
 Java Au Naturel by William C. Jones 17-1

17-1

17 Binary Trees

Overview

This chapter introduces a standard data structure called a binary tree. You have seen
that a node for a linked list contains data and also a reference to one other node (or to
null, at the end of the sequence). A node for a binary tree contains data and also
references to two other nodes (or to null).

• Sections 17.1-17.3 develop an application to keeping track of descendents of a

particular person. This application uses a family tree to store the ancestor
relationships and discusses various ways of traversing the family tree.

• Sections 17.4-17.6 implement the Mapping interface and iterators with a binary
search tree, on the condition that data values be Comparable with each other.

• Sections 17.7-17.8 discuss how to keep binary search trees decently balanced --
red-black trees, AVL trees -- and prove useful properties of these trees.

• Section 17.9 discusses more advanced applications of binary tree nodes, e.g., 2-3-4
trees and B-trees.

• Section 17.10 introduces Data Flow Diagrams as a tool for software design and
applies it to a company that maintains a database of orders from customers.

17.1 Analysis And Design Of The Genealogy Software

Problem statement

A client doing a genealogical study needs a program to track all of the blood descendents
of one individual. She will begin by entering that one individual's name. Thereafter, she
will enter the name of each person only after that person's parent has previously been
entered. She wants the program to be able to do two things at any point during and after
this data entry process, upon request: (a) list all children of a person who has already
been entered, one child per line, and (b) display a list of all the people currently in the
dataset, one person per line, with those further from the ancestor-of-all listed earlier.

You are part of a software development group that takes on this assignment. You begin
by performing an analysis of the requirements for the software, then continue by
developing a design for the software. The design is in two parts: The overall main logic
and a description of the objects needed by the main logic, along with the services offered
by those objects. Services offered by a class of objects are usually expressed as the
public methods that can be called for those objects.

Analysis of requirements

First you find out what details are missing from the problem statement, details that you
will need to solve the problem. Then you get clarification from the client:

Question In what order should the children of a given person be listed?
Client's Answer "I don't care." So you wait until you develop the algorithm and use
whatever is easiest.

Question How will the client be able to tell who is the child of whom in the full listing?
Client's Answer "Oops, I didn't think of that. What do you suggest?"
Our Response Have each person's name indented three spaces further than its parent,
and in such a way that you can visually find the parent of any person by going down the
list to the first person who is "out-dented" further to the left than that person. The client
accepts the suggestion.

 Java Au Naturel by William C. Jones 17-2

17-2

Question What if the user asks for information about a person who is not already in the
dataset?
Client's Answer Have the program say, "I'm sorry, that person is not in the family" and
carry on.

Question How does the user indicate which of the possible choices is wanted?
Client's Answer Enter a single letter: L = list, A = add, S = search, and E = exit.

Question What if two people have the same name?
Client's Answer Assume that the user will never do this and act accordingly.

Main logic design

This family-tree software could proceed as shown in the accompanying design block. It
gives the overall logic of the software expressed in ordinary English (though you may use
whatever natural language you wish). However, selection between alternative actions
and repetitions of actions are indicated by indenting the subordinate actions.

STRUCTURED NATURAL LANGUAGE DESIGN of the main logic
1. Ask the user for the ancestor-of-all and store it in the dataset.
2. Give directions on the four options available: list all, add one, search for one, exit.
3. Repeat the following as long as the user does not choose the exit option...
 3a. If the user's choice is to add one person then...

 Get the parent and search the dataset for it. If there...
 Ask for the name of the child and add that person.
 3b. If the user's choice is to search then...
 Get the parent and, if there, list all of his or her children.
 3c. If the user's choice is to list everyone then...
 List all of the people of the dataset with proper indenting.

Object design

The master design makes it seem quite natural to have a Genealogy dataset object that
allows the three capabilities corresponding to the three choices the user has. The IO
class developed in Listing 10.2 offers simple input/output services we will use here:
IO.say prints a message using JOptionPane.showMessageDialog and
IO.askLine prompts for String input using JOptionPane.showInputDialog. This
basic object design then leads to the coding in Listing 17.1 (see next page).

 Genealogy (String lilith)
 // constructor to create a dataset of parent-child relations with lilith at the root
 public void addChild (String parent)
 // if the given parent is in the dataset, ask for a child of that parent and then add it
 public void listChildren (String parent)
 // list all children of the parent, unless the parent is not in the dataset
 public void listEverybody()
 // List all values in the dataset, 1 per output line, with all children of any data
 // value X listed before X and in the order they were entered, and each indented
 // 3 spaces further than X. Also, for each child of X, the first line below that child
 // that is indented less than the child is X itself.

Exercise 17.1* Discuss the drawbacks of allowing two people of the same name.
Exercise 17.2* How would the design change if the user were allowed an additional
option, namely, to find the parent of a given person?

 Java Au Naturel by William C. Jones 17-3

17-3

Listing 17.1 The main logic for the genealogy problem

class GenealogyApp
{
 /** Read in names of members of a family with their
 * parent-child relationships. Then answer questions about
 * what people are the children of what other people. */

 public static void main (String[] args)
 { String s = IO.askLine ("Enter the ancestor of everyone:");
 Genealogy family = new Genealogy (s);
 IO.say ("Your choices: L = list everyone\n"
 + "\t A = add a child of a person\n"
 + "\t S = search for children of 1 person\n"
 + "\t E = exit the program ");

 String choice = IO.askLine ("Choose L, A, S, or E ");
 while (! choice.equals ("E"))
 { if (choice.equals ("A"))
 family.addChild (IO.askLine
 ("parent of the person to be added? "));
 else if (choice.equals ("S"))
 family.listChildren (IO.askLine
 ("parent of children to be listed? "));
 else // it must be "L"
 family.listEverybody();
 choice = IO.askLine ("Choose L, A, S, or E ");
 }
 System.exit (0);
 } //========================
}

17.2 Implementing The Genealogy Software With Binary Trees

The abstraction we are using here is a non-empty collection of data values organized into
a general tree. A general tree G has one data value known as its root value. And the
tree G has a number of subtrees, also general trees, which contain the other data values
of G. G could have 0 or 2 or 13 subtrees, as long as no two subtrees contain the same
data value. The root value of each subtree of G is a child of the root value of G.

Implementing a general tree using a binary tree

You can implement a general tree in coding quite easily as follows: A TreeNode object
stores the root data value of the general tree plus a linked list of its children, reading left-
to-right for the most-recently-added down to the first-one-added. For a TreeNode X,
X.itsLeft is the TreeNode containing the leftmost child of X. Also, X.itsRight is
a reference to the next child of the parent of X to X's right. Concretely...

• X.itsData is the root value of X.
• C1 = X.itsLeft contains X's leftmost child, the last-added child of X.
• C2 = C1.itsRight contains X's second child from the left, added just before

C1.itsData.
• C3 = C2.itsRight contains X's third child from the left, etc.

Figure 17.1 is an example of a Genealogy dataset, with single letters for data values.
The abstract general tree is on the right; the concrete TreeNodes are on the left.

 Java Au Naturel by William C. Jones 17-4

17-4

If b is the TreeNode whose root value is B,
then b.itsRight is the TreeNode with
root value H and b.itsLeft is the
TreeNode with root value C. The TreeNode
b.itsLeft.itsRight has root value D.
The TreeNode class in Listing 17.2 (see next
page) can be used to implement the
Genealogy class. The coding in Listing 17.2
contains some methods not needed for the
Genealogy software, just to give you some
feel for how to work with tree structures. All
but the last one allow you to get information Figure 17.1 TreeNodes vs. general
about a tree but not modify it.

We let ET, standing for Empty Tree, be one particular empty tree (i.e., having no data).
This turns out to be advantageous at times; it is like a trailer node for linked lists. The
following coding adds newInfo to the left of a node, thus making newInfo the most
recently added child of the node's data value. It puts the current linked list of the
children of the node off to the right of the newly-added child, and it automatically puts
ET to the left of the newly-added node to signal that this child has no children (as yet):

 TreeNode newNode = new TreeNode (newInfo);
 newNode.itsRight = node.itsLeft;
 node.itsLeft = newNode;

The size method in the middle part of Listing 17.2 tells the number of data values in
the TreeNode executor. It is zero if the executor is empty, otherwise it is 1 for the
executor's root value plus the number of all data values to the left of the executor plus the
number of all data values to the right of the executor. If you were to call b.size() for
b being the node containing B in Figure 17.1, it would get 5 from its call of c.size()
(c being the node containing C) and get 4 from its call of h.size() (h being the node
containing H), and so it would return 10 (which is 1 + 5 + 4).

The firstNode method in Listing 17.2 returns the node that is furthest left in the
executor's tree, assuming that the executor is a non-empty tree. This furthest-left node is
(a) itself if the executor has an empty left subtree, otherwise it is (b) the furthest-left node
of its left subtree. If you were to call a.firstNode() for a being the node containing
A in Figure 17.1, it would call b.firstNode(), which would call c.firstNode(),
which would return c.

The deleteLastNode method in Listing 17.2 deletes the furthest node to the right in
the executor's tree, assuming that the executor has a non-empty node to its right. If the
executor's right (call it R) has only the empty tree to its right, the executor replaces R by
whatever is to R's left (which may or may not be empty). Otherwise the executor asks R
to delete the furthest node to the right of R. If you were to call c.deleteLastNode()
for c being the node containing C in Figure 17.1, it would see that d.itsRight is
empty (d is the node containing D) and therefore set c.itsRight to be e (the node
containing E).

Binary trees

The TreeNode class implements a binary tree structure. A non-empty binary tree is a
structure consisting of one data value (its root value) plus two trees called its left
subtree and its right subtree. It is represented in coding as a node object, called the
root node of that tree. There are two kinds of nodes, internal nodes and external nodes.
An internal node has a minimum of three attributes (instance variables): a data value
stored there plus references to the root nodes of the left subtree and the right subtree. A
leaf node is an internal node for which both subtrees are empty.

 Java Au Naturel by William C. Jones 17-5

17-5

Listing 17.2 The TreeNode class used by the Genealogy class

public class TreeNode
{
 public static final TreeNode ET = new TreeNode (null);
 private Object itsData; // the data value stored in this tree
 private TreeNode itsLeft = ET; // left subtree of this tree
 private TreeNode itsRight = ET; // right subtree of this tree

 public TreeNode (Object given)
 { itsData = given;
 } //========================

 public boolean isEmpty()
 { return this.itsData == null; // generally, only ET
 } //========================

 public Object getData()
 { return itsData;
 } //========================

 public TreeNode getLeft()
 { return itsLeft;
 } //========================

 public TreeNode getRight()
 { return itsRight;
 } //========================

 /** Return the number of data values in the tree. */

 public int size()
 { return this.isEmpty() ? 0
 : 1 + this.itsLeft.size() + this.itsRight.size();
 } //========================

 /** Return the leftmost node in the tree rooted at this.
 * Throw an Exception if this is an empty tree. */

 public TreeNode firstNode()
 { return itsLeft.isEmpty() ? this : itsLeft.firstNode();
 } //========================

 /** Precondition: this is a non-empty node with a non-empty
 node to its right. Postcondition: the rightmost node of
 the subtree rooted at this is removed. */

 public void deleteLastNode()
 { if (itsRight.itsRight.isEmpty())
 itsRight = itsRight.itsLeft;
 else
 itsRight.deleteLastNode();
 } //========================
}

 Java Au Naturel by William C. Jones 17-6

17-6

An empty binary tree does not contain any data or any subtrees; it is an external node.
In figures, internal nodes are typically drawn as ellipses and external nodes are drawn as
rectangles. Figure 17.2 shows all binary trees of 1 to 3 data values, though only the first
three show the external nodes explicitly. We often draw only internal nodes; it is
understood that each node drawn with less than two subtrees has an external node for
each undrawn subtree.

 Figure 17.2 Eight binary trees, the first three with external nodes drawn

A path in a tree from one node to another is a sequence of nodes beginning with the first
and ending with the second such that, for each time node Y follows node X in the
sequence, node Y is the root of a subtree of node X. For instance, the fourth binary tree
in Figure 17.2 has two paths of length 1 (from the A-node to the B-node and from the
B-node to the C-node) and one path of length 2 (from the A-node via the B-node to the
C-node).

A binary tree has a limitation on the way in which nodes can be connected, namely, you
cannot have two different paths from one internal node to another internal node, and you
cannot have a path from an internal node to itself. In particular, none of the nodes in the
left subtree of a binary tree can be in the right subtree.

Another method that could be in the TreeNode class is the following, which prints all the
data values in a given binary tree in order from left to right. The logic is (a) an empty tree
has no data values to print, but (b) printing the data values in a non-empty tree requires
that you first print all the data values in its left subtree in order from left to right, then print
the root value, then print all the data values in its right subtree in order from left to right.

 public void printInOrder() // in the TreeNode class
 { if (this.isEmpty())
 return; // a void method forbids returning with a value
 itsLeft.printInOrder();
 System.out.println (itsData.toString());
 itsRight.printInOrder();
 } //========================

For the fourth tree in Figure 17.2, this method would print the data in the order B, C, A.
For the eighth tree in Figure 17.2, this method would print the data in the order B, A, C.

Exercise 17.3 State the order in which the printInOrder method would print the
data in the fifth, sixth, and seventh trees in Figure 17.2.
Exercise 17.4 Describe the action of c.size() on the tree in Figure 17.1, using the
nomenclature of this section.
Exercise 17.5 Describe the action of b.deleteLastNode() on the tree in Figure
17.1, using the nomenclature of this section.
Exercise 17.6 Write a TreeNode method that returns the rightmost node in the tree.
Exercise 17.7 Write a TreeNode method that deletes the leftmost node in the tree.
Exercise 17.8 State the big-oh of the average execution time of the printInOrder
method and of the deleteLastNode method.
Exercise 17.9* Draw all binary trees with four data values.
Exercise 17.10* Draw all binary trees with five data values.

 Java Au Naturel by William C. Jones 17-7

17-7

17.3 Searching Through A Binary Tree

For the Genealogy software, you will sometimes need to search for the TreeNode that
contains a particular person. This search process can potentially go through every node
in the entire genealogy dataset, since there are no ordering properties to speed the
search. If the search method finds the person somewhere in the dataset, the addChild
method then asks the user for the child to be added for that person and puts the child in
the dataset. Similarly, the listChildren method searches the dataset for a user-
specified person and then lists all the children that person has, in last-in-first-out order.

One way of searching a binary tree is breadth-first search. This means that you first
look at the data at the root, then at the data to the right of the root, then at the data to the
left of the root, and only then at the data below them. And only after checking out all of
the data two steps away from the root would you search through the data that is three
steps away from the root. This kind of search can be controlled by a queue as shown in
Listing 17.3. Note that, even though the root node of a tree used for a Genealogy dataset
is empty on its right, this coding checks the tree on the right anyway. That allows this
coding to be used for trees that have data on the right of the root node.

Listing 17.3 A non-recursive search method in TreeNode using a queue

 /** The search process implemented with a queue. Return the
 * TreeNode containing given, or ET if given is not there.
 * Precondition: The executor is not empty. */

 public TreeNode search (Object given)
 { QueueADT people = new NodeQueue(); //1
 people.enqueue (this); //2
 do //3
 { TreeNode node = (TreeNode) people.dequeue(); //4
 if (node.itsData.equals (given)) //5
 return node; //6
 if (! node.itsRight.isEmpty()) //7
 people.enqueue (node.itsRight); //8
 if (! node.itsLeft.isEmpty()) //9
 people.enqueue (node.itsLeft); //10
 }while (! people.isEmpty()) //11
 return ET; //12
 } //========================

QueueADT is described in Chapter Fourteen; all you really have to know for this chapter
is that the enqueue method adds an Object value (its parameter) to the rear, the
dequeue method removes an Object value from the front, and the isEmpty method
checks to see whether you have a value to remove. NodeQueue is one particular
implementation of the QueueADT interface.

Similarly, StackADT is described in Chapter Fourteen; all you really have to know for this
chapter is that the push method adds an Object value (its parameter) to the top, the
pop method removes an Object value from the top, and the isEmpty method checks
to see whether you have a value to remove. NodeStack is one particular implementation
of the StackADT interface.

 Java Au Naturel by William C. Jones 17-8

17-8

This search method first puts this root node in the queue. Then it starts the loop, whose
first action is to remove from the Queue node = this, which is at the first level of the
binary tree. It tests node.itsData.equals (given). If true, it returns this node. If
false, it puts this.itsLeft in the queue (and also this.itsRight if it is called for
some other tree that has a non-empty node to its right). Now the node or nodes on the
second level of the binary tree are in the queue.

On the second time through the loop, the coding removes the node on the left of the
root and processes it similarly. It puts node.itsRight and node.itsLeft on the
Queue, etc. This is considered breadth-first whether you look at the right before the left
or vice versa. In the earlier Figure 17.1, this search process would visit the data values in
this order: A, then B (1 level away from the top), then H and C (2 levels away), then I and
D (3 levels away), then K, J, and E (4 levels away), then F, then G. Note that levels are
expressed in terms of the binary tree structure, not the data structure itself.

Depth-first search

Depth-first search means that, after looking at the data in a particular node, you look at
all the data in its subtree before you look elsewhere. Concretely, first you check out the
data in the root. If you find what you want there, you quit. Otherwise you search through
the entire left subtree of the root, going down however many levels are necessary. Only
if you do not find what you are looking for there do you go on to the right subtree of the
root and search through all of the levels of that subtree.

A non-recursive depth-first search can be coded exactly the way it is done in Listing 17.3
except you replace "Queue" by "Stack" and therefore "enqueue" by "push" and
"dequeue" by "pop". In the earlier Figure 17.1, this search process would visit the data
values in this order: A, then B, then B's left subtree C, D, E, F, and G, then B's right
subtree H, I, J, and K.

For a recursive depth-first search, you would first check out the data in the root (if any; if
the root is empty, then of course the result of the search is an empty tree). If you do not
find what you want in the root, call the search method recursively for the left subtree of
the root and see what you get back from that call. If you get back anything but the empty
tree, you have found the desired TreeNode value and you do not need to search further.
Otherwise, search the right subtree of the root and return whatever it produces.

In Figure 17.3, the breadth-first coding in Listing 17.3 will look at the information in the
following order (one level at a time): 54, 76, 28, 90, 64, 40, 17. But depth-first search
would look at the information in the following order: 54, 28, 17, 40, 76, 64, 90.

 Figure 17.3 A binary tree with 7 nodes

Traversals

A recursive depth-first search is called left-to-right preorder traversal. "Traversal"
means you visit each node in the tree (potentially). "Left-to-right" means that you visit the
nodes in the left subtree before you visit any node in the right subtree; the alternative is
right-to-left traversal. "Preorder" means that you visit the root node of each subtree
before you visit any of the nodes in its subtrees. The alternatives to preorder are
postorder traversal (visit the root node after you visit all the nodes of the subtrees) and
inorder traversal (visit the root node in between visiting the nodes of the subtrees).

 Java Au Naturel by William C. Jones 17-9

17-9

For instance, the printInOrder method coded at the end of the preceding section is
a left-to-right inorder traversal. An example of right-to-left inorder traversal is the
following toString method to return a String value containing a representation of the
values in the entire binary tree. It is right-to-left because Java always evaluates the
operands of the plus operator from left to right.

 public String toString() // in the TreeNode class
 { if (this.isEmpty())
 return "";
 else
 return " (" + itsRight.toString() + itsData.toString()
 + itsLeft.toString() + ") ";
 } //========================

For the binary tree in Figure 17.3, this toString method would return the String form
of the right subtree followed by 54 followed by the String form of the left subtree. The
String form of the right subtree is "((90) 76 (64))". The String form of the left subtree is
"((40) 28 (17))". So the output from a call of toString would be "(((90) 76 (64)) 54
((40) 28 (17)))".

Listing 17.4 (see next page) codes the Genealogy class, using the IO class from Listing
10.2. It calls on the search method in Listing 17.3 and a recursive listAll method
in TreeNode that traverses the tree, listing all the data values with each value indented
appropriately. This listAll method is left as an exercise. It is a right-to-left postorder
traversal. In the Genealogy class, itsRoot is a reference to the root of a binary tree
containing the family members.

Exercise 17.11 Consider a binary tree with the same structure as shown in Figure 17.3,
but with different data values in the seven nodes. If the order of the data values
produced by the breadth-first search method in Listing 17.3 is A,B,C,D,E,F,G, then what
is the order produced by the depth-first search method described in this section?
Exercise 17.12 Consider a binary tree with the same structure as shown in Figure 17.3,
but with different data values in the seven nodes. If the order of the data values
produced by the recursive depth-first search method described in this section is
A,B,C,D,E,F,G, then what is the order produced by the breadth-first search method in
Listing 17.3?
Exercise 17.13 Is it possible to have a binary tree of seven nodes in which both of the
algorithms mentioned in the preceding exercise produce exactly the same sequence of
data values? If so, what does it look like?
Exercise 17.14 (harder) What is the relation between the number of parentheses in the
output of the toString method at the end of this section and the levels of the data
values?
Exercise 17.15** Write the search function that must be added to the TreeNode class
in order to make the Genealogy methods work correctly. It does not assume that the
dataset is ordered in any way. You are to code it recursively as described in the text,
without a stack or queue. Be sure to have it stop the search as soon as it finds a match.
Exercise 17.16** Genealogy's listEverybody method calls a recursive tree traversal
method itsRoot.listAll("") with one parameter, which is a String containing the
right number of blanks to indent the executor node's data. Each data value should be
indented 3 blanks for every generation it is removed from the root data. Code listAll
so that it prints all the data values stored in the right subtree of the root node, then prints
all the data values stored in the left subtree of the root node, then prints the data in the
root node. For instance, for the data in Figure 17.1, it will print A at the bottom of the list;
it will print K, I, H, and B in that order, each indented 3 blanks (since they are the children
of A), with K first; and it will print J just before I and indented 6 blanks.

 Java Au Naturel by William C. Jones 17-10

17-10

Listing 17.4 The Genealogy class

public class Genealogy
{
 private TreeNode itsRoot; // the root node of the tree

 /** Create a dataset of parent-child relations with lilith as
 * the root data value and no other values in the dataset. */

 Genealogy (String lilith)
 { itsRoot = new TreeNode (lilith); //1
 } //========================

 /** If the given parent is in the dataset, ask for a child of
 * that parent and then add that child to the dataset. */

 public void addChild (String parent)
 { TreeNode node = itsRoot.search (parent); //2
 if (node == TreeNode.ET) //3
 IO.say ("I'm sorry, that person is not in the family");
 else //5
 node.pushLeft (IO.askLine ("What's the child's name?"));
 } //========================

 /** List all children of the parent. */

 public void listChildren (String parent)
 { TreeNode node = itsRoot.search (parent); //7
 if (node == TreeNode.ET) //8
 IO.say ("I'm sorry, that person is not in the family");
 else if (node.getLeft() == TreeNode.ET) //10
 IO.say ("None are in the dataset"); //11
 else //12
 { TreeNode kid = node.getLeft(); //13
 String s = kid.getData().toString(); //14
 for (kid = kid.getRight(); kid != TreeNode.ET; //15
 kid = kid.getRight()) //16
 s += ", " + kid.getData().toString(); //17
 IO.say (s); //18
 } //19
 } //========================

 /** List all values in the dataset, one per output line,
 * with all children of any data value X listed before X
 * and in the order they were entered (right-to-left
 * postorder), and each indented 3 spaces further than X. */

 public void listEverybody()
 { itsRoot.listAll (""); // left as a recursive exercise //20
 } //========================
}

// The following method is added to the TreeNode class

 public void pushLeft (Object newInfo)
 { TreeNode newNode = new TreeNode (newInfo); //21
 newNode.itsRight = this.itsLeft; //22
 this.itsLeft = newNode; //23
 } //========================

 Java Au Naturel by William C. Jones 17-11

17-11

17.4 Implementing The Mapping Interface With Binary Search Trees

The Mapping interface (Listing 16.4) simplifies Sun's standard library Map interface:

 public Object put (Object id, Object value); // add id/value
 public boolean containsKey (Object id); // is this id in it?
 public Object get (Object id); // return the value for this id
 public Object remove (Object id); // remove the id/value
 public boolean isEmpty(); // has it no id/value pairs?
 public int size(); // how many id/value pairs?
 public java.util.Iterator iterator(); // for listing all pairs

One way to implement the Mapping interface is to use a binary search tree, as long as all
the keys are from a class that implements Comparable (and so contains the usual
compareTo method). A nonempty tree contains one MapEntry, its root data, plus two
subtrees, one on its left and one on its right. An empty tree contains no entry or subtree.
A MapEntry object (described in Listing 16.5) has two final Object instance variables
whose values can be obtained using me.getKey() and me.getValue().

In a binary search tree, keys in a left subtree are less than the key for the root data, and
keys in a right subtree are greater than or equal to the key for the root data. Mappings do
not allow duplicate keys. So if Lkey is any key from a MapEntry data value in X's left
subtree, and if Rkey is any key from a MapEntry data value in X's right subtree, then
Lkey.compareTo (((MapEntry) X.itsData).getKey()) < 0 and also
Rkey.compareTo (((MapEntry) X.itsData).getKey()) > 0.

If the tree is well balanced, then about half of the entries will be in the left subtree and
about half will be in the right subtree. A perfectly balanced tree with 31 entries has 15
entries in its left subtree and 15 entries in its right subtree (and so the root data would be
the middle value as determined by compareTo). Each of those subtrees has 7 entries
in each of its two subtrees, etc. The tree has a total of five levels; the fifth level has 16
subtrees each with two empty subtrees. Figure 17.4 shows such a tree.

 Figure 17.4 Example of a balanced binary search tree with 31 entries

Searching in a binary search tree

When you search for a particular key in this 31-node tree, you only need to look at at
most five different entries before you find the entry you are looking for (or find that it is not
in the data structure at all). Specifically, you compare the given id with the root data
54. That tells you whether to look in its left subtree or in its right subtree (unless it equals
the root data). Either way, you are in a subtree with only 15 possibilities left instead of
the original 31. When you compare the given id with the root of the subtree you are in,
it tells you whether to look in its left subtree or in its right subtree. That reduces the
number of possibilities to 7, again cutting them in half (unless you have already found it
on the first two levels). This process continues for at most five levels.

 Java Au Naturel by William C. Jones 17-12

17-12

There are only ten levels in a balanced binary tree with a thousand entries and only
twenty levels in a balanced binary tree with a million entries. So you can find a value you
are looking for by looking at only twenty different values among a million entries. That is
just not possible with a linked list. Of course, you get the same speed using binary
search in an ordered array (in Section 13.3). A balanced binary search tree has a close
correspondence with an ordered array (this is why it is called a binary search tree): The
root data is roughly the middle value in the array; the root data of the left subtree is
roughly the value a quarter of the way up from the bottom of the array; etc.

Inserting in a binary search tree

The drawback to using an ordered array is that putting a new entry in the array or taking
an existing one out is so slow. If you have a million entries, you may have to make
almost a million assignments of variables to make room for a new one that is near the
front of the array. And you may have to make almost a million assignments to move
entries down when you remove an existing one that is near the front of the array.

With a binary search tree, you only have to make less than half-a-dozen assignments to
put a new entry in the data structure or remove an existing entry, once you find where it
goes. That is an enormous amount of time saved. And that is true even if you have a
million million million entries.

Our BintMap implementation of Mapping is in Listing 17.5 (see next page) has just one
instance variable, the TreeNode stored in itsRoot. Each TreeNode in the binary
search tree stores a MapEntry value in itsData (though itsData is declared as
type Object). To simplify coding comparisons of Comparable id values with the key
value in itsData, we use the compare method defined in the bottom of Listing 17.5.

Since the Object class has a hashCode method, we could instead use each ID's int
hashCode value (described in Section 16.7) to decide where a data value is stored.
Then the IDs would not have to be Comparable; they would just have to come from a
class of objects that overrides the Object hashCode method appropriately.

Each TreeNode X has references to its two subtrees, X.itsLeft and X.itsRight.
The nodes at the roots of those two subtrees are the left child and right child of X. X is
their parent. If a node has no data to its left, itsLeft is an empty tree (normally ET),
and similarly for itsRight.

The lookUp method

The size and isEmpty methods for a BintMap simply return itsRoot.size()
and itsRoot.isEmpty(), respectively (calling methods in Listing 17.2). The
containsKey method returns false if the id parameter is null or if the root node
has no data. Otherwise containsKey calls a recursive lookUp method in the
TreeNode class to return the node that has itsData.getKey() equal to id (if any).
The logic of the lookUp method follows the structure of a binary search tree:

• If the id is less than the root data, the search should be made in the left subtree,

and the result that search produces is what the method returns.
• If the id is larger than the root data, the search should be made in the right subtree,

and the result that search produces is what the method returns.
• The only case left is that the id equals the root data, in which case your search is

successfully completed and you can return this current node.

For the get method, if the id is null or if the executor is empty of data or if lookUp
returns null, get returns null, otherwise get returns the value part of the id/value pair
in the node that lookUp returns.

 Java Au Naturel by William C. Jones 17-13

17-13

Listing 17.5 The BintMap class, partially done

//Methods throw a RuntimeException for non-Comparable ids.

public class BintMap implements Mapping
{
 private TreeNode itsRoot;

 public BintMap()
 { itsRoot = TreeNode.ET;
 } //======================

 public int size()
 { return itsRoot.size();
 } //======================

 public boolean containsKey (Object id)
 { return id != null && ! this.isEmpty()
 && itsRoot.lookUp ((Comparable) id) != null;
 } //======================

 public Object get (Object id)
 { if (id == null || this.isEmpty())
 return null;
 TreeNode loc = itsRoot.lookUp ((Comparable) id);
 return (loc == null) ? null
 : ((MapEntry) loc.getData()).getValue();
 } //======================
}

// The following 2 methods are added to the TreeNode class

 /** Return null if id is nowhere in the subtree rooted at
 * this node. Otherwise return the TreeNode containing id.
 * Precondition: id is not null, nor is this.itsData; also,
 * this tree is a binary search tree. */

 public TreeNode lookUp (Comparable id)
 { if (compare (id, itsData) < 0)
 return itsLeft.isEmpty() ? null : itsLeft.lookUp (id);
 if (compare (id, itsData) > 0)
 return itsRight.isEmpty() ? null : itsRight.lookUp (id);
 return this; // this is the node with the id
 } //======================

 private static int compare (Comparable id, Object data)
 { return id.compareTo (((MapEntry) data).getKey());
 } //======================

Example for lookUp If the root node in Figure 17.4 performs lookUp for the id 47,
it asks the node to its left containing 28 to perform lookUp, which asks the node to its
right containing 40 to perform lookUp, which asks the node to its right containing 47 to
perform lookUp, which returns itself. But if the id had been 45, the node containing
47 would then have asked the node to its left containing 43 to perform lookUp, which
would have seen ET to its right and therefore returned null.

 Java Au Naturel by William C. Jones 17-14

17-14

The put method

The put method for the BintMap class is in Listing 17.6. After first checking that the id
parameter is not null and the BintMap is not completely empty, put calls a recursive
TreeNode method structured similarly to lookUp. Closely compare putRecursive
with lookUp. Note the indirect recursion: putRecursive calls one of two other
methods, each of which can call putRecursive again.

Listing 17.6 The put method for the BintMap class

 public Object put (Object id, Object value)
 { if (id == null) //1
 return null; //2
 if (this.isEmpty()) //3
 { itsRoot = new TreeNode (new MapEntry (id, value)); //4
 return null; //5
 } //6
 return itsRoot.putRecursive ((Comparable) id, value); //7
 } //======================

// The following 3 methods are added to the TreeNode class

 /** Add the id/value pair to the non-empty binary search tree.
 * Return the value the id previously had (null if none). */

 public Object putRecursive (Comparable id, Object val)
 { if (compare (id, itsData) < 0) // go left //8
 return putInLeftSubtree (id, val); //9
 if (compare (id, itsData) > 0) // go right //10
 return putInRightSubtree (id, val); //11
 Object valueToReturn = ((MapEntry) itsData).getValue();//12
 itsData = new MapEntry (id, val); //13
 return valueToReturn; //14
 } //======================

 private Object putInLeftSubtree (Comparable id, Object val)
 { if (itsLeft.isEmpty()) //15
 { itsLeft = new TreeNode (new MapEntry (id, val)); //16
 return null; //17
 } //18
 else //19
 return itsLeft.putRecursive (id, val); //20
 } //======================

 private Object putInRightSubtree (Comparable id, Object val)
 { if (itsRight.isEmpty()) //21
 { itsRight = new TreeNode (new MapEntry (id, val)); //22
 return null; //23
 } //24
 else //25
 return itsRight.putRecursive (id, val); //26
 } //======================

The executor of the putRecursive method puts the MapEntry in the left or right
subtree depending on whether the id is smaller or larger than its data. But if it is equal,
it simply replaces the corresponding value. Putting a value in the left subtree consists in
calling the putRecursive method unless the left subtree is empty, in which case it is
replaced by a one-node subtree containing the new MapEntry value. Putting a value in
the right subtree is line-for-line analogous.

 Java Au Naturel by William C. Jones 17-15

17-15

Example for put If the root node in Figure 17.4 performs putRecursive for the id
45, it asks the node to its left containing 28 to perform putRecursive, which asks the
node to its right containing 40 to perform putRecursive, which asks the node to its
right containing 47 to perform putRecursive, which asks the node to its left containing
43 to perform putRecursive, which sees that 45 goes to its right where it has an
empty subtree, so it creates a new node to its right and stores the 45 in it.

The remove method

The hardest method to implement for a binary search tree is the remove method. This
method requires that you search through the tree to find a data value whose key matches
the one given by the parameter. Then you remove it without altering the relationships of
the other data values to each other. You are to return null if the search fails.

If the root node is empty or the id is null, you can simply return null. Otherwise you
need to find the node that contains the data with that id; lookUp will do this for you. If
lookUp returns null, the id is not in the BintMap. Otherwise, you can extract the data
from that node, remove that data from the binary tree, and return the data's value. This
logic is in the upper part of Listing 17.7.

Listing 17.7 The remove method for the BintMap class

 public Object remove (Object id)
 { if (id == null || this.isEmpty()) //1
 return null; //2
 TreeNode loc = itsRoot.lookUp ((Comparable) id); //3
 if (loc == null) //4
 return null; //5
 MapEntry data = (MapEntry) loc.getData(); //6
 loc.removeData(); //7
 return data.getValue(); //8
 } //======================

// The following method is added to the TreeNode class

 /** Precondition: The executor is a non-empty binary search
 * tree. Postcondition: The data in the executor node is
 * removed, leaving a binary search tree 1 node smaller. */

 public void removeData()
 { if (itsRight.isEmpty()) //9
 { itsData = itsLeft.itsData; //10
 itsRight = itsLeft.itsRight; //11
 itsLeft = itsLeft.itsLeft; //12
 } //13
 else if (itsRight.itsLeft.isEmpty()) //14
 { itsData = itsRight.itsData; //15
 itsRight = itsRight.itsRight; //16
 } //17
 else //18
 { TreeNode p = this.itsRight; //19
 while (! p.itsLeft.itsLeft.isEmpty()) //20
 p = p.itsLeft; //21
 this.itsData = p.itsLeft.itsData; //22
 p.itsLeft = p.itsLeft.itsRight; //23
 } //24
 } //======================

 Java Au Naturel by William C. Jones 17-16

17-16

For the removeData method: Removing the data value in a linked list is easy – you
simply copy the values from the next node into the current node, thereby replacing its
data value by the next node's data and then bypassing the next node. You can also do
this in a binary tree if the current node only has a left subtree, i.e., its right subtree is
empty (this is in lines 9-12). What do you do if the right subtree is not empty? You obtain
a replacement data value from the right subtree.

With which value in the current node's right subtree do you replace the current node's
data? Only the data in the leftmost node, since that is the data value that comes
immediately after the current node's data value. And since that leftmost node has an
empty left subtree, you may replace it by its own right subtree without altering the
ordering relationships of the data values. Study Listing 17.7 carefully to see this.

Example for remove In the small binary seach tree figure at right:
To remove data H, lines 10-12 copy F and its two subtrees into the H-node.
To remove data B, lines 15-16 copy C and its right subtree into the B-node.
To remove data C instead, lines 19-21 set p to the F-node; line 22 copies D
into the C-node; and line 23 assigns the right subtree of the D-node to be
the left subtree of the F-node (the original D-node is thereby deleted).

Creating a balanced tree from an array

If you have a filled array of one or more MapEntry values in ascending order (every
component having a MapEntry value), you could create a nicely balanced binary tree
from those values by calling the following method in the TreeNode class with the
statement make(item, 0, item.length - 1):

 public static TreeNode make (Object[] item, int lo, int hi)
 { int middle = (lo + hi + 1) / 2; // halfway from lo to hi
 TreeNode root = new TreeNode (item[middle]);
 if (lo < middle)
 root.itsLeft = make (item, lo, middle - 1);
 if (middle < hi)
 root.itsRight = make (item, middle + 1, hi);
 return root;
 } //========================

Exercise 17.17 Rewrite the lookUp method to only call compare at most one time
for each pair of values, instead of wasting execution time calling it twice.
Exercise 17.18 Rewrite the removeData method so that it checks for an empty left
subtree and makes the easy removal in that case. Does this improve overall execution
time?
Exercise 17.19 (harder) Write a TreeNode method public TreeNode copy(): The
non-empty executor returns a new binary search tree containing exactly the same entries
as the executor's binary search tree and in the same relative positions. Use recursion.
Exercise 17.20 (harder) Write a TreeNode method public int under
(Comparable id): The executor tells how many of its MapEntries have a key less
than that of the given key.
Exercise 17.21* Write a BintMap method public Comparable firstKey() that
returns the smallest key. Return null if the executor is empty. Use recursion.
Exercise 17.22* Rewrite the lookUp method in Listing 17.5 without using recursion.
Exercise 17.23* Write a recursive TreeNode method public TreeNode reverse():
the executor returns a new binary tree with the same entries in the opposite order.
Exercise 17.24** Write a recursive BintMap method public boolean equals
(BintMap given): The executor tells whether the BintMap parameter has the same
key/value pairs in the same order and the same positions in the tree as the executor.
Exercise 17.25** Write out the internal invariant for the BintMap class.

 Java Au Naturel by William C. Jones 17-17

17-17

17.5 Implementing The Iterator Interface For A Binary Search Tree

A Mapping needs an Iterator object so a client can obtain the values in the Mapping one
at a time. An obvious implementation is to keep track of the TreeNode that contains the
information to be returned by a call of next(). This is like what the array
implementation and the linked list implementation in Chapter Sixteen did:

In ArrayMap, next() returns itsItem[itsPos] if itsPos < itsSize.
In NodeMap, next() returns itsPos.itsData if itsPos.itsData != null.

For the BintMap class, we could have next() return itsPos.itsData where
itsPos is a TreeNode, just as we did for the NodeMap class. This coding is in Listing
17.8 (see next page). Our Mapping iterators disallow remove to make this chapter
simpler. When we need to move on to the next TreeNode, we do one of two things:

• If the right subtree of itsPos contains any data, then the

next value is the first value in that right subtree. So we set
itsPos to be the leftmost node in that right subtree.

• Otherwise, the next value after the one in itsPos is a value
that is on the path from the root node down to itsPos. It will
be in a node that contains itsPos in its left subtree, since the
value in itsPos comes before it. If there are two or more
nodes on that path that have itsPos in the node's left
subtree, we want the one that is furthest down the path.

 Figure 17.5 Binary search tree

The algorithm described above is left-to-right inorder traversal of the nodes, which is in
ascending order using compareTo. An iterator is not required to produce the data
values in this order, but it is preferable. Figure 17.5 shows a binary search tree with nine
values in it. The effects of the first few accesses to the iterator are as follows:

• The constructor sets itsPos to refer to the leftmost node, which contains 1.
• A call of next() returns that 1 and then, when it sees that itsPos.itsRight is

not the empty tree, sets itsPos to the leftmost node in that right subtree, which
contains 2.

• Another call of next() returns that 2 and then, when it sees that itsPos has an
empty right subtree, starts from the root to search down the tree for itsPos. It
notes that itsPos is to the left of the node containing 5, and of the node containing
4, and of the node containing 3. Since the node containing 3 is lowest in the tree of
all of those, it sets itsPos to that node containing 3.

• Another call of next() returns that 3 and then, when it sees that itsPos has an
empty right subtree, starts from the root to search down the tree for itsPos. It notes
that itsPos is to the left of the node containing 5 and also of the node containing
4. Since the latter is lower in the tree, it sets itsPos to that node containing 4.

Listing 17.8 uses a throw statement when someone calls a method that should not be
called (remove), or calls a method under conditions when it should not be called (next
when hasNext() is false). That is a bug in the coding that calls it. Notification of the
bug is through the following kind of statement, which immediately terminates the method
containing the statement:

 throw new RuntimeException ("some explanatory message");

 Java Au Naturel by William C. Jones 17-18

17-18

Listing 17.8 The MapIt class inside the BintMap class, providing iterators

 public java.util.Iterator iterator() // member of BintMap
 { return new MapIt (this.itsRoot); //1
 } //======================

 private static class MapIt implements java.util.Iterator
 {
 private TreeNode itsPos;
 private TreeNode itsRoot;

 public MapIt (TreeNode given)
 { itsRoot = given; //2
 itsPos = given.isEmpty() ? null : given.firstNode();//3
 } //======================

 public boolean hasNext()
 { return itsPos != null; //4
 } //======================

 public Object next()
 { if (! hasNext()) //5
 throw new java.util.NoSuchElementException //6
 ("iterator has no next element!"); //7
 Object valueToReturn = itsPos.getData(); //8
 itsPos = itsPos.nextIn (itsRoot); //9
 return valueToReturn; //10
 } //======================

 public void remove()
 { throw new UnsupportedOperationException ("no remove!");
 } //======================
 }

// The following method is added to the TreeNode class

 /** Return the next TreeNode after the executor that appears
 * in left-right inorder traversal; return null if there is
 * none. Precondition: The executor is not empty, . */

 public TreeNode nextIn (TreeNode ancestor)
 { if (! this.itsRight.isEmpty()) //12
 return this.itsRight.firstNode(); //13
 Comparable id = (Comparable) ((MapEntry) itsData).getKey();
 TreeNode lastLeftTurn = null; //15
 while (ancestor != this) //16
 { if (compare (id, ancestor.itsData) > 0) //17
 ancestor = ancestor.itsRight; //18
 else //19
 { lastLeftTurn = ancestor; //20
 ancestor = ancestor.itsLeft; //21
 } //22
 } //23
 return lastLeftTurn; //24
 } //======================

 Java Au Naturel by William C. Jones 17-19

17-19

Using parent pointers

The nextIn method has to go through several nodes, starting from the root of the tree
and moving down to the current position, in order to move on to the next position. It
would be helpful if we could avoid the time it takes to execute that loop. One way is to
have each node keep track of its parent. That is, we put another instance variable in the
TreeNode class in addition to itsLeft, itsRight, and itsData:

 private TreeNode itsParent = null; // add to TreeNode

Whenever you consider storing additional information in an object, you should consider
two things: What do you gain and what do you lose? This is like decisions in a business
venture: What is your added revenue and what are your added costs? You need to
make sure you will be making a profit if you make a change.

What you gain by adding parent information is a faster implementation of the Iterator
next method. None of the other methods in the BintMap class profit from having the
parent information. What you lose is the space required to store the added information
and the time required to update the information when needed.

Parent information changes whenever you add or remove a node in the binary tree. So
for the put logic in Listing 17.6, set the parent of the root node to null and add the
following statements directly after the two statements that mention new TreeNode
(lines 16 and 22):

 this.itsLeft.itsParent = this; // after line 16
 this.itsRight.itsParent = this; // after line 22

For the remove logic in Listing 17.7, you need to change the record of the parent in the
nodes directly below the one whose data you are changing. Specifically, you add these
three lines right after deleting a data value whose right subtree is empty:

 if (this.itsData != null) // after line 12
 { this.itsLeft.itsParent = this;
 this.itsRight.itsParent = this;
 }

The only other change required in Listing 17.7 is that each node that is moved up into
another node's position has to have its parent information corrected. So have the
following statement after deleting the node to the right of this. Its new right child may
be empty, but it does not matter what an empty node thinks its parent is:

 this.itsRight.itsParent = this; // after line 16

Finally, put this statement after deleting a node to the left of p:

 p.itsLeft.itsParent = p; // after line 23

The only advantage of having this parent information is that you may now make the
nextIn method execute faster, by replacing everything after the first two lines by the
following coding to handle the case when this.itsRight is empty:

 Node p = this;
 while (p.itsParent != null && p.itsParent.itsLeft != p)
 p = p.itsParent;
 return p.itsParent;

 Java Au Naturel by William C. Jones 17-20

17-20

Implementing an Iterator with a threaded binary search tree

Adding a parent pointer as just described saves execution time, but even more time
would be saved if we had an itsNext value stored in each node, instead of an
itsParent value, where itsNext tells the node containing the very next value in
sequence in the tree. Then we could replace the entire body of the nextIn method in
Listing 17.8 by one statement:

 itsPos = itsPos.itsNext; // new body of nextIn

On the other hand, we need to go to more trouble to adjust the itsNext values each
time we add or remove a node in the tree. Specifically, we declare a new instance
variable in the TreeNode class as follows (instead of having itsParent):

 private TreeNode itsNext = null; // add to TreeNode

Then we assign it the correct value when we put a new data value in the tree. For the
put logic in Listing 17.6, we have to make some adjustments around lines 16 and 22.
The adjustment for line 16 is left as an exercise; the adjustment for line 22 is to add the
following two statements after it:

 itsRight.itsNext = this.itsNext; // after line 22
 this.itsNext = itsRight;

Some adjustment also has to be made for the remove logic in Listing 17.7, at lines 10,
16, and 20. Line 10 is left as an exercise. The adjustment for the other two is
straightforward – just add the following statement at line 16 and also at line 19:

 this.itsNext = this.itsNext.itsNext; // in removeData

Historical Note This kind of link is called a thread through the tree. Back in the days
when RAM was expensive, it was standard to put the itsNext values and the
itsRight values in the same storage space and just add a boolean value to each node
to tell what kind of value was in that storage space (and similarly for an itsPrevious
value sharing space with the itsLeft value). They would however only store
something in itsNext when its right subtree was empty.

Exercise 17.26 Write statements that delete a TreeNode node toDelete from a
binary tree when toDelete is not empty and toDelete.itsRight is empty and
toDelete.itsParent != null. Assume you have the itsParent values.
Exercise 17.27 (harder) Write a private recursive TreeNode method so that you can
replace everything in nextIn starting from TreeNode lastLeftTurn by the
statement: return ancestor.lastLeft (null, id); and still do the same thing.
Exercise 17.28 (harder) Determine the amount of execution time saved by adding the
parent information described in this section for a well-balanced tree.
Exercise 17.29* Essay: What are the advantages and disadvantages of having each
MapIt iterator create a stack and put on it all of the TreeNodes at which the iterator made
a left turn on its way to the current position itsPos? Compare this approach with using
the itsNext instance variable.
Exercise 17.30** Revise the put logic at line 16 in Listing 17.6 to allow for the
itsNext value.
Exercise 17.31** Revise the remove logic at lines 10 through 12 in Listing 17.7 to
allow for the itsNext value.
Exercise 17.32** Implement the Iterator's remove method for Listing 17.8. Hint: You
cannot simply call TreeNode's removeData method in Listing 17.7.

 Java Au Naturel by William C. Jones 17-21

17-21

Part B Enrichment And Reinforcement

17.6 More Tree Traversals

If you want to put all the data values from a binary tree on a queue for later use, you have
a choice of six standard depth-first traversal processes. You can process all the data in
the left subtree either before or after all the data in the right subtree (left-to-right or right-
to-left). Whichever of these two you choose, you can process the data in the root either
before all subtree data (preorder traversal), or after all subtree data (postorder traversal),
or in between the data of the two subtrees (inorder traversal).

Figure 17.6 shows three of these standard traversals. Start at the down-arrow at the top
of one of the figures and follow the dotted line. Process each of the seven data values
when you come to the little rectangle pointing to it. For the left-to-right preorder traversal,
the order of processing is 17, 13, 11, 15, 22, 20, 25. For the left-to-right inorder traversal,
the order of processing is 11, 13, 15, 17, 20, 22, 25. For the right-to-left postorder
traversal, the order of processing is 25, 20, 22, 15, 11, 13, 17.

Figure 17.6 Three of the six standard traversals (start at the down-arrow)

The following right-to-left postorder traversal method, illustrated on the right side of
Figure 17.6, could be in the TreeNode class, with the parameter being any QueueADT
object to which you want to add all the data values:

 public void postorderTraverseRL (QueueADT queue)// in TreeNode
 { if (isEmpty())
 return;
 itsRight.postorderTraverseRL (queue);
 itsLeft.postorderTraverseRL (queue);
 queue.enqueue (itsData);
 } //========================

There are five more analogous methods, one for each kind of standard depth-first
traversal. Note that the queue produced by a preorder traversal of a binary search tree
can be used to produce an exact copy of that tree, with the same parent-child relations.

The most commonly-used traversal of a binary tree is left-to-right inorder traversal (as
shown in the middle of Figure 17.6). This produces the data values in the natural order
(i.e., using compareTo) if the tree is a binary search tree. An iterator could be made for
BintMap using this traversal: When the iterator is constructed, it traverses the entire tree
recursively and puts the data values on a queue; each time next is called, the next
data value is removed from the queue.

The coding for this QueueMapIt iterator class for BintMap is in Listing 17.9 (see next
page). Note that next does not need an explicit throw statement, since the queue will
throw a RuntimeException if anyone tries to take a data value from it when it is empty.

 Java Au Naturel by William C. Jones 17-22

17-22

Listing 17.9 The QueueMapIt class, providing iterators for BintMap

 public java.util.Iterator iterator() // member of BintMap
 { return new QueueMapIt (this.itsRoot);
 } //======================

 private static class QueueMapIt implements java.util.Iterator
 {
 private QueueADT itsQueue = new NodeQueue();

 public QueueMapIt (TreeNode given)
 { given.inorderTraverseLR (itsQueue);
 } //======================

 public boolean hasNext()
 { return ! itsQueue.isEmpty();
 } //======================

 public Object next()
 { return itsQueue.dequeue();
 } //======================

 public void remove()
 { throw new UnsupportedOperationException ("no remove!");
 } //======================
 }

// The following method is added to the TreeNode class

 /** Add to the given queue all data values in the standard
 * left-to-right inorder traversal. */

 public void inorderTraverseLR (QueueADT queue)
 { if (isEmpty())
 return;
 itsLeft.inorderTraverseLR (queue);
 queue.enqueue (itsData);
 itsRight.inorderTraverseLR (queue);
 } //========================

This implementation of Iterators can be more efficient than the three kinds of
implementations described in the preceding section. For one thing, you do not have to
update parent pointers or threading information for each insertion or deletion of data.
However, if users often progress only a little way through most iterations, you waste the
time spent making a complete traversal to fill in the queue.

Yet another implementation of BintMap's iterator

An alternative for iterating in left-to-right inorder traversal order is to have each iterator
keep track of all the nodes at which it made a left turn on the way down the tree to its
current position. Those nodes, plus any nodes in the right subtrees of any of those "left-
turn nodes", are all the nodes that it has not yet returned from the next method. If we
keep the left-turn nodes on a stack, we can easily move back up the tree from one
TreeNode to another. Listing 17.10 has the coding (see next page).

 Java Au Naturel by William C. Jones 17-23

17-23

Listing 17.10 The StackMapIt class, providing iterators for BintMap

 public java.util.Iterator iterator() // member of BintMap
 { return new StackMapIt (this.itsRoot);
 } //======================

 private static class StackMapIt implements java.util.Iterator
 {
 private StackADT itsStack = new NodeStack();

 public StackMapIt (TreeNode given)
 { pushAllLefties (given, itsStack);
 } //======================

 public boolean hasNext()
 { return ! itsStack.isEmpty();
 } //======================

 public Object next()
 { TreeNode pos = (TreeNode) itsStack.pop();
 pushAllLefties (pos.getRight(), itsStack);
 return pos.getData();
 } //======================

 public void remove()
 { throw new UnsupportedOperationException ("no remove!");
 } //======================

 /** push all nodes from the "left edge" of this tree. */

 private void pushAllLefties (TreeNode node, StackADT stack)
 { while (! node.isEmpty())
 { stack.push (node);
 node = node.getLeft();
 }
 } //======================
 }

The key concept for this StackMapIt class is that, at any given time, the next method
has yet to return the data values (a) in any node in the stack or (b) in any node in the
right subtree of any node in the stack. When the iterator is created, it pushes onto the
stack all the non-empty nodes down the "left edge" of the tree. When next is called, it
pops the top node (which, of all the nodes on the stack, is the node furthest down the
tree). It then pushes onto the stack all the non-empty nodes down the "left edge" of the
popped node's right subtree. Finally, it returns the data in the popped node.

Exercise 17.33 Describe the effect of replacing "Left" by "Right" and vice versa
throughout Listing 17.10.
Exercise 17.34 Write the method public void preorderTraverseRL
(QueueADT queue) analogous to the method in the lower part of Listing 17.9.
Exercise 17.35* Write the other three methods analogous to inorderTraverseLR.
Exercise 17.36* Rewrite the entire Listing 17.9 to use a NodeStack (methods push
and pop instead of enqueue and dequeue) instead of a NodeQueue: Construction
of an iterator puts all of the data values on a stack so that the next method produces
left-to-right inorder traversal and has only one statement.
Exercise 17.37* Revise the constructor in Listing 17.9 to obtain an iterator that goes
through the tree in breadth-first order. Use a modification of the logic in Listing 17.3.

 Java Au Naturel by William C. Jones 17-24

17-24

17.7 Red-Black And AVL Binary Search Trees

One problem with binary search trees is that they may become unbalanced as values are
put into them and taken out of them. We define a full tree to be a tree where every node
with less than two subtrees is on the lowest level (and thus is a leaf with no subtrees).
So the full tree with 3 nodes has 2 levels; the full tree with 7 nodes has 3 levels; and the
full tree with 15 nodes has 4 levels. In general, a full tree with 2k - 1 nodes has k levels.
Figure 17.4 had an example of the full tree with 31 nodes. Figure 17.7 shows full trees
with 1 node, 3 nodes, 7 nodes, and 15 nodes.

 Figure 17.7 Four full trees

This book defines a tree to be near-full if it has the minimum possible number of levels
for the number of data values in the tree. For instance, any tree with at least 4 data
values has to have at least 3 levels; any tree with at least 8 data values has to have at
least 4 levels; and any tree with at least 16 data values has to have at least 5 levels. In
general, a tree with anywhere from 2k-1 data values up to and including 2k-1 data values
is near-full if it has only k levels.

In a near-full tree, the worst-case execution time to find a single value (execution time for
containsKey or get) is big-oh of log(N). The reason is that the search process
requires looking at only one value on each level of the binary tree. For example, since
log2(32) is 5, if N is in the range from 16 to 31, log2(N) ranges from 4 to 5, and a near-full
tree with N data values has 5 levels. So it takes at most 5 comparisons to find a key you
are searching for. In general, you need at most log2(N+1) comparisons to find a data
value in a near-full tree with N data values. By contrast, a badly-balanced tree could
require up to N comparisons. Reminder: This book uses log2(x) to mean the number of
times you have to halve x (i.e., execute x /= 2.0) to get 1 or less. In Java coding,
log2(x) is the same as Math.ceil (Math.log(x) / Math.log(2)).

The average search time for a non-empty data structure is the total search time divided
by the number of data values in the data structure. The total search time is the number
of data values you have to look at before you find D, summed over all data values D in
the data structure.

Example: The average search time for the first three full trees in Figure 17.7 is 1/1 for the
first, 5/3 for the second, and 17/7 for the third. The 17 in the value 17/7 is the sum of 1
for the root node, 2 for each of the 2 second-level nodes, and 3 for each of the 4 third-
level nodes: 1 + 2*2 + 3*4 = 17. A probabilistic analysis would show that, if you insert a
random sequence of data values into a binary search tree, the average search time is
1.38 * log2(N) where N is the number of data values in the tree.

Balancing an existing binary search tree

If you have any Mapping object that contains mutually Comparable objects in ascending
order, you can create a new BintMap object with the same data values in the same order
but in a near-full tree. The BintMap constructor in Listing 17.11 (see next page) does this.

 Java Au Naturel by William C. Jones 17-25

17-25

Listing 17.11 The balancing constructor in BintMap, with a method in TreeNode

 /** Precondition: par has MapEntries in ascending order. */

 public BintMap (Mapping par)
 { itsRoot = (par == null || par.isEmpty()) //1
 ? TreeNode.ET //2
 : TreeNode.balanced (par.size(), par.iterator());//3
 } //======================

 /** Return a near-full binary tree with the same ordering.
 * Precondition: it has at least numNodes >= 1 values. */

 public static TreeNode balanced (int numNodes, Iterator it)
 { if (numNodes == 1) //4
 return new TreeNode (it.next()); //5
 TreeNode leftSide = balanced (numNodes / 2, it); //6
 TreeNode root = new TreeNode (it.next()); //7
 root.itsLeft = leftSide; //8
 int n = numNodes – 1 - numNodes / 2; //9
 root.itsRight = (n == 0) ? ET : balanced (n, it); //10
 return root; //11
 } //======================

If for instance the given Mapping object has 20 or 21 data values, the balanced
method iterates through the first 10 data values and constructs a near-full BintMap
named leftSide. Then it makes a tree with the next (eleventh) data value in its root
and leftSide as its left subtree. Finally, it iterates through the remaining 9 or 10 data
values and puts them in a near-full BintMap as the right subtree of the root.

AVL trees

It would be best if each call of put or remove for a binary search tree would check the
tree to be sure that the change it makes does not make the tree too far out of balance. If
it would go too far out of balance, the method should make a small adjustment (on the
order of big-oh of 1). This can be done, but it requires a somewhat looser concept of
balance: This book defines a decently-balanced binary tree to be one with not more
than twice as many levels as a near-full tree of the same number of nodes.

Some computer scientists named Adelson-Velskii and Landis figured out a way to do this,
so the result is called an AVL tree. They add one more instance variable to the
TreeNode class. This number is the number of levels in the left subtree of a node minus
the number of levels in the right subtree of that same node:

 private int leftMinusRight = 0;

The objective of the AVL algorithm is to keep this leftMinusRight number equal to
0, 1, or -1 for every node in the tree at all times. A binary search tree for which this
property is true is called an AVL tree. So each time put or remove is called, it must
see whether any node has had this value changed to an unacceptable value and, if so,
make some adjustment to bring the tree back to having the AVL property.

When put is called for some AVL tree, it adds one node. It should be clear that the
leftMinusRight number only changes for nodes that are on the path from the root
down to the added node. If the addition of a node X loses the AVL property, consider the
node P that is furthest down on the path from the root to X and has the wrong
leftMinusRight number. That number will clearly be 2 if X is in the left subtree of P
and will be -2 if X is in the right subtree of P.

 Java Au Naturel by William C. Jones 17-26

17-26

To restore the AVL property, perform a rotation (which consists of moving a node from
the side of P with more levels to the side with fewer levels). In this description and in
Figure 17.8, C denotes the child of P and G denotes C's child on the side of C that has
more levels (the "grandchild" G will be X or an ancestor of X):

1. Move node G to the other side of P (opposite from C) to be P's other child.
2. Swap the data in G, P, and C around to get them in increasing order left to right.
3. Attach the four subtrees of G, P, and C to those three nodes in the way that keeps

their original order left to right.

Figure 17.8 Rotations to correct an AVL tree, showing leftMinusRight values

The coding is left as a major programming problem. The next section proves logically
that an AVL tree (also known as a height-balanced tree) is decently-balanced. The
height of a binary tree is the number of nodes on the longest path from the root to a leaf.
It is therefore the number of levels in the binary tree. But first we discuss another kind of
tree, a red-black tree. We will also prove logically that a red-black tree is decently-
balanced (so the worst-case execution time for a search is never more than twice as
much as in a near-full tree with the same number of nodes).

Red-black trees

A red-black tree is a binary search tree in which each node is considered to be colored
either red or black. We add a new instance variable to each node, as follows:

 private boolean isRed = true;

This says that each node is created red by default; we change its color to black when
needed (by executing isRed = false). A red-black tree must satisfy three properties:

1. The root node is black, and external nodes are considered to be black.
2. No red node is the child of a red node.
3. The number of black nodes on each path from the root to some external node is the

same as on any other path from the root to some external node.

The first data value we put into a red-black tree is black, since it goes at the root. Each
additional data value we put in goes in a red node X. There are three possible cases:

1. If X is the child of a black node, the tree maintains the three red-black properties.
2. If X is the child of a red node whose parent P has a black node on the other side,

then perform a rotation as described previously for AVL trees.
3. If X is the child of a red node whose parent P has a red node on the other side, then

color both children of P black. If P is not the root node of the whole tree, then color P
red and apply this same logic (steps 1 through 3) to P in place of X.

Figure 17.9 illustrates what happens if you add one data value at a time to an AVL tree or
a red-black tree, each value larger than the one before. When the 15 is added, it makes
the tree unacceptable, which causes a rotation: The node containing 15 becomes the left
child of the root node. Then the data values are moved around: 15 where 13 was, 13 in
the root, and 11 to the left of the root.

 Java Au Naturel by William C. Jones 17-27

17-27

Figure 17.9 Adding ever larger values to an AVL tree and to a red-black tree

If you then added 17 to either of the balanced 3-node trees in Figure 17.9, it would be
acceptable on the right of the 15-node in the AVL tree, but the red-black tree would
require that you change the color on the 11-node and the 15-node to black.

Coding the red-black insertion algorithm

A partial coding of this algorithm for red-black trees is in Listing 17.12. The line numbers
from the put logic in Listing 17.6 have been kept so that you can see that there are only
two kinds of changes: (a) Lines 17, 20f, 23, and 26f return ET instead of null to signal
the problem that the current node is red and has a red child; (b) Lines 20a-20e and lines
26a-26e call special private methods fixLeftRedRed and fixRightRedRed to
correct the problem when the current node is a black node with a red child that itself has
a red child. The putRecursive coding is the same as in Listing 17.6.

Listing 17.12 The put logic in the TreeNode class, revised for red-black trees

 private Object putInLeftSubtree (Comparable id, Object val)
 { if (itsLeft.isEmpty()) //15
 { itsLeft = new TreeNode (new MapEntry (id, val)); //16
 return this.isRed ? ET : null; //17'
 } //18
 else //19
 { Object e = itsLeft.putRecursive (id, val); //20'
 if (! this.isRed && e == ET) //20a
 { fixLeftRedRed(); //20b
 return null; //20c
 } //20d
 else //20e
 return this.isRed && itsLeft.isRed ? ET : e; //20f
 } //20g
 } //======================

 private Object putInRightSubtree (Comparable id, Object val)
 { if (itsRight.isEmpty()) //21
 { itsRight = new TreeNode (new MapEntry (id, val)); //22
 return this.isRed ? ET : null; //23'
 } //24
 else //25
 { Object e = itsRight.putRecursive (id, val); //26'
 if (! this.isRed && e == ET) //26a
 { fixRightRedRed(); //26b
 return null; //26c
 } //26d
 else //26e
 return this.isRed && itsRight.isRed ? ET : e; //26f
 } //26g
 } //======================

 Java Au Naturel by William C. Jones 17-28

17-28

These two private methods are left as exercises. For instance, fixLeftRedRed()
fixes the situation where the problem is on the left of the executor. The overall logic is:

 if (itsLeft.itsLeft.isRed && itsLeft.itsRight.isRed)
 // make it red but make its two children black
 else if (itsLeft.itsLeft.isRed)
 // rotate that grandchild to itsRight and readjust
 else // itsLeft.itsRight is red
 // rotate that other grandchild to itsRight and readjust

This requires one other change: The put method at the top of Listing 17.6 must make
the root black again if it became red. This is an exercise too. The remove method for
red-black trees is left as a major programming project.

When the executor of putInLeftSubtree is a red node and the key is not already in
the tree, then that executor acts as follows: If its left subtree is empty, it creates a new
red node to its left for the data and returns ET, which signals a problem. If its left subtree
is not empty, it asks the black node Z on its left to insert the data and then, if Z turns red
as a consequence, returns ET to signal a problem. Red nodes do not fix problems.

When the executor of putInLeftSubtree is a black node and the key is not already
in the tree, then that executor acts as follows: If its left subtree is empty, it creates a new
red node to its left for the data and returns null, which signals "no problem". If its left
subtree is not empty, it asks the node Z on its left to insert the data; if Z returns ET
(signaling a problem) it fixes the problem and returns null, otherwise it returns what Z
returned. But fixing the problem may include turning itself red, which might cause a
problem for its parent.

Exercise 17.38 Calculate the average search time for the 15-node full tree.
Exercise 17.39 Draw or precisely describe the trees of 4 or 5 nodes that
makeBalanced produces.
Exercise 17.40 Draw or precisely describe the trees of 6 or 7 nodes that
makeBalanced produces.
Exercise 17.41 (harder) Revise the put method in the upper part of Listing 17.6 to
make the root node black after each value is added to the tree.
Exercise 17.42 (harder) If you put five data values into an AVL tree, each larger than
the one before, what does the tree look like? What does it look like if you then add one
more data value larger than all the others?
Exercise 17.43 (harder) If you put five data values into a red-black tree, each larger
than the one before, what does the tree look like? What does it look like if you then add
one more data value larger than all the others?
Exercise 17.44* If you put seven data values into an AVL tree, each larger than the one
before, what does the tree look like? What does it look like if you then add one more
data value larger than all the others? Hint: Continue Exercise 17.42.
Exercise 17.45* If you put seven data values into a red-black tree, each larger than the
one before, what does the tree look like? What does it look like if you then add one more
data value larger than all the others? Hint: Continue Exercise 17.43.
Exercise 17.46* Write a recursive TreeNode method public int height(): The
executor returns the height of its subtree; it returns 0 if empty.
Exercise 17.47* Write a recursive TreeNode method public int howFar(): The
executor tells the shortest distance to an external node (it is 1 if either subtree is empty).
Exercise 17.48** Write the fixLeftRedRed and fixRightRedRed methods called
by Listing 17.12 (they are identical except for swapping "Left" and "Right").
Exercise 17.49** Write the fixLeftRedRed and fixRightRedRed methods called
by Listing 17.12, but instead of actually moving the grandchild node, create a new node
on the other side of P from C and later discard the grandchild node. This takes fewer
statements than the method described in the text. Is it more efficient?

 Java Au Naturel by William C. Jones 17-29

17-29

17.8 Inductive Reasoning About Binary Trees

The definition of a binary tree is recursive, so most of the logic for binary trees is also
recursive. Let us review the definition of a binary tree (parts 1 and 2 are the reason for
having ET as the external node instead of using null to represent an external node):

1. There are two kinds of binary trees: empty ones and non-empty ones.
2. An empty binary tree has no data and no subtrees.
3. A non-empty binary tree has one data value and two subtrees (which are also binary

trees), called its left and right subtrees.

Each binary tree corresponds in a fundamental way to its root node, which is external if
the tree is empty and internal if the tree is not empty.

An example of recursive logic for binary trees is the proof that, in every binary tree X,
the number of external nodes is one more than the number of internal nodes:

1. Basis Step If X is empty, then X has one external node (its root node) and zero

internal nodes, so the difference is 1 as the assertion says.
2. Inductive Step Say X is some non-empty tree and say we have already proven the

assertion for every tree with fewer nodes than X. Then each of X's two subtrees has
1 more external node than internal nodes, since each has fewer nodes than X. So
together X's two subtrees have 2 more external nodes than internal nodes. Since the
root node is internal, that brings the difference for X down to 1 more external node
than internal nodes.

3. Conclusion The truth of the assertion for all binary trees follows by the Induction
Principle from the Basis Step and the Inductive Step.

When some people first see this kind of logic, they think that it is circular logic, since we
prove something about a non-empty tree X by assuming we have already proven it about
each of its subtrees. But this is not circular logic, it is inductive logic, because each of
the subtrees of X has fewer data values than X has. The Basic Step of the proof shows
that the assertion is true for trees with 0 data values (empty trees). The Inductive Step of
the proof shows that the assertion is true for any tree X with a positive number of data
values as long as the assertion is true for all trees that have fewer data values than X
has. So for any n > 0, the Inductive Step deduces that the assertion is true for any
n-node tree from the assertion being true for all trees with less than n nodes.

How do you know that the assertion is true for any binary tree X? Because it could be
proven for each number of data values 0, 1, 2, 3, 4, 5, etc. in that order:

• If X has 0 data values, the Basic Step shows the assertion is true for X.
• If X has 1 data value, then its subtrees both have 0 data values, so the assertion is

true for each of its subtrees, so the Inductive Step shows the assertion is true for X.
• If X has 2 data values, then each of its subtrees has at most 1 data value, so the two

preceding points show that the assertion is true for each of its subtrees, so the
Inductive Step shows the assertion is true for X.

• If X has 3 data values, then each of its subtrees has at most 2 data values, so the
three preceding points show that the assertion is true for each of its subtrees, so the
Inductive Step shows the assertion is true for X.

• If X has 4 data values, then each of its subtrees has at most 3 data values, so the
four preceding points show that the assertion is true for each of its subtrees, so the
Inductive Step shows the assertion is true for X.

• If X has 5 data values, then each of its subtrees has at most 4 data values, so the
five preceding points show that the assertion is true for each of its subtrees, so the
Inductive Step shows the assertion is true for X.

• etc.

 Java Au Naturel by William C. Jones 17-30

17-30

Minimum size of a red-black tree

We define the black-height of a red-black tree to be the number of black nodes on each
path from the root to an external node. Figure 17.10 shows a red-black tree with a black-
height of 3. We can prove that every non-empty red-black tree X with black-height k
has at least 2k-1 internal nodes using induction on k as follows:

1. Basis Step If X has black-height 1, it has at least 1 node, and 1 is at least 21-1.
2. Inductive Step Say X has black-height h+1 where h is 1 or more, and say we have

already proven the assertion for each red-black tree with black-height h. We could
then prove the assertion for X as follows: The tree has a black root node R with two
children. A black child of R is the root of a red-black tree with black-height h, and a
red child of R contains two subtrees that are red-black trees with black-height h. So
the whole tree contains at least two separate subtrees each with at least 2h-1 nodes,
besides the root itself, and therefore has at least 2*(2h-1)+1 nodes, which is 2h+1-1.

3. Conclusion The truth of the assertion for all non-empty red-black trees follows by the
Induction Principle from the Basis Step and the Inductive Step.

Figure 17.10 A red-black tree with black-height 3 and 5 total levels.

Worst-case execution time for a search of a red-black tree

Say you have a red-black tree with a positive number of nodes N. Let k denote the black-
height of the tree. Then the preceding proof showed that N is 2k-1 or more, so log2(N+1)
is k when N is 2k-1 and is at least k+1 otherwise. This tree with black-height k has at most
2*k levels, since you cannot have two red nodes in a row. And in the special case when
N is exactly 2k-1, the tree has only k levels. Now 2*log2(N+1)-1 is 2*k-1 in the special
case (when the number of levels is k) and is at least 2*k+1 otherwise (when the number
of levels cannot be more than 2*k). Conclusion: The number of levels, and therefore the
worst-case time for a search in a red-black tree, is at most 2*log2(N+1) - 1. For instance,
if N is 16 to 31, then log2(N+1) is 5 and so the worst-case search time is 2 * 5 - 1 = 9; the
red-black tree cannot have 10 levels.

Worst-case execution time for a search of an AVL tree

We define size(h) to be the minimum possible number of data values in an AVL tree with
h levels. An AVL tree with 1 level has 1 data value, so size(1) is 1. An AVL tree with 2
levels must have either 2 or 3 data values, so size(2) = 2 (the minimum).

If an AVL tree has h levels and h is more than 2, then one of its root's two subtrees must
logically have h-1 levels, though the other subtree could have either h-1 or h-2 levels (not
less, otherwise it would not have the AVL balance property). So the minimum possible
number of data values in the subtree with level h-1 is size(h-1) and the minimum possible
in the other subtree is size(h-2). Therefore, the minimum possible number of data values
in the whole AVL tree is 1 + size(h-1) + size(h-2). Clearly, size(h-1) is larger than size(h-
2). So it follows that size(h) is larger than 1 + 2 * size(h-2). This fact can be used to
prove inductively that size(2*k) >= 2k for every positive k:

 Java Au Naturel by William C. Jones 17-31

17-31

1. Basic Step size(2) = 2 implies that size(2*1) >= 21, so the assertion is true for k==1.
2. Inductive Step To show that size(2*k) >= 2k in situations where k > 1 and we know

that the formula is true for k-1, i.e., that size(2*(k-1)) >= 2k-1, we reason as follows:
size(2*k) > 1 + 2 * size((2*k)-2) = 1 + 2 * size(2*(k-1)) > 2 * 2k-1 = 2 k.

3. Conclusion The truth of the assertion for all positive integers k follows by the
Induction Principle from the Basis Step and the Inductive Step. For instance:

• The Basic Step showed that size(2*1) >= 21.
• size(h) > 2 * size(h-2) implies that size(4) >= 2 * size(2), i.e., size(2*2) >= 22.
• size(h) > 2 * size(h-2) implies that size(6) >= 2 * size(4), i.e., size(2*3) >= 23.
• size(h) > 2 * size(h-2) implies that size(8) >= 2 * size(6), i.e., size(2*4) >= 24, etc.

To find the longest path from the root to an external node in an AVL tree with N data
values, define k to be log2(N+1), so that N < 2k. Since we have proven that size(2*k) is
at least 2k, the AVL tree must have less than 2*k levels, thus less than 2*log(N+1) levels.
So the worst-case search time in an AVL tree is 2*log2(N+1) - 1. For instance, if N is 16
to 31, then log2(N+1) is 5 and so the worst-case search time is 2 * 5 - 1 = 9; the tree
cannot have 10 levels. This is the same result as for red-black trees.

Exercise 17.50 Calculate size(3) and size(4). Justify your answer.
Exercise 17.51 (harder) There is 1 binary tree with 1 data value; there are 2 binary
trees with 2 data values and 5 binary trees with 3 data values. Calculate the number of
binary trees with 4 data values and the number with 5 data values. Justify your answer.
Exercise 17.52 (harder) There are 4 red-black trees with a black-height of 1. Calculate
the number of red-black trees with a black-height of 2. Justify your answer.
Exercise 17.53* Define rbsize(h) to be the minimum possible number of data values in a
red-black tree with h levels, so rbsize(2) is 2 and rbsize(4) is 6. Find rbsize(6), rbsize(8),
and rbsize(10). Find a formula for rbsize(2*n). Also calculate size(4), size(6), size(8),
and size(10). Which kind of tree can be more unbalanced for a given number of levels,
red-black or AVL?
Exercise 17.54* Prove by induction on the number of nodes that left-to-right inorder
traversal of a binary search tree produces the data values in ascending order (each less
than or equal to the next).
Exercise 17.55* Prove by induction on the number of nodes that size(2*k) >= 2k+1 - 2 for
k >= 1.
Exercise 17.56* Prove by induction on k that a full tree with k levels has 2k - 1 nodes.
Exercise 17.57** Prove by induction on h that when h>= 7, size(h) <= 1.66*size(h-1) and
size(h) >= 1.60*size(h-1). Can you discover its relation to the golden mean 1.61803...?
Exercise 17.58** Explain why every height-balanced tree can be colored to make it a
red-black tree that meets the conditions required, but not every red-black tree is height-
balanced.
Exercise 17.59*** Write a method that calculates the number of binary trees with n data
values for any given positive int n. Hint: See Exercise 17.51. Store intermediate results
in an array (this use of an array, here and in the next exercise, is called dynamic
programming).
Exercise 17.60*** Write a method that calculates the number of red-black trees with a
black-height of n for any given positive int n. Hint: See Exercise 17.52. Store
intermediate results in an array.

 Java Au Naturel by William C. Jones 17-32

17-32

17.9 2-3-4 Trees And B-Trees

In a drawing of a red-black tree, draw a big circle around each internal black node so that
the big circle includes its red subtrees (of which there are either 0 or 1 or 2). So each big
circle has either 2 or 3 or 4 subtrees pointing down from it. Define a class of objects that
represent these big circles in an implementation of Mapping: up to 3 data values and up
to 4 subtrees. You could define such an object class as follows:

 public class BigCircle
 { private final int MAX = 4; // maximum number of subtrees
 private MapEntry [] itsData = new MapEntry[MAX - 1];
 private BigCircle[] itsSubtree = new BigCircle[MAX];
 }

We store the 1 or 2 or 3 data values of one big circle in increasing order in the MapEntry
array, leaving the unused components equal to null. That means:

• If a black node X has 0 red subtrees, fill in only itsData[0] with the black node's

data. Make itsSubtree[0] and itsSubtree[1] refer to the two subtrees in order
left to right, except use null if the subtree is empty.

• If the black node X has a black left subtree and a red right subtree, fill in
itsData[0] with X's data and itsData[1] with the red node's data. Make
itsSubtree[0] the left subtree of X, itsSubtree[1] the left subtree of the red
node, and itsSubtree[2] the right subtree of the red node.

• If the black node X has a red left subtree and a black right subtree, fill in
itsData[0] with the red node's data and itsData[1] with X's data. Make
itsSubtree[0] the left subtree of the red node, itsSubtree[1] the right subtree
of the red node, and itsSubtree[2] the right subtree of X.

• If the black node X has two red subtrees, fill in itsData[0] with the left red node's
data and itsData[1] with X's data and itsData[2] with the right red node's data.
Make itsSubtree contain the four subtrees of the red nodes in the proper order.

Now we write coding to do exactly what the red-black tree does to implement a Mapping,
except we use the array representations of BigCircles instead of the left-right
representations of nodes. Each of the BigCircle objects contains either 2 or 3 or 4
subtrees, so this implementation of a Mapping is called a 2-3-4 tree. Note that it is not a
binary tree, because a BigCircle does not have just two subtrees and because it has
more than one data value. Figure 17.11 contains an example of a 2-3-4 tree with three
levels, the exact analog of the red-black tree in the earlier Figure 17.10.

Figure 17.11 A 2-3-4 tree equivalent to the red-black tree of Figure 17.10

 Java Au Naturel by William C. Jones 17-33

17-33

The get method for 2-3-4 trees

The get Mapping method is to search through the data structure for the MapEntry
containing a given id and return the corresponding value. It is to return null if the id
is not in the data structure. The coding of that get method for the BigCircle
implementation could be as shown in Listing 17.13. The completion of this BigCircle
class is left as a major programming problem.

Listing 17.13 The get method for the BigCircle class of 2-3-4 trees

public class BigCircle implements Mapping
{
 private final int MAX = 4; // maximum number of subtrees
 private MapEntry[] itsData = new MapEntry[MAX - 1];
 private BigCircle[] itsSubtree = new BigCircle[MAX];

 /** Return the value for this id, or null if not there.
 * Throw a RuntimeException if id is not Comparable. */

 public Object get (Object id)
 { int k = 0;
 for (; k < MAX - 1 && itsData[k] != null; k++)
 { int comp = ((Comparable) id).compareTo
 (itsData[k].getKey());
 if (comp <= 0)
 return (comp == 0) ? itsData[k].getValue()
 : (itsSubtree[k] == null) ? null // a leaf
 : itsSubtree[k].get (id);
 }
 return (itsSubtree[k] == null) ? null // a leaf
 : itsSubtree[k].get (id);
 } //======================
}

Another data structure sometimes used for a Map is a 2-3 tree, which is halfway between
a binary search tree and a 2-3-4 tree: Each node has 1 data value and 2 subtrees or
else 2 data values and 3 subtrees, with the same ordering properties as for 2-3-4 trees,
and all leaves are on the same level.

B-trees

When an operating system reads information from a data file, it normally gets the
information in chunks of a particular number of bytes, usually a power of two. For
instance, an operating system may read in chunks of 4096 bytes. Even if you only want
a few hundred bytes of information, each read operation gets 4096 bytes.

When you are reading information for a Mapping object from a file, it is most efficient if
you can use most or all of the 4096 bytes you will get from each read operation. To this
end, you could have BigCircle objects with lots more than 4 subtrees. Make them large
enough that they will barely fit within 4096 bytes.

Say you know that each record (one object's information) is 190 bytes long. A reference
to a subtree takes up 4 bytes of space, for a total of 194 bytes. 194 divided into 4096 is
21. So you could have as many as 21 data values in each BigCircle object, with the data
values in increasing order of key values. You would thus have up to 22 subtrees. Then
the get method for these really big circles could be the same as the one in Listing
17.13, except that MAX would be 22 instead of 4. Even better, you could use binary
search to find the desired index.

 Java Au Naturel by William C. Jones 17-34

17-34

This data structure is called a B-tree of order 22. In general, a B-tree of order N has up
to N subtrees in each node for some N, always with one less data value than it has
subtrees. A B-tree has two additional restrictions: All leaf nodes must be on the bottom
level, and all nodes except the root must have at least N/2 subtrees (rounded up if N is
odd). A 2-3-4 tree is just a B-tree of order 4.

When you add a new data value to a B-tree structure, you put it in the appropriate leaf
node on the bottom level. There will only be one such place it can go in, according to the
restrictions on ordering. However, if the node where it goes is full (already has N-1 data
values), there is no room for the additional data value. In that case, you split the full leaf
node into two nodes, with at least N/2 data values in the first node, the next (middle) data
value moved up into the parent node, and the rest of them in the second node. Both of
these nodes become children of the parent node. Of course, if that makes the parent
node full, you have to split again, possibly going as far as splitting the root node.

A B-tree of order 22 that organizes a data file with 400 million records (more than the
population of the United States) would have at most nine levels: It would have at least 1
data value in the root, therefore at least 2 nodes on the second level with at least 11
subtrees of each. The third level would then have at least 22 nodes, so the fourth level
would have at least 22*11 nodes, etc. Each level multiples by 11, so the ninth level
would have at least 22*116 nodes, about 39 million, with at least 10 data values in each
of those leaf nodes. Since you would always keep the root node in memory, you can find
a data value in only 8 disk accesses, instead of the 29 that even a near-full binary tree
would require.

Indexing

A popular alternative is to use B-trees to hold an index to a random-access data file
instead of the data itself. Only the keys are stored in the B-tree; the full data record is
only in a disk file. Each leaf node contains the key for one record plus the file position
telling where the full data record is in the data file. All keys are in the leaf nodes. In each
non-leaf node, itsData[k] is the first key of itsSubtree[k+1].

Example If keys are 10 bytes (e.g., Social Security Numbers), and file pointer values are
4 bytes, then you only need 14 bytes per record. Instead of the B-tree of order 22 just
described, you would have room for 4096 / 14 = 292 subtrees in each "big circle" node.
So you could use a B-tree of order 292 for the index. So six levels would store a
minimum of 292 * 146 * 146 * 146 > 900 million keys and file pointers on the sixth level.
Even allowing for the extra disk access to retrieve the record itself, it would take only six
disk accesses to find a data record in the random-access file, assuming you keep the
root node in memory at all times.

Exercise 17.61 How many 296-byte records could you store in a B-tree node if it is to
barely fit into a disk block of 8192 bytes? Show why.
Exercise 17.62 (harder) How many disk accesses (at most) would it take to find a single
data value in a B-tree of order 100 used to store ten million records? Show why.
Exercise 17.63* How many disk accesses (at most) would it take to find a single data
value in a B-tree of order 200 used to store 60,000 records? Show why.
Exercise 17.64* Rewrite the BigCircle get method in Listing 17.13 to first look at the
middle one of three data values in the BigCircle. Does this execute faster?

 Java Au Naturel by William C. Jones 17-35

17-35

17.10 Data Flow Diagrams

A small manufacturing company wants to hire you to create software to automate some
of their operations. A scenario of part of what this company does could go as follows:

A customer places an order. You verify that the information about the customer
(address, references, preferences, etc.) is already in your files. You check with your
accounting department that the customer's credit is good. You record the order,
manufacture the product wanted, and ship it to the customer along with an invoice. The
customer sends you a check in payment, which you use to pay investors' dividends.

The preceding paragraph is called a use case; it is a scenario that describes a possible
sequence of events using the system you are to design. If you are to model the entire
business in software, then the business is the system and everything outside the system
is its environment. Figure 17.12 is a Data Flow Diagram that graphically shows the
elements mentioned in this particular use case.

 Figure 17.12 Data Flow Diagram for one use case

A Data Flow Diagram (DFD) has four basic kinds of elements. The first three in this list
called the nodes of the diagram:

1. A process, which is part of the system to be modeled, shown as a rectangle divided

horizontally. You put the name and/or description of the system part in the lower
section. The middle node of Figure 17.12 is a process.

2. An environment entity that interacts with the system, shown as a 3D-box-like figure.
You put the name of the entity on the front of the box. The nodes on the left and right
of Figure 17.12 are environment entities.

3. A data store, which is part of the system to be modeled, shown as a rectangle
divided vertically and with the right side containing its name: It stores a collection of
information of a particular kind. No data stores appear in Figure 17.12.

4. A data flow, shown as an arrow between two nodes, of which one is almost always a
process. A data flow indicates information flowing from one node to another. Its
name is above or beside the arrow. Figure 17.12 has five data flows.

Two additional use cases for the manufacturing company are as follows:

You check the amount you have on hand of various parts you use to manufacture your
product. You see that you are short on one kind of part. You place an order with a
supplier. The supplier sends you boxes of parts and an invoice. You send a check to
pay the invoice.

Investors contribute more capital to the operation, for which you issue stock. Every three
months, you calculate your profits. Based on these calculations, you send a tax payment
to the IRS and also dividend checks and a quarterly report to your investors.

When you look over these and other use cases, including entering a description of the
customer (address, etc.) in your files, you might come up with the Data Flow Diagram in
Figure 17.13 (see next page) to describe the major interactions of the company with its
environment.

 Java Au Naturel by William C. Jones 17-36

17-36

Figure 17.13 Data Flow Diagram for the entire business

The OrderHandling system

Your client wants you to implement in software only the part of the operation that handles
orders from customers and orders to suppliers. So you can ignore some of the data
flows described so far, such as dividends and payment of utility bills and taxes. Start with
some examples of use cases for this OrderHandling system:

Use Case 1 A person wants to order products from your company. You look up the
name in your records and see that the customer is not recorded there. So you get the full
description of the customer (name, address, references, etc.) and store it in your data
store of customers. You then take the order and store it in your data store of orders. You
check your inventory and see that the product is there. So you ship the product to the
customer along with an invoice for payment, and at the same time notify the accounting
department to expect payment since you have sent an invoice.

Use Case 2 A person places an order. You look up the name in your records and
retrieve the customer's information from your customer data store (since it was previously
recorded). You then take the order and store it in your data store of orders. You check
inventory and see that the product is not there. So you order it from the appropriate
supplier (which in many cases will be a manufacturing department in the rest of the
business, but treat it as a supplier for now).

Use Case 3 A supplier ships parts to you along with an invoice. You store it in your
inventory and notify the accounting department to send payment to the supplier.

Use Case 4 A manufacturing department sends you finished product. You store it in
your inventory.

Use Case 5 You check your data store of orders not yet filled and find one for which you
now have the required product. So you ship the product to the customer along with an
invoice for payment, and at the same time notify the accounting department to expect
payment since you have sent an invoice.

Further thought about the software and discussion with the client reveals that the
customer will sometimes ask for the status of all of the customer's orders currently being
processed, to verify its own records. In addition, the rest of the business operation may
query the system from time to time for a list of all orders pending, of all orders filled in the
past year, of inventory changes during the year, etc.

A very effective first step in the development of a software system is to describe its
interactions with its environment, that is, with everything that is not the system to be
developed. From this point of view, the rest of the business is part of the environment.
These interactions usually take the form of input to the system from external entities and
output from the system to external entities, both of which can be expressed as data flows.

 Java Au Naturel by William C. Jones 17-37

17-37

Figure 17.14 is the only part of the overall operation of the company that concerns the
OrderHandling system. Note that the system is split off from the rest of the business in
this Data Flow Diagram. The names of the data flows have been made more precise:
CustDescr is a description of one customer, SuppOrder is one order sent to a supplier,
etc. The reporting functions have been added to the Data Flow Diagram. Minor
"backflows" along certain arrows have been omitted, such as a confirmation message to
the customer that the description or order has been received and a query for a report.

 Figure 17.14 Data Flow Diagram for the OrderHandling software

Detailed Analysis

The next step in the analysis is to specify the exact form of the inputs and the outputs,
the conditions under which they will occur, the sequence in which they occur, etc. This
information fleshes out the DFD by saying what happens. Avoid saying how it happens;
that is almost always a matter of design, so it comes later. Treat the system as a "black
box" whose contents and workings are a mystery.

Analysis for this problem requires a full and precise description of the number and types
of values entered, e.g., first and last name are strings of characters, the ZIP code is
entered separately from the city and state, and the number of items ordered is a positive
integer. It also requires a full and precise description of the form of the reports. This
Requirements Specification Document should include examples and specifications for
these things along with the Data Flow Diagram. Test data should also be developed at
this point. We will not try to do it here for this problem.

Design

Now you start to divide up the proposed system into components. Design is a matter of
deciding which components you want to have and how they will interact. For this
OrderHandling software, some obvious choices are classes of CustomerOrder objects,
SupplierOrder objects, Invoice objects, CustomerDescription objects, and
SupplierDescription objects.

You also need a data structure for long-term storage of the list of CustomerDescription
objects for all current customers, the list of CustomerOrder objects still pending, and the
analogous lists of SupplierDescription and SupplierOrder objects. Reports are
presumably simply long Strings of characters, and you already have a String object class.

The two main processes of the system are managing the customer relations and
managing the supplier relations. These considerations lead to the Data Flow Diagram
shown in Figure 17.15 (see next page). The abbreviations CustOrder, SuppOrder,
CustDescr, and SuppDescr make the diagram more compact.

Number the process nodes 1, 2, 3, on up in whatever order you like, in the upper section
of the node. Number data store nodes D1, D2, D3, on up also. We often append DS to
the name to suggest a Data Store (also known as a Data Structure). Use these numbers
for cross-referencing with more detailed Data Flow Diagrams and with narrative
specifications.

 Java Au Naturel by William C. Jones 17-38

17-38

 Figure 17.15 Data Flow Diagram for second level of OrderHandling

The middle and upper parts of Figure 17.15 are an explosion of the System node in the
earlier Figure 17.14, since they are a more detailed replacement for that System node.
You need to verify that all the data flows between the System node and its environment
in Figure 17.14 are in the exploded view, and no others have been added. A close check
shows that the ten data flows of the earlier figure are present in the later one, although
"report" occurs twice in the later one (since the two separate processes have separate
kinds of reports).

CRC cards

A useful device for a preliminary specification is a Class/Responsibilities/Collaborations
card, a CRC card for short. You use an index card (no bigger than 4-by-6) on which you
write the name of the class of objects at the top. Then you list on the left side of the card
the major responsibilities of that class -- what messages it can be sent and what action it
should take in response. You list on the right side of the card the collaborations of that
class -- which other classes it sends messages to or otherwise uses.

The CustomerManager kind of object (process #1) has four major responsibilities:

1. Given a CustomerOrder object containing a CustomerID, see whether the

CustomerDescription object is in the CustDescrDS. If not, create one from data the
customer provides and store it in the CustDescrDS. Then store the CustomerOrder
object in the CustOrderDS.

2. Search the CustOrderDS for orders not yet filled. For each one, check whether all
products ordered are currently in the Inventory. If so, create an Invoice object, send
it to the customer along with the product ordered, and send a memo of the Invoice to
the accounts-receivable department.

3. Given a request from the customer for a status report, create and return it.
4. Given a request from the rest of the business for any one of several kinds of

summary reports, create and return it.

 Java Au Naturel by William C. Jones 17-39

17-39

This process #1 has therefore collaborations with three data stores (CustDescrDS,
CustOrderDS, and Inventory), with three passive data flows (CustomerOrder,
CustomerDescription, and InventoryDescription objects) and with the rest of the
business. Now stubbed documentation for the CustomerManager class of objects can be
developed as shown in Listing 17.14.

Listing 17.14 CustomerManager class of objects, stubbed documentation

public class CustomerManager // stubbed
{
 /** Verify that the customer's description is on file.
 * If not, obtain and file it. Then file the order. */

 public void storeOrder (CustomerOrder order) { }

 /** Find all orders that are currently unfilled.
 * Fill any such order for which all product is available. */

 public void fillAllPossibleOrders() { }

 /** Return a description of all orders from this customer
 * that are currently unfilled. */

 public String getStatus (String customerID) { return null; }

 /** Return a description of all orders currently unfilled,
 * in order of customer ID. */

 public String getOrdersByID() { return null; }

 /** Return a description of all orders currently unfilled,
 * in order of dates entered. */

 public String getOrdersByDate() { return null; }

 // many other report functions would go here
}

You develop CRC cards by walking through the scenarios given by use cases and seeing
which classes and operations a software system should have. A large number of people
find that developing CRC cards is a far better way to develop an object design than data
flow diagrams, since they have a concrete object (the 4-by-6 card) to help them anchor
their thoughts. Other people prefer developing data flow diagrams. You need to attend a
2- or 3-hour workshop on the use of CRC cards in order to truly appreciate them.
Reading about them would not adequately convey their advantages.

Exercise 17.65* Write out two more use cases for the OrderHandling software.

 Java Au Naturel by William C. Jones 17-40

17-40

17.11 Review Of Chapter Seventeen

• A general tree has one or more data values and zero or more subtrees.
• A binary tree is either (a) empty, in which case it has no data and no subtrees, or (b)

non-empty, in which case it has one data value and two subtrees. The data value is
called its root value. The two subtrees are called its left and right subtrees.

• An internal node represents a non-empty binary tree and has a minimum of three
attributes (instance variables): a data value stored there plus references to the root
nodes of the left subtree and the right subtree. If both of the subtrees of an internal
node are empty, it is called a leaf node. An external node has no data value and no
subtrees; it represents the empty binary tree.

• A path in a tree from one node to another is a sequence of nodes beginning with the
first and ending with the second such that, for each time node Y follows node X in the
sequence, node Y is the root of a subtree of node X. A binary tree cannot have two
different paths from one node to another, nor any path from a node to itself.

• Breadth-first search of a binary tree means that you first look at the data at the root,
then at the data one step from the root, then at the data two steps from the root, etc.
Depth-first search means that, after looking at the data in a particular node, you
look at all the data in the subtree it is the root of before you look elsewhere.

• Left-to-right preorder traversal is a depth-first search that, after it looks at a node
X, looks at all the nodes in the left subtree of X, then looks at all the nodes in the right
subtree of X. "Traversal" means you visit each node in the tree (potentially). "Left-to-
right" means that you visit all nodes in the left subtree before you visit any node in the
right subtree; the alternative is right-to-left traversal. "Preorder" means that you visit
the root node of each subtree before visiting any of the nodes in its subtrees. The
alternatives to preorder traversal are postorder traversal (visit the root node after
visiting all the nodes of the subtrees) and inorder traversal (visit the root node in
between visiting the nodes of the subtrees).

• In a binary search tree, the Comparable keys have a special relationship: Every
key in a left subtree is less than the key for the root and every key in a right subtree is
greater than the key for the root. Some applications (not Mappings) allow several
data values that are equal or the equivalent. In that case, a data value can be equal
to another one in its right subtree.

• If a node X represents a non-empty binary tree, the nodes at the roots of the
subtrees of X are called the left child and the right child of X. X is their parent.

• A tree is full if every node with less than two subtrees is on the lowest level. So the
full tree with 3 nodes has 2 levels; the full tree with 7 nodes has 3 levels; and the full
tree with 15 nodes has 4 levels. In general, a full tree with 2k - 1 nodes has k levels.
This book defines a tree to be near-full if it has the minimum possible number of
levels for the number of data values in the tree. A binary tree can be considered to be
decently-balanced if it does not have more than twice as many levels as a near-full
tree of the same number of nodes.

• The average search time for a non-empty data structure is the total search time
divided by the number of data values in the data structure. The total search time is
the number of data values you have to look in order to find D, summed over all data
values D in the data structure.

• An AVL tree is a binary search tree in which, for any node X, the number of levels in
the right subtree of X differs from the number of levels in the left subtree of X by at
most 1. An AVL tree is always decently-balanced.

• A red-black tree is a binary search tree in which the root node is black, no red node
is the child of a red node, and the number of black nodes on each path from the root
to some external node is the same as on any other path from the root to some
external node. A red-black tree is always decently-balanced.

• A B-tree of order N has up to N subtrees in each node for some fixed N, always with
one less data value than it has subtrees. A B-tree has two additional restrictions: All
leaf nodes must be on the bottom level, and all nodes except the root and the leaves
must have a minimum of 0.5*N subtrees. A 2-3-4 tree is just a B-tree of order 4.

 Java Au Naturel by William C. Jones 17-41

17-41

Answers to Selected Exercises

17.3 The fifth tree: A, B, C. The sixth tree: C, B, A. The seventh tree: A, B, C.
17.4 c.size() gets 0 from its call of c.itsLeft.size() and get 4 from its call of d.size(), so it returns 5.
17.5 b.deleteLastNode() would see that h.itsRight is not empty, so it would call h.deleteLastNode(),
 which would see that i.itsRight is not empty, so it would call i.deleteLastNode(),
 which would see that k.itsRight is empty, so it would set i.itsRight to be the empty tree.
17.6 public TreeNode lastNode()
 { return itsRight.isEmpty() ? this : itsRight.lastNode();
 }
17.7 It is the same as deleteLastNode except interchange the words "Right" and "Left".
17.8 printInOrder executes in O(N) time, since it visits every node in the tree. deleteLastNode executes
 for the average binary tree in O(log(N)) time, since it navigates only one path down the tree.
17.11 A, C, G, F, B, E, D. A's left is C, C's left is G, A's right is B.
17.12 A, E, B, G, F, D, C. A's left is B, B's left is C, A's right is E.
17.13 The tree could have 7 levels with 1 node on each level. So no node has two children.
17.14 The level of a data value is equal to the difference between the number of left parentheses that come
 before it and the number of right parentheses that come before it. In other words, read the output
 from left to right, counting +1 for each left parenthesis and -1 for each right parenthesis, and when
 you come to a data value, the net count so far is the level of that data value.
17.17 public TreeNode lookUp (Comparable id)
 { int comp = compare (id, itsData);
 if (comp < 0)
 return itsLeft.isEmpty() ? null : itsLeft.lookUp (id);
 if (comp > 0)
 return itsRight.isEmpty() ? null : itsRight.lookUp (id);
 return this;
 }
17.18 Insert the following just before the "else if" in line 14:
 else if (itsLeft.isEmpty())
 { itsData = itsRight.itsData;
 itsLeft = itsRight.itsLeft; // not the opposite order
 itsRight = itsRight.itsRight;
 }
 This executes faster on average only if there are a significant number of nodes in the tree
 with an empty left subtree and a right subtree of 2 or more levels. So it is slower if the
 tree is reasonably balanced, but faster if the tree is quite unbalanced.
17.19 public TreeNode copy()
 { TreeNode root = new TreeNode (itsData);
 root.itsLeft = itsLeft.isEmpty() ? ET : itsLeft.copy();
 root.itsRight = itsRight.isEmpty() ? ET : itsRight.copy();
 return root;
 }
17.20 public int under (Comparable id)
 { return this.isEmpty() ? 0
 : compare (id, itsData) <= 0 ? itsLeft.under (id)
 : itsLeft.size() + 1 + itsRight.under (id);
 }
17.26 if (toDelete.itsParent.itsLeft == toDelete)
 toDelete.itsParent.itsLeft = toDelete.itsLeft;
 else
 toDelete.itsParent.itsRight = toDelete.itsLeft;
 toDelete.itsLeft.itsParent = toDelete.itsParent;
17.27 private TreeNode lastLeft (TreeNode lastLeftTurn, Comparable id)
 { int comp = compare (id, itsData);
 return (comp == 0) ? lastLeftTurn
 : (comp > 0) ? itsRight.lastLeft (lastLeftTurn, id)
 : itsLeft.lastLeft (this, id);
 }
17.28 In a well-balanced tree with N values, a node X with no right subtree should only be in one of the two
 bottom levels. The successor of X will tend to be roughly two levels above X, computed as follows:
 There is a 50% chance X's parent is its successor (i.e., X is to the left of its parent); a 25% chance
 that X's "grandparent" is its successor; a 12.5% chance that X's "great-grandparent" is its
 successor, etc. That averages out to X's successor being about two levels above X. X will also be
 log(N)-1 nodes below the root node on average. So the parent information allows next to find the
 successor by going up about 2 levels instead of down log(N)-1 levels, so we save about log(N)-3
 comparisons. Since about half of the nodes will have no right subtree, that implies a total
 of (N/2) * (log(N)-3) comparisons saved in traversing N nodes in a well-balanced tree.

 Java Au Naturel by William C. Jones 17-42

17-42

17.33 The iterator would traverse the tree in a right-to-left inorder traversal (i.e., backwards).
17.34 public void preorderTraverseRL (QueueADT queue)
 { if (isEmpty())
 return;
 queue.enqueue (itsData);
 itsRight.preorderTraverseRL (queue);
 itsLeft. preorderTraverseRL (queue);
 }
17.38 The total search time is 17 for the top three levels (already calculated in the text for that full tree) plus
 8 times 4 for the fourth level, a total of 49. So the average search time is 49/15.
17.39 Start with the full tree with 3 nodes. Add a left child of the left child of the root for the 4-node
 tree. Add also a left child of the right child of the root for the 5-node tree.
17.40 The 7-node tree is the full tree with 7 nodes shown in Figure 17.7. Omit the bottom-right node
 (which contains 25 in Figure 17.7) to get the 6-node tree.
17.41 Add a makeBlack method to TreeNode that has the one statement isRed = false; then replace the last
 line of the put method (line 7) by the following three statements:
 Object valueToReturn = itsRoot.putRecursive ((Comparable) id, value);
 itsRoot.makeBlack();
 return valueToReturn;
17.42 To the full tree with values 11, 13, and 15 in Figure 17.9, add 17 to the right of the 15 to get the
 4-node tree. Adding 19 forces a rotation to put 17 in place of 15, 15 to 17's left, and 19 to 17's right.
 That gives the 5-node tree. Adding 21 then forces a rotation of 17 into the root, 13 as 17's left child,
 11 as 13's left child, 15 as 13's right child, 19 as 17's right child, and 21 as 19's right child.
17.43 To the full tree with values 11, 13, and 15 in Figure 17.9, add 17 to the right of the 15 and
 color 11 and 15 black to get the 4-node tree. Adding 19 forces a rotation to put 17 in place of 15,
 red 15 to 17's left, and red 19 to 17's right. That gives the 5-node tree. Adding 21 then turns the
 19-node black, the 15-node black, and the 17-node red without forcing a rotation.
17.50 size(3) = 1 + size(2) + size(1) = 1 + 2 + 1 = 4. size(4) = 1 + size(3) + size(2) = 1 + 4 + 2 = 7.
17.51 4 data values could mean 3 on the left side of the root (5 cases), or 3 on its right side (5 cases), or
 2 on the left side of the root (2 cases) or 2 on its right side (2 cases), a total of 14 cases.
 5 data values could mean 4 on the left side of the root (14 cases) or on its right side (14 cases), or
 3 on the left side of the root (5 cases) or on its right side (5 cases), or 2 on each side (2*2 = 4 cases),
 a total of 42 cases for the 5-node tree.
17.52 The root could have 2 black children, each rooting one of 4 red-black trees with a black-height of 1,
 which makes 4 * 4 = 16 cases. Or it could have one red child, on the left, which will have 16 possible
 subtrees, with 4 possible subtrees on the right, which makes 16 * 4 = 64 more cases. Or it could
 have one red child, on the right, for 64 more cases. Or it could have two red children, each with
 64 possible subtrees, thus 64 * 64 = 4096 more cases. The total is 4240 cases.
17.61 296 + 4 = 300. 8192 / 300 = 27 with 92 left over, so you could store 27 records in each node.
17.62 The root could have only 1 record, but still the second level would have at least 2 nodes with at least
 50 subtrees each, so the third level would have at least 100 nodes with at least 50 subtrees each,
 so the fourth level would have at least 5000 nodes with at least 50 subtrees each, so the fifth
 level would have at least 250,000 nodes with at least 50 subtrees each, which is over 12 million.
 Therefore four disk accesses would be enough, assuming you keep the root node in memory.

