = 1 + size(3) + size(2) = 1 + 4 + 2 = 7. 
17.51 4 data values could mean 3 on the left side of the root (5 cases), or 3 on its right side (5 cases), or  
  2 on the left side of the root (2 cases) or 2 on its right side (2 cases), a total of 14 cases.   
  5 data values could mean 4 on the left side of the root (14 cases) or on its right side (14 cases), or  
  3 on the left side of the root (5 cases) or on its right side (5 cases), or 2 on each side (2*2 = 4 cases), 
  a total of 42 cases for the 5-node tree. 
17.52 The root could have 2 black children, each rooting one of 4 red-black trees with a black-height of 1, 
  which makes 4 * 4 = 16 cases.  Or it could have one red child, on the left, which will have 16 possible 
  subtrees, with 4 possible subtrees on the right, which makes 16 * 4 = 64 more cases.  Or it could  
  have one red child, on the right, for 64 more cases.  Or it could have two red children, each with 
  64 possible subtrees, thus 64 * 64 = 4096 more cases.  The total is 4240 cases. 
17.61 296 + 4 = 300.  8192 / 300 = 27 with 92 left over, so you could store 27 records in each node. 
17.62 The root could have only 1 record, but still the second level would have at least 2 nodes with at least  
  50 subtrees each, so the third level would have at least 100 nodes with at least 50 subtrees each,  
  so the fourth level would have at least 5000 nodes with at least 50 subtrees each, so the fifth 
  level would have at least 250,000 nodes with at least 50 subtrees each, which is over 12 million. 
  Therefore four disk accesses would be enough, assuming you keep the root node in memory. 
 
 


