
 Java Au Naturel by William C. Jones 15-1 15-1

15 Collections And Linked Lists

Overview

This chapter requires that you have a solid understanding of arrays (Chapter Seven) and
some idea of recursion (Section 5.9 or 13.4). It is also valuable to have studied Sections
10.1-10.2 (Exceptions) and 14.1-14.3 (stacks and queues implemented with linked lists).

• Section 15.1 presents a software context in which you need programs that work with

large collections of data.
• Section 15.2 introduces the official (Sun standard library) Collection interface and an

array-based implementation of the methods that do not modify the Collection.
• Sections 15.3-15.5 describe linked lists and their application to implementing the non-

modifying methods of the Collection interface, in some cases recursively.
• Sections 15.6-15.7 define the Iterator interface and show how it can be implemented

in both the array and linked list forms.
• Section 15.8 implements the methods that modify a Collection object.
• Sections 15.9-15.10 discuss an implementation of ListIterator and List using doubly-

linked lists.

This chapter should help you develop a strong understanding of the Collection and List
interfaces, strengthen your abilities in working with arrays, and further develop facility
with linked lists. In everyday programming, when you want to use a Collection or List
object, you will tend to choose the "built-in" ArrayList class (Section 7.11) or some other
standard library implementation rather than one you build yourself (in accordance with
the "don't reinvent the wheel" principle). But you can only learn about linked lists by
using them to code various methods, so that is what we do here.

15.1 Analysis And Design Of The Inventory Software

You have a client who needs a number of programs that read in two files of data and then
process them. One file lists all the retail items that the company currently has on hand
(its inventory). Another file lists all the retail items that the company has purchased and,
according to its records, not yet sold. Obviously, the two lists should match up.
However, discrepancies are common.

For the first such program, it is sufficient to tell whether the two lists are exactly equal
and, if not, whether the inventory file at least contains all the retail items purchased (so
the store has not had any retail items stolen). If even that is not true, then you need to
say how many retail items are in each list. A reasonable plan for the program, developed
after a bit more discussion with the client to clear up some details, is shown in the
accompanying design block.

STRUCTURED NATURAL LANGUAGE DESIGN of the main logic
1. Read the "inven.dat" file into an appropriate object named inventory.
2. Read the "purch.dat" file into an appropriate object named purchased.
3. If one list has the same elements in the same order as the other list then...
 Print the message "a perfect match".
4. Otherwise, if the inventory list has no elements at all then...
 Print the message "we've been robbed".
5. Otherwise, if every element of the purchased list is in the inventory list then...
 Print the message "no losses and some gains".
6. Otherwise...
 Print the message "inventory has N and purchased has M"
 where N and M are the number of values in the respective lists.

 Java Au Naturel by William C. Jones 15-2 15-2

Object design

We need a class of objects that store sequences of data items. We will call it the
ArraySequence class. We will make it a Collection kind of class; Collection is an
interface in the Sun standard library that specifies the names of thirteen methods, how
they are called, and what they should accomplish. The Collection methods provide all
the capabilities that you need for this program. The next section describes them in detail.
Listing 15.1 shows how some of them are used to solve the client's problem.

Listing 15.1 The Inventory application program

public class Inventory
{
 /** Read 2 files of data and make comparisons between them. */

 public static void main (String[] args)
 { ArraySequence inventory;
 ArraySequence purchased;
 try
 { inventory = new ArraySequence ("inven.dat");
 purchased = new ArraySequence ("purch.dat");
 }catch (java.io.IOException e)
 { throw new RuntimeException ("A file is defective.");
 }

 if (inventory.equals (purchased))
 System.out.println ("a perfect match");
 else if (inventory.isEmpty())
 System.out.println ("we've been robbed");
 else if (inventory.containsAll (purchased))
 System.out.println ("no losses and some gains");
 else
 System.out.println ("inventory has " + inventory.size()
 + " and purchased has " + purchased.size());
 } //======================
}

The ArraySequence constructor takes a String value as a parameter, opens the disk file
of that name, and reads in the values from the file one line at a time. The lines from the
file are stored in the ArraySequence object in the order they were read. If the file is not
accessible, the constructor throws an IOException; this main method catches it and
notifies the caller of the method (it throws a new Exception instead of terminating the
program because this main method may be called from another method).

The effects of the other methods used in this program should be clear when compared
with the design block. In any case, they are explained in detail in the next section.
Figure 15.1 is a UML diagram for this Inventory class.

 Figure 15.1 UML class diagram for Inventory

 Java Au Naturel by William C. Jones 15-3 15-3

15.2 Implementing The Collection Interface With Arrays

A sequence is a collection of data values in a particular order. The data values are
called the elements of the sequence. We define here the ArraySequence class with two
constructors and several other methods, implemented using a partially-filled array. The
sequence is allowed to have duplicates (two or more elements that are equal to each
other), but it is not allowed to have an element be null.

The Collection interface

The Sun standard library contains a number of interfaces for describing ways of
structuring collections of data. The most fundamental one is the Collection interface (in
the java.util package) for storing Object values. The ArraySequence class will be
an implementation of the Collection interface when we finish adding enough methods.
Listing 15.2 (see next page) gives the documentation for the Collection interface, with full
descriptions of those methods that do not change the elements in the Collection.

People use a number of variants of Collection implementations. The main variants are as
follows:

• Some variants do not allow null as an element; some do.
• Some variants do not allow duplicates (i.e., all elements must be different from each

other); some do.
• Some variants do not allow changes in the number or ordering of the elements once

they are set by a constructor; some do. Those that do not allow changes have the
last six listed methods throw an UnsupportedOperationException.

• This description of Collection specifies that the order of the elements is important;
some variants of Collection do not require this.

• Some variants restrict the class of the objects stored, e.g., only Comparable objects
can be stored in certain collections.

The specification for the ArraySequence implementation of Collection is that ordering is
important, modifications and duplicates are allowed, but nulls are not. This section is
concerned with the coding of the first seven methods using an array. A later section
discusses the Iterator interface so we can implement the iterator method. After that,
we discuss implementations of the remaining six methods.

Implementing the ArraySequence constructors

The ArraySequence class implements the Collection class using a partially-filled array,
very much like the WorkerList class in Chapter Seven. Specifically, each ArraySequence
object has two instance variables itsItem and itsSize. The former is an array that
is filled with Objects in components indexed 0 up to but not including the int value
itsSize. The values in higher-indexed components are not relevant to the logic. One
ArraySequence constructor creates an empty Collection; it is left as an exercise.

Another ArraySequence constructor has the name of a disk file as its parameter. It is to
read all the values from the disk file one at a time and put them in its array, starting from
index 0. The first question is, how large do you make the array? The file could have 15
lines in it or 15,000. A reasonable approach is to start with an array of moderate size,
say 100, and then replace it by one twice as large each time the one you have fills up.
You first have to open the disk file with the specified name:

 BufferedReader file = new BufferedReader
 (new FileReader (fileName));

 Java Au Naturel by William C. Jones 15-4 15-4

Listing 15.2 The Collection interface

/** The Collection interface specifies 13 method headings in
 * addition to those inherited from Object, e.g., equals. */

public interface Collection
{
 /** Return the number of elements in this sequence. */
 public int size();

 /** Tell whether this sequence has no elements in it. */
 public boolean isEmpty();

 /** Tell whether ob is an element of this sequence. */
 public boolean contains (Object ob);

 /** Tell whether every element of that sequence is
 * somewhere in this sequence. */
 public boolean containsAll (Collection that);

 /** Return an array filled with the elements of this
 * sequence in the same order. */
 public Object[] toArray();

 /** The same as the above if array.length < this.size().
 * Otherwise fill the given array with the elements of the
 * sequence in the same order and put a null value after
 * those values if it will fit. */
 public Object[] toArray (Object[] array);

 /** Tell whether the two sequences have the same elements
 * in the same order. */
 public boolean equals (Object ob);

 /** Return an iterator that goes through the elements of
 * this sequence in an established order. */
 public Iterator iterator();

 // The remaining six, to be described fully in Listing 15.10,
 // are coded as follows when the Collection is unmodifiable:
 // "throw new java.lang.UnsupportedOperationException();"
 public void clear();
 public boolean add (Object ob);
 public boolean addAll (Collection that);
 public boolean remove (Object ob);
 public boolean removeAll (Collection that);
 public boolean retainAll (Collection that);
}

Now you read one line at a time from the file into a String variable named perhaps s.
When the value of s is null, you are at the end of the file and you can stop. Otherwise
you copy s into the next available component itsItem[itsSize] and then
increment itsSize. The coding for this constructor is in the upper part of Listing 15.3
(see next page).

 Java Au Naturel by William C. Jones 15-5 15-5

Listing 15.3 The ArraySequence class of objects, parts left as exercises

import java.io.*;
import java.util.*;

public class ArraySequence implements Collection
{
 private Object[] itsItem;
 private int itsSize = 0;

 public ArraySequence (String fileName) throws IOException
 { BufferedReader file = new BufferedReader //1
 (new FileReader (fileName)); //2
 itsItem = new Object[100]; //3
 String s = file.readLine(); //4
 while (s != null) //5
 { if (itsSize == itsItem.length) //6
 itsItem = copyOf (itsItem, 2); //7
 itsItem[itsSize] = s; //8
 itsSize++; //9
 s = file.readLine(); //10
 } //11
 } //======================

 private Object[] copyOf (Object[] given, int big)
 { Object[] valueToReturn = new Object [given.length * big];
 for (int k = 0; k < given.length; k++) //13
 valueToReturn[k] = given[k]; //14
 return valueToReturn; //15
 } //======================

 public ArraySequence (ArraySequence that)
 { this.itsItem = copyOf (that.itsItem, 1); //16
 this.itsSize = that.itsSize; //17
 } //======================

 public boolean equals (Object ob)
 { if (! (ob instanceof ArraySequence)) //18
 return false; //19
 ArraySequence that = (ArraySequence) ob; //20
 if (this.itsSize != that.itsSize) //21
 return false; //22
 for (int k = 0; k < that.itsSize; k++) //23
 { if (! this.itsItem[k].equals (that.itsItem[k])) //24
 return false; //25
 } //26
 return true; //27
 } //======================
}

Another ArraySequence constructor just requires that you make the new itsItem an
exact copy of the given one (the private copyOf method can be used for this as well as
for doubling the size of an array, since it is written with an int parameter to specify
whether the new array is twice the size of the old one or not). Then you record the size
of the newly-constructed array. The coding is in the middle part of Listing 15.3.

 Java Au Naturel by William C. Jones 15-6 15-6

Implementing the equals method

The equals method tests whether a given ArraySequence parameter has the same
elements in the same order as the executor. The parameter is declared to be of type
Object, not ArraySequence, because you want this equals method to override the one
for the Object class. So you first check that the parameter is in fact a ArraySequence
kind of Object. The condition x instanceof Y tells whether x is an object whose
class is Y or extends Y or implements Y. This condition is false when x is null.

The accompanying design block is a reasonable plan for solving this problem. The
coding is in the lower part of Listing 15.3. The other methods of the ArraySequence class
are left for exercises.

STRUCTURED NATURAL LANGUAGE DESIGN for equals
1. If the parameter is not a ArraySequence kind of object then...
 The parameter is not equal to the executor.
2. Otherwise, if the parameter does not have the same number of elements as the
 executor then...
 The parameter is not equal to the executor.
3. Otherwise, for each element of the parameter do the following...
 If the current element of the parameter is not equal to the corresponding
 element of the executor then...
 The parameter is not equal to the executor.
4. The parameter is equal to the executor if you get to this point in the logic.

It is standard procedure to have a constructor that has a Collection parameter, but you
cannot write such a method until later in this chapter, when you learn what an Iterator is.

Exercise 15.1 Write the ArraySequence method public int size().
Exercise 15.2 Write the ArraySequence method public boolean isEmpty().
Exercise 15.3 Write the ArraySequence method public boolean contains
(Object ob).
Exercise 15.4 Write the ArraySequence constructor public ArraySequence() that
creates an empty Collection.
Exercise 15.5 Write the ArraySequence method public Object[] toArray().
Exercise 15.6* Write the ArraySequence method public boolean containsAll
(Collection that). You may throw an Exception if that is not a ArraySequence.
Exercise 15.7* Write the ArraySequence method public Object[] toArray
(Object[] array).

15.3 Linked Lists With A Nested Private Node Class

You may define one class X inside the body of another class with the modifier static
in X's heading. This makes X a nested class of the other class. We define the
NodeSequence class with two constructors analogous to those of ArraySequence, and
with all the Collection methods, but we implement it as a linked list of Nodes with a
nested private Node class. That is, we define the Node class within the body of the
NodeSequence class. This keeps outside classes from directly changing the value in a
Node belonging to a NodeSequence object.

The Node class is defined in Listing 15.4 (see next page). A Node object stores two
pieces of information: a reference to a single piece of data (of type Object) and a
reference to another Node object. A Node object's data is referenced by itsData and
the Node that comes next after it in the linked list is referenced by itsNext.

 Java Au Naturel by William C. Jones 15-7 15-7

Listing 15.4 The Node class

 private static class Node
 // nested in the NodeSequence class
 {
 public Object itsData;
 public Node itsNext;

 public Node (Object data, Node next)
 { itsData = data;
 itsNext = next;
 }
 } //======================

If for instance p refers to a particular Node, then p.itsData is the information at that
position in the list and p.itsNext is the Node containing the information at the
following position in the list. If, however, p.itsData is the last information in the list,
then we normally set p.itsNext to null to indicate this.

The natural Node constructor is defined and no other Node methods. Since this is a
private class in the NodeSequence class and it has public instance variables, the
NodeSequence class can access the instance variables directly. However, the principle
of encapsulation is not violated since no class outside the NodeSequence class can refer
to the instance variables of a class that is declared privately inside another class. Note:
Chapter Fourteen defined a Node class outside of any class and provided public methods
to control access to its private variables. That way of defining the Node class is not better
or worse than this one, just different. Both approaches maintain encapsulation.

Nodes in a NodeSequence object

A NodeSequence object will have an instance variable itsFirst for the first Node
object on its list. Suppose a particular NodeSequence object has a linked list of two or
more Nodes. Coding to print the two elements at the beginning of this list is as follows:

 System.out.println (itsFirst.itsData.toString());
 System.out.println (itsFirst.itsNext.itsData.toString());

Coding to add a new element "long" between the first and second Nodes could be as
follows (illustrated in Figure 15.2). Actually, this coding will work even if only one Node is
in the linked list, but it will throw a NullPointerException if itsFirst has the value null:

 Node newNode = new Node ("long", itsFirst.itsNext);
 itsFirst.itsNext = newNode;

 Figure 15.2 Inserting a new Node into a sequence of Nodes

 Java Au Naturel by William C. Jones 15-8 15-8

If you want to add a new element named givenData at the front of the list, you could
use the following coding, which will work even if no Node at all is in the linked list:

 itsFirst = new Node (givenData, itsFirst);

Looping through a linked list

You know that the standard way you go through all the components in a partially-filled
array one at a time, processing each one's data, is as follows:

 for (int k = 0; k < itsSize; k++)
 processData (itsItem[k]);

This is precisely analogous to the standard way you go through all the nodes in a linked
list one at a time, processing each one's data. Figure 15.3 shows the parallelism with the
following coding:

 for (Node p = itsFirst; p != null; p = p.itsNext)
 processData (p.itsData);

Components in an array Nodes in a linked list
k indicates the current component p indicates the current node
k = 0 selects the first component p = itsFirst selects the first node
k == itsSize if no more components p == null if no more nodes
k++ moves the indicator to the next
component

p = p.itsNext moves the indicator to
the next node

itsItem[k] is the data k indicates p.itsData is the data p indicates

 Figure 15.3 Parallelism of loops through arrays and loops through linked lists

The coding for the contains method in the ArraySequence array implementation is the
following (as you saw in an exercise):

 for (int k = 0; k < itsSize; k++)
 { if (itsItem[k].equals (ob))
 return true;
 }
 return false;

It follows that the coding for the contains method in the NodeSequence linked list
implementation is the analogous logic you can see in the upper part of Listing 15.5 (see
next page). Compare it piece-by-piece with the array form. This is a form of the Some-A-
are-B looping action: Return true as soon as you see a good one, return false after
you looked everywhere and saw nothing but bad ones.

The containsAll method requires a form of the All-A-are-B looping action: Return
false as soon as you see a bad one, return true after you looked everywhere and
saw nothing but good ones. That logic is in the middle part of Listing 15.5. It throws a
ClassCastException if the parameter is not a NodeSequence. This is unavoidable for
now, since you do not know iterators, but it is fixed in an exercise in Section 15.6.

The size method tells how many elements the sequence has. The NodeSequence
coding has the standard loop heading and it uses the very common Count-cases looping
action: Initialize a variable to 0 and then increment it once each time through the loop to
see how many times the loop iterates. This logic is in the lower part of Listing 15.5.

 Java Au Naturel by William C. Jones 15-9 15-9

Listing 15.5 The NodeSequence class of objects, part 1

/** A sequence of non-null values in a particular order. */

import java.io.*;
import java.util.*;

public class NodeSequence implements Collection
{
 private Node itsFirst = null;

 public NodeSequence()
 { super(); // creates an empty NodeSequence //1
 } //======================

 public boolean contains (Object ob)
 { for (Node p = itsFirst; p != null; p = p.itsNext) //2
 { if (p.itsData.equals (ob)) //3
 return true; //4
 } //5
 return false; //6
 } //======================

 public boolean containsAll (Collection that)
 { for (Node p = ((NodeSequence) that).itsFirst; //7
 p != null; p = p.itsNext) //8
 { if (! this.contains (p.itsData)) //9
 return false; //10
 } //11
 return true; //12
 } //======================

 public int size()
 { int count = 0; //13
 for (Node p = itsFirst; p != null; p = p.itsNext) //14
 count++; //15
 return count; //16
 } //======================
}

Exercise 15.8 Write the NodeSequence method public boolean isEmpty().
Exercise 15.9 Write a NodeSequence method public int howManyEqual
(Object ob): The executor tells how many of its elements are equal to ob.
Exercise 15.10* Write a NodeSequence method public boolean
allAreStrings(): The executor tells whether every element is a String value. Hint:
Use the instanceof operator.
Exercise 15.11* Write a NodeSequence method public Object removeFirst():
The executor removes and returns the first element in its sequence. It returns null if its
sequence is empty.
Exercise 15.12** Write a NodeSequence method public void takeAway (Object
ob): The executor removes all Objects from the front of the list down to but not including
the first one that equals ob. Leave the NodeSequence empty if none are equal.

 Java Au Naturel by William C. Jones 15-10 15-10

15.4 Implementing The Collection Interface With Linked Lists

The previous section began the coding of the NodeSequence class (Listing 15.5) with the
"easy" methods. This section develops three more complex methods for that class. But
first it is best to explicitly state the internal invariant for this class, i.e., the state of the
NodeSequence object that every method preserves. It describes the connection between
the user's abstract concept of the sequence of data values and the reality of Nodes.

Internal invariant for NodeSequences
• If the sequence does not contain any data values, itsFirst is null. Otherwise

itsFirst refers to the first Node in a linked list of Nodes.
• For each Node x in that linked list, the value in x.itsData is one non-null data

value in the abstract sequence of data values.
• The data values are in the linked list in the same order that they are in the abstract

sequence of data values, with itsFirst containing the first one (if it exists).
• The Nodes in one NodeSequence are all different objects from those in any other.

Implementing the equals method

The coding for the equals method is not too much different from the coding for the
ArraySequence equals method in the earlier Listing 15.3. You make sure the
parameter actually is a NodeSequence and then you cast it to make the coding easier to
read and faster to execute. You should not check the sizes to see if they are equal,
because that takes a significant amount of time with linked lists (by contrast, each
ArraySequence object knows its size). Next you go through the list of all values in the
parameter one at a time. Since the coding in the ArraySequence method is

 for (int k = 0; k < that.itsSize; k++)
 { if (! this.itsItem[k].equals (that.itsItem[k]))
 return false;
 }

the analogous coding for the NodeSequence method should have two Node variables
that progress through the two linked lists in tandem, something like this:

 Node p = this.itsFirst;
 for (Node q = that.itsFirst; q != null; q = q.itsNext)
 { if (! p.itsData.equals (q.itsData))
 return false;
 p = p.itsNext;
 }

 Figure 15.4 Two stages of execution of the equals method

 Java Au Naturel by William C. Jones 15-11 15-11

Figure 15.4 shows how the two lists and these two position indicators look. However,
you have not checked that the sizes of the two lists match, so it is possible that p could
become null while the loop executes, which would throw a NullPointerException. You
need a crash-guard; have the if-statement check p == null and, if so, return false
without trying to evaluate p.itsData.

This reasoning leads to the coding in the upper part of Listing 15.6. Note that successful
completion of the loop does not guarantee equality; you have to verify that the executor's
list ran out at the same time as the parameter's list (verified in line 10).

Listing 15.6 The NodeSequence class of objects, part 2

// public class NodeSequence, 3 more of the methods

 public boolean equals (Object ob)
 { if (! (ob instanceof NodeSequence)) //1
 return false; //2
 NodeSequence that = (NodeSequence) ob; //3
 Node p = this.itsFirst; //4
 for (Node q = that.itsFirst; q != null; q = q.itsNext) //5
 { if (p == null || ! p.itsData.equals (q.itsData)) //6
 return false; //7
 p = p.itsNext; //8
 } //9
 return p == null; //10
 } //======================

 public NodeSequence (String fileName) throws IOException
 { BufferedReader file = new BufferedReader //11
 (new FileReader (fileName)); //12
 String s = file.readLine(); //13
 if (s != null) //14
 { this.itsFirst = new Node (s, null); //15
 Node previous = this.itsFirst; //16
 s = file.readLine(); //17
 while (s != null) //18
 { previous.itsNext = new Node (s, null); //19
 previous = previous.itsNext; //20
 s = file.readLine(); //21
 } //22
 } //23
 } //======================

 public NodeSequence (NodeSequence that)
 { if (that.itsFirst != null) //24
 { this.itsFirst = new Node (that.itsFirst.itsData, null);
 Node previous = this.itsFirst; //26
 for (Node p = that.itsFirst.itsNext; //27
 p != null; p = p.itsNext) //28
 { previous.itsNext = new Node (p.itsData, null); //29
 previous = previous.itsNext; //30
 } //31
 } //32
 } //======================

 Java Au Naturel by William C. Jones 15-12 15-12

Implementing the NodeSequence constructor that uses a file

The logic for constructing a new NodeSequence object out of input from a disk file is only
mildly different from the corresponding ArraySequence constructor in the earlier Listing
15.3. After you open the file and read the first line, you check it to see if you obtained null
(line 14 of Listing 15.6). If so, the file is empty and so you simply leave this.itsFirst
as null.

If the file is not empty, you put its first String value into a node and make that the first
node on the NodeSequence object's node list (line 15). Now it gets a little tricky. You
cannot add a node to the end of the linked list unless you change the itsNext value in
the previous node. So you have to keep track of that previous node throughout the loop
that reads String values in from the file.

You initialize a local variable previous = this.itsFirst (line 16), since that will
be the node previous to the one you are going to add next. Now you write the standard
loop for reading data from a file until you run out. The only difference is that the two
statements

 itsItem[itsSize] = s;
 itsSize++;

in the body of the loop in the ArraySequence constructor are replaced by these two
statements (lines 19-20), which do much the same thing:

 previous.itsNext = new Node (s, null);
 previous = previous.itsNext;

This coding is in the middle part of Listing 15.6. It illustrates an important design
principle: If you have to process a sequence of values and the first value requires a
different kind of processing from the rest of them, do not try to have a loop process all the
values. Instead, process the first value before the loop and have the loop start its
processing with the second value. If you were to try to write the coding for this
constructor by having a while-statement but no if-statement, you would quickly see why
this is a valuable principle.

Implementing the constructor that has a NodeSequence parameter

To create a NodeSequence object that has the same elements in the same order as a
given NodeSequence parameter, you first verify that the parameter does not have an
empty list. If it does not, you make the executor's first node a new Node object
containing the data from the first node of the parameter. Initialize a local variable
previous = this.itsFirst and enter a loop processing the second and all later
elements on the parameter's list. This logic is in the lower part of Listing 15.6.

At each such element, link a new node after previous containing that element from
the parameter and move previous on to that newly-constructed node (lines 29-30,
basically the same as lines 19-20). Figure 15.5 (see next page) illustrates this coding.
Note that again the first node on the executor's list must be processed differently from all
other nodes, because the first node is the only one that does not have a previous node.

Exercise 15.13 How would you modify the equals method for the NodeSequence
class to tell whether the executor is a "prefix" of a NodeSequence parameter, i.e., the
elements of the executor are at the beginning of the parameter in the same order, but the
parameter may have more elements besides those?
Exercise 15.14 (harder) Write the NodeSequence method public Object[]
toArray(). Hint: Use new Object[this.size()].

 Java Au Naturel by William C. Jones 15-13 15-13

 Figure 15.5 Two stages of execution of the second constructor

Exercise 15.15 (harder) Write a Node method public void removeEvens(): The
executor removes every other Node from its linked list, i.e., the second, fourth, sixth, etc.
Exercise 15.16* Write another constructor for the NodeSequence class with an
Object[] parameter: It constructs a Collection with the same elements in the same
order as the array has, except it omits any null values that might be there. Hint: Work
backwards from given[given.length - 1].
Exercise 15.17* Write a NodeSequence method public Collection reverse():
The executor returns a new NodeSequence object with the same elements as the
executor but in the opposite order.

15.5 Recursion With Linked Lists

The coding for each method in Listing 15.6 is lengthy and hard to follow. This is because
the coding works with linked lists, which are naturally recursive structures, but it does not
use recursion. A naturally recursive structure is a structure that can be implemented
with a class X of objects that have instance variables of class X. Some people call these
"self-referential objects" but technically they are not; p.itsNext refers to another Node
object, not to p.

Deciding whether a String is a palindrome

Let us start with a recursion refresher, a method that uses recursion to tell whether a
given String value reads the same forwards as backwards. Such a String is called a
palindrome; an example is what Napoleon is rumored to have said: "able was I ere I saw
elba". There are two kinds of palindromes, trivial and not:

• Any string that only has one character, or no characters at all, is trivially a

palindrome.
• Any string with two or more characters is a palindrome when the first character is the

same as the last and the smaller part in-between is a palindrome.

This logic is expressed quite naturally by the following independent method:

 public static boolean isPalindrome (String s) // independent
 { return s.length() <= 1
 || (s.charAt (0) == s.charAt (s.length() - 1)
 && isPalindrome (s.substring (1, s.length() - 1)));
 } //======================

 Java Au Naturel by William C. Jones 15-14 15-14

The equals method for NodeSequences

Two NodeSequence objects are equal if their linked lists of nodes have exactly the same
data in the same order. So the equals method for NodeSequences is quite easy to
work out if you put off most of the work to a separate areEqual method that tests
whether two linked lists of nodes are equal:

 public boolean equals (Object ob)
 { return ob instanceof NodeSequence
 && areEqual (this.itsFirst,
 ((NodeSequence) ob).itsFirst);
 } //======================

The areEqual method determines whether two linked lists have the same data values
in the same order. There are two cases to consider, depending on whether one of the
linked lists is empty or not:

• If either linked list is empty, then they are equal only if both are empty.
• If both are non-empty, then they are equal only if their first data values (in itsData)

are equal to each other and their sublists (starting from itsNext) are also equal.

The coding for areEqual follows directly from those two cases:

 private static boolean areEqual (Node one, Node two)
 { return (one == null || two == null) ? one == two
 : one.itsData.equals (two.itsData)
 && areEqual (one.itsNext, two.itsNext);
 } //======================

See how much easier and more natural those two parts are together than the coding in
Listing 15.6? Of course, you need a secondary method that recurses through the linked
list of Nodes. The reason is that the equals method has a NodeSequence executor,
and a NodeSequence is not a naturally recursive structure (since it does not have a
NodeSequence instance variable). So equals calls the areEqual method for a pair
of Node objects which store the naturally recursive linked lists.

The NodeSequence constructor using a file

The first NodeSequence constructor reads data from a disk file and creates a linked list
from that sequence of data values. You first create the file, then you can call a recursive
method to give you the linked list that the file provides:

 public NodeSequence (String fileName) throws IOException
 { BufferedReader file = new BufferedReader
 (new FileReader (fileName));
 this.itsFirst = readFrom (file);
 } //======================

The readFrom method gets all the String values in the file and returns the linked list of
Nodes containing those values in the order read. It first reads a single String value from
the file and then sees which of two cases applies -- the String exists or not:

• If the String value does not exist, then return the empty linked list.
• If the String value exists, then return a non-empty linked list for which the first Node

contains the String you just read as its data and the Node's sublist contains all the
rest of the String values from the file.

 Java Au Naturel by William C. Jones 15-15 15-15

The coding for readFrom following directly from those two cases:

 private static Node readFrom (BufferedReader file)
 throws IOException
 { String s = file.readLine();
 return s == null ? null : new Node (s, readFrom (file));
 } //======================

The NodeSequence constructor using another NodeSequence

To make a new NodeSequence that is a copy of another, you make a new linked list that
is a copy of the given linked list:

 public NodeSequence (NodeSequence given)
 { this.itsFirst = copyList (given.itsFirst);
 } //======================

This calls a private copyList method whose job is to return a copy of the given linked
list. This recursive method sees which of two cases applies:

• If the list to copy is empty, then return an empty list as its copy.
• Otherwise, return a non-empty linked list for which the first Node contains the data in

the first Node of the given linked list and the Node's sublist contains all the rest of the
data values.

The coding for copyList following directly from those two cases:

 private static Node copyList (Node toCopy)
 { return toCopy == null ? null : new Node (toCopy.itsData,
 copyList (toCopy.itsNext));
 } //======================

 Figure 15.6 UML class diagram for the NodeSequence class

Exercise 15.18 Rewrite the contains method of Listing 15.5 by calling on a private
recursive method with a Node parameter. Have only one statement in each method.
Exercise 15.19 (harder) Write a recursive Node method public void
removeEvens(): The executor removes even-numbered Nodes from the linked list, i.e.,
the second, fourth, sixth, eighth, etc.
Exercise 15.20* Write a recursive Node method public void omit(Object ob):
The executor removes all Nodes after itself that contain a data value equal to ob.

 Java Au Naturel by William C. Jones 15-16 15-16

Part B Enrichment And Reinforcement

15.6 Implementing The Iterator Interface For An Array-Based
Collection

Your client needs a program that lists all purchased items that are missing from the
inventory, both of which are stored in Collection objects. For this task you need to have
an Iterator object. The Collection interface prescribes a method for which
someCollection.iterator() returns an Iterator object connected to the Collection.

Definition of an Iterator

An Iterator provides the values in a Collection one at a time in some order. If it is a
Collection for which order is important, it should always return the values in the
Collection's own order. A class satisfies the Iterator interface (in the java.util
package) if it has the following three instance methods:

• hasNext() tells whether there is an element of the Collection that has not yet been

provided by the Iterator.
• next() advances to the next element to be provided and returns it.
• remove() deletes from the Collection the element that was returned by the most

recent call of next(). After removal, next() provides what it would have
provided without the removal. Note: Many implementations of Iterator specify that
no one is to call its remove method; so it throws an UnsupportedOperationException
if you call it.

Naturally, next() throws an Exception if there is no additional element and remove()
throws an Exception if next() has not yet been called. The application program in
Listing 15.7 (see next page) shows how an Iterator object can be used. The same coding
would also work if "ArraySequence" were replaced by "NodeSequence" throughout. It is
important that the value that it.next() returns be assigned to a variable, since the
one value is used twice. If you called it.next() twice in the body of the loop, it would
give you the next two values, not the same value twice.

An Iterator acts as a non-pushable stack containing the elements in the Collection.
it.next() corresponds to stack.pop(); it takes the next available element out of
the stack and returns it. it.hasNext() corresponds to ! stack.isEmpty().

A private nested class

An Iterator object constructed for a ArraySequence object needs access to the private
instance variables of that sequence. Encapsulation is maintained if you make this
ArraySequenceIterator class a private nested class of ArraySequence, which means that
no outside class can mention the name ArraySequenceIterator. It is declared inside the
ArraySequence class with the following class heading:

 private static class ArraySequenceIterator implements Iterator

The instance method in the ArraySequence class that produces an Iterator for outside
classes to use can be coded as follows. An outside class (such as LostItems in Listing
15.7) that calls this method must store the object the method returns in an Iterator
variable, not a ArraySequenceIterator variable, because the latter name is private:

 public Iterator iterator() // in ArraySequence
 { return new ArraySequenceIterator (this);
 } //======================

 Java Au Naturel by William C. Jones 15-17 15-17

Listing 15.7 The LostItems application program

public class LostItems
{
 /** List all purchased items not in inventory. */

 public static void main (String[] args)
 { java.util.Collection inventory; //1
 java.util.Collection purchased; //2
 try //3
 { inventory = new ArraySequence ("inven.dat"); //4
 purchased = new ArraySequence ("purch.dat"); //5
 }catch (java.io.IOException e) //6
 { throw new RuntimeException ("A file is defective.");//7
 } //8

 if (inventory.equals (purchased)) //9
 System.out.println ("a perfect match"); //10
 else if (! inventory.containsAll (purchased)) //11
 { System.out.println ("Listing all values we lost:"); //12
 java.util.Iterator it = purchased.iterator(); //13
 while (it.hasNext()) //14
 { Object data = it.next(); //15
 if (! inventory.contains (data)) //16
 System.out.println (data.toString()); //17
 } //18
 } //19
 } //======================
}

The ArraySequence object is passed as a parameter to this iterator method so that
its Iterator object can refer to its partially-filled array and to the size of that array.

Array implementation of an Iterator

For the ArraySequenceIterator class, we choose to keep track of the current position of
the Iterator in an int instance variable named itsPos. Each time next() is executed,
we add 1 to the value of itsPos and then return the element in itsItem[itsPos].

We need to keep track of whether calling remove is allowed. We can do this with a
boolean variable isRemovable. When the Iterator object is first created, this variable is
initialized to false. Whenever next is called, this variable is made true.

The very first time we execute next(), we should get itsItem[0]. It follows that
itsPos must be initialized to -1 so that adding 1 to it puts it at 0. And of course, we
cannot execute next() if there is no element in itsItem[itsPos+1], i.e., if
itsPos+1 equals itsSize. The coding for the constructor and the hasNext and
next methods is in the upper part of Listing 15.8 (see next page).

Internal invariant for ArraySequenceIterators
• The instance variable itsSeq is the ArraySequence it iterates through.
• The instance variable itsPos is the int such that itsSeq.itsItem[itsPos+1]

contains the element that next() will return, except next() is illegal when
itsPos+1 == itsSeq.itsSize.

• The instance variable isRemovable tells whether a call of remove is allowed.

 Java Au Naturel by William C. Jones 15-18 15-18

Listing 15.8 The ArraySequenceIterator nested class of objects

// This class goes inside the ArraySequence class

private static class ArraySequenceIterator implements Iterator
{
 private int itsPos = -1; // next() is itsItem[itsPos+1]
 private boolean isRemovable = false;
 private ArraySequence itsSeq;

 public ArraySequenceIterator (ArraySequence givenSequence)
 { itsSeq = givenSequence; //1
 } //======================

 /** Tell whether there is a next element to be returned. */

 public boolean hasNext()
 { return itsPos + 1 < itsSeq.itsSize; //2
 } //======================

 /** Advance to the next object to be returned and return it.
 * Throw NoSuchElementException if hasNext() is false. */

 public Object next()
 { if (! hasNext()) //3
 throw new NoSuchElementException ("hasNext is false");
 isRemovable = true; //5
 itsPos++; //6
 return itsSeq.itsItem[itsPos]; //7
 } //======================

 /** Remove the object that was just returned by next().
 * Throw IllegalStateException if next() has never been
 * called, or if next() has not been called since the
 * most recent call of remove(). */

 public void remove()
 { if (! isRemovable) //8
 throw new IllegalStateException ("nothing to remove");
 for (int k = itsPos + 1; k < itsSeq.itsSize; k++) //10
 itsSeq.itsItem[k - 1] = itsSeq.itsItem[k]; //11
 itsSeq.itsSize--; //12
 itsPos--; //13
 isRemovable = false; // no remove twice in a row //14
 } //======================
}

The Iterator interface specifies that a NoSuchElementException be thrown if there is no
next element to return. This Exception class is in the java.util package. The way
you throw a NoSuchElementException object is quite simple -- just execute the following
statement (the phrase in quotes is whatever you choose):

 throw new NoSuchElementException ("hasNext is false");

 Java Au Naturel by William C. Jones 15-19 15-19

The remove method for Iterators

The remove method deletes the element that was returned by the most recent
execution of next(). That of course is impossible if next has not yet been called or if
the element it returned has already been removed. In such cases you are to throw an
IllegalStateException (in java.lang).

When remove is called, you remove the element in itsSeq.itsItem[itsPos]
(shifting other values down one) and make a note that another immediate call of remove
is now forbidden (you cannot remove what is already gone). The next call of next
should return the first value that was shifted down. That means that you should
decrement itsPos in preparation for the next call of next. This coding is in the lower
part of Listing 15.8. Figure 15.7 should clarify what is going on.

 Figure 15.7 UML object diagrams for ArraySequenceIterator operations

Removal of itsItem[itsPos] requires shifting each element indexed itsPos+1
and higher to the component indexed 1 less than itself. If you think about it a while, you
will see why this shifting is easier if you work from itsPos toward itsSize rather
than vice versa.

Exercise 15.21 What changes would you make in the remove method of Listing 15.8 if
it specified that you are to return the Object that is removed?
Exercise 15.22 Write a generic Collection containsAll method, i.e., coding that
works correctly for any Collection executor and for any Collection parameter. Hint: Use
the parameter's Iterator to go through its elements one at a time and call contains.
Exercise 15.23 (harder) Modify Listing 15.7 to execute much faster on the precondition
that every element of the inventory Collection is known to be in the purchased
Collection and those elements are listed in the same order.
Exercise 15.24 (harder) If you studied inner classes in Chapter Ten, rewrite the
ArraySequenceIterator class as an inner class. Also rewrite the iterator method.
Exercise 15.25* Rewrite the remove method in ArraySequenceIterator to explicitly
state the executor wherever possible.
Exercise 15.26* Generalize the second ArraySequence constructor in Listing 15.3 to
have a Collection parameter. Use its iterator to create the copy.
Exercise 15.27* Rewrite the NodeSequence equals method in Listing 15.6 to tell
whether it has the same elements in the same order as its parameter, which can be any
Collection object (i.e., do not return false just because it is not a NodeSequence).
Hint: Instead of Node q, use an Iterator.
Exercise 15.28* Rewrite Listing 15.8 with a different internal invariant, namely, the
element that next() returns is itsItem[itsPos+1] only when isRemovable is
true. Otherwise next() returns itsItem[itsPos].
Exercise 15.29* Draw the UML class diagram for the LostItems class.
Exercise 15.30** Rewrite the remove method in Listing 15.8 to shift elements down
starting from the far end of the array, working from itsSize-1 on down.

 Java Au Naturel by William C. Jones 15-20 15-20

15.7 Implementing The Iterator Interface For A Linked-List-Based
Collection

For the NodeSequence's Iterator class, you can use something analogous to what was
just described for arrays: You keep track of the current position of the Iterator in a Node
instance variable named itsPos . Each time you execute next(), you advance
itsPos to the next Node and return the data in that Node. The primary problem occurs
when you have to remove the data in the Node that itsPos refers to.

The easiest way to do that is to make a note of the Node just before itsPos. That is
the Node that itsPos advances from when next() is executed. You could record that
information in an instance variable named itsPrevious, since it is the Node before the
element that can be removed. If you set itsPrevious to be itsPos when
remove() is not allowed, you do not need an extra boolean instance variable to keep
track of that information. Then the coding for next would be the exact analog of its
coding for the array implementation, to wit:

 if (! hasNext())
 throw new NoSuchElementException ("hasNext is false");
 itsPrevious = itsPos;
 itsPos = itsPos.itsNext;
 return itsPos.itsData;

But now you have another problem: The first node does not have a node before it, so
what do you initialize itsPos to? This problem is easily fixed: Construction of an
iterator creates a dummy header node that links to itsFirst and initializes itsPos
to that dummy header node. So the status of the implementation, i.e., the internal
invariant, will always be as follows. Compare this description with the internal invariant in
the previous section. In particular, itsPrevious gives the information required to do
the equivalent of itsPos--, while the condition itsPrevious != itsPos gives the
same information as the value of isRemovable:

Internal invariant for NodeSequenceIterators
• The instance variable itsSeq is the NodeSequence it iterates through.
• The instance variable itsPos is the Node such that itsPos.itsNext.itsData

always contains the element that next() will return when next() is legal.
• next() is illegal when itsPos.itsNext is null.
• The instance variable itsPrevious is the Node before itsPos if a call of

remove is allowed, otherwise itsPrevious equals itsPos.

What if the sequence is modified during iteration through it? That would cause
unpredictable results in some cases (unless done by the iterator's own remove method,
so it can make allowance for the removal). So you should not do that. Sun standard
implementations of iterators are fail-fast: If the list structure is modified by any method
other than the iterator's own methods, and then any of the iterator's methods are called,
the iterator throws a runtime Exception.

To implement this, you could have each Collection object count all additions and
removals with itsChangeCounter. Then each iterator object notes the value of
itsChangeCounter when the iterator is created, and each call of next verifies that
itsChangeCounter has not changed or, if it has, throws an Exception. For simplicity,
we leave this out in Iterator codings in this book.

The coding for the constructor, hasNext, and next is in the upper part of Listing 15.9
(see next page). You must also add the following method to the NodeSequence class:

 Java Au Naturel by William C. Jones 15-21 15-21

 public Iterator iterator() // in NodeSequence
 { return new NodeSequenceIterator (this);
 } //======================

Listing 15.9 The NodeSequenceIterator nested class of objects

// This class goes inside the NodeSequence class

private static class NodeSequenceIterator implements Iterator
{
 private Node itsPos; // next() is itsPos.itsNext.itsData
 private Node itsPrevious; // == itsPos when remove disallowed
 private NodeSequence itsSeq;

 public NodeSequenceIterator (NodeSequence givenSequence)
 { itsSeq = givenSequence; //1
 itsPos = new Node (null, itsSeq.itsFirst); //2
 itsPrevious = itsPos; // signals no remove allowed //3
 } //======================

 public boolean hasNext()
 { return itsPos.itsNext != null; //4
 } //======================

 public Object next()
 { if (! hasNext()) //5
 throw new NoSuchElementException ("hasNext is false");
 itsPrevious = itsPos; //7
 itsPos = itsPos.itsNext; //so now itsPrevious!=itsPos //8
 return itsPos.itsData; //9
 } //======================

 public void remove()
 { if (itsPrevious == itsPos) //10
 throw new IllegalStateException ("nothing to remove");
 itsPrevious.itsNext = itsPos.itsNext; //12
 if (itsSeq.itsFirst == itsPos) //13
 itsSeq.itsFirst = itsPos.itsNext; //14
 itsPos = itsPrevious; // signals no remove allowed //15
 } //======================
}

The remove method for NodeSequenceIterator

The remove coding is far simpler than it was for the array implementation. As the
internal invariant indicates, as long as itsPrevious is not equal to itsPos, you can
just link from itsPrevious around the node itsPos to delete it from the linked list.

However, there is a special case: If the node to be removed is the first node on the
linked list, then you have to reset itsSeq.itsFirst to refer to the currently-second
node on the linked list. Either way, you make itsPos be itsPrevious, to prevent an
additional call of remove. The full logic is in the lower part of Listing 15.9. Figure 15.8
illustrates how things change for a call of next followed by a call of remove.

 Java Au Naturel by William C. Jones 15-22 15-22

 Figure 15.8 UML object diagrams for NodeSequenceIterator operations

Exercise 15.31 How would you change the NodeSequenceIterator class to have a
nextIndex method which returns the index number of the element that would be
returned by the next execution of next() (0 for the first, 1 for the second, etc.)?
Exercise 15.32 (harder) Generalize the second NodeSequence constructor in Listing
15.6 to have a Collection parameter. Use its iterator to create the copy recursively.
Exercise 15.33 (harder) What changes would you make in Listing 15.9 to initialize
itsPos to null and thus avoid having a dummy header node?
Exercise 15.34* Revise Listing 15.9 for a different approach: Omit itsPos and
keep itsPrevious with the same meaning. Have a boolean instance variable
isRemovable to tell when you may remove a value. Adjust everything accordingly.
Hint: isRemovable is true precisely when itsPrevious != itsPos.

15.8 Implementing A Modifiable Collection With Linked Lists

The Collection interface has six methods that modify the Collection. They are described
in Listing 15.10 (see next page). This listing plus Listing 15.2 describe the Collection
interface in its entirety.

Some implementations of the Collection interface do not allow modifications. The Java
convention is that implementations that do not allow modifications are to have these six
methods throw an UnsupportedOperationException (from java.lang), using e.g. the
following statement (our two implementations will of course allow modifications):

 throw new UnsupportedOperationException();

In fact, an implementation of Iterator is allowed to have the preceding statement as the
body of the Iterator's remove method if the Collection is to be unmodifiable. In this
sense, the six methods mentioned in Listing 15.10 are optional operations for a
Collection and remove is an optional operation for an Iterator.

 Java Au Naturel by William C. Jones 15-23 15-23

Listing 15.10 The Collection interface, part 2

/** A Collection class that does not guarantee maintaining a
 * specific order ignores the ordering specifications here.
 * A Collection class that does not allow null as an element
 * throws a java.lang.IllegalArgumentException if you add null.
 * A method that returns a boolean value returns true
 * if and only if the method modifies the Collection. */

// public interface Collection, the rest of the 13 methods

 /** Make the Collection have no elements at all. */
 public void clear();

 /** Add the given Object at the end of this sequence.
 * No effect if the Collection does not allow duplicates. */
 public boolean add (Object ob);

 /** Same as repeated add for each element in sequence. */
 public boolean addAll (Collection that);

 /** Remove the first instance of the given object from the
 * Collection, if present. */
 public boolean remove (Object ob);

 /** Same as repeated remove for each element in that
 * Collection. */
 public boolean removeAll (Collection that);

 /** Remove every element not in that Collection. Keep the
 * original order for those elements that remain. */
 public boolean retainAll (Collection that);

If you have a Collection implementation that does not maintain a particular order and that
does not allow duplicates, the following expressions produce the set-union, set-
intersection, and set-difference of Collections A and B, without changing A or B:

 Collection union = new Collection (A).addAll (B);
 Collection intersection = new Collection (A).retainAll (B);
 Collection difference = new Collection (A).removeAll (B);

The java.util.Set interface in the standard library has the same methods as the
Collection interface. The difference is that it does not allow duplicates (but it allows one
null value) and the order of the elements is not necessarily guaranteed. The Sun library
has the java.util.HashSet class that implements Set, as well as the java.util.TreeSet
class that implements Set with elements sorted using compareTo.

Implementing the removeAll method

The removeAll method is not difficult if you just repeatedly call on the remove
method. Specifically, you get an iterator from the Collection parameter to run down its
sequence of elements and remove each one. Since you are charged with returning true
when any change in the executor Collection is made, you can initialize a boolean variable
to false and then change it to true any time one of the remove operations succeeds.

The coding for removeAll is in the upper part of Listing 15.11 (see next page). Note
that it is generic: It could be put in any class that implements Collection and it will work
right, assuming the other Collection methods it calls work right.

 Java Au Naturel by William C. Jones 15-24 15-24

Listing 15.11 The NodeSequence class of objects, part 3

// public class NodeSequence, three more methods

 public boolean removeAll (Collection that)
 { boolean changed = false; //1
 Iterator it = that.iterator(); //2
 while (it.hasNext()) //3
 changed = this.remove (it.next()) || changed; //4
 return changed; //5
 } //======================

 public boolean add (Object ob)
 { if (ob == null) //6
 throw new IllegalArgumentException ("no nulls allowed");
 if (itsFirst == null) //8
 itsFirst = new Node (ob, null); //9
 else //10
 itsFirst.addLater (ob); //11
 return true; // we accept duplicates of elements //12
 } //======================

 public boolean remove (Object ob)
 { if (itsFirst == null) //13
 return false; //14
 if (itsFirst.itsData.equals (ob)) //15
 { itsFirst = itsFirst.itsNext; //16
 return true; //17
 } //18
 return itsFirst.removeLater (ob); //19
 } //======================

// private static class Node, 2 more methods

 public void addLater (Object ob)
 { if (itsNext == null) //20
 itsNext = new Node (ob, null); //21
 else //22
 itsNext.addLater (ob); //23
 } //======================

 public boolean removeLater (Object ob)
 { if (itsNext == null) //24
 return false; //25
 if (itsNext.itsData.equals (ob)) //26
 { itsNext = itsNext.itsNext; //27
 return true; //28
 } //29
 return itsNext.removeLater (ob); //30
 } //======================

The removeAll coding uses two methods that not only take action but also return a
value. Both are legitimized by the fact that they are part of the Sun standard library, but
you can see that doing so much in one phrase can make the logic difficult to follow.
Some people feel it would have been better if the Iterator class had been defined with two
separate methods such as getNext() and moveOn() to take the place of the one
next() method.

 Java Au Naturel by William C. Jones 15-25 15-25

Implementing the NodeSequence add method

To add a given Object ob to the end of the linked list whose first node is
this.itsFirst, you first must check that the Object parameter exists. If the parameter
is null, you throw an IllegalArgumentException object (from java.lang). Then if
this.itsFirst is null, you just create a new node to be the only node on the linked
list, as follows:

 this.itsFirst = new Node (ob, null);

If, on the other hand, the linked list already has at least one node, you need to add a
node containing ob at the end of the linked list. Since the logic of add has already
become rather complex, just ask the first node to do that job (i.e., call an instance method
in the Node class).

The Node instance method you call could be named addLater. You ask a node on
your linked list to add ob some place after it. There are two possibilities: Either the
node X you ask is the last node, in which case X simply adds a new node after it
containing ob, or else there is a node after X, in which case X asks that next node to add
ob later. This coding is in the middle part of Listing 15.11. Figure 15.9 shows an
example.

 Figure 15.9

Designing the remove method

When you work out a complex logic, it usually helps to figure out what to do in the easy
cases and postpone the hard cases to another method. For remove, if the executor has
no nodes, do nothing. If it has nodes and the first node contains ob, delete that first
node. Otherwise, ask that first node to do the removing and report back whether it was
able to do so. This plan is formalized in the accompanying design block.

SNL DESIGN to remove ob
1. If the executor has no nodes then...
 Return false to indicate no change was made.
2. If the first node on the executor's linked list contains ob then...
 Make the currently-second node the new first node.
 Return true to indicate a change was made.
3. Ask the first node to remove ob from a node later in the linked list, if present.
4. Return true if ob was removed from a later node, otherwise return false.

What does that first node do when asked to remove ob? The same thing: If it has no
node after it, it does nothing, but if the node after contains ob, it deletes the node after it,
otherwise it asks the node after it to do the removing and report back whether it could do
so. That gives the recursive removeLater method in the lower part of Listing 15.11.
Figure 15.10 illustrates how this works.

 Java Au Naturel by William C. Jones 15-26 15-26

 Figure 15.10 Effect of a call of remove("same")

If you compare the coding for removeLater with the coding for remove, you can see
they are word-for-word the same except itsNext plays the role of itsFirst. And if
you compare the coding for addLater with the middle four lines of add, they have the
same resemblance.

Exercise 15.35 Write the NodeSequence method public void clear().
Exercise 15.36 (harder) What changes would you make in Listing 15.11 to have
addLater and removeLater be private class methods in the NodeSequence class?
Exercise 15.37 (harder) Write the NodeSequence method public boolean
retainAll (Collection that) as follows: Repeatedly delete the executor's first
node until you see that the Collection parameter contains the data in its first node (or the
executor becomes empty). Then go through each node in the executor's linked list one
at a time, deleting the nodes after it whose data is not in the Collection parameter.
Exercise 15.38* Write a NodeSequence method public void doubleUp(): The
executor ends up with twice as many nodes, each element occurring twice in a row.
Exercise 15.39* Write the generic NodeSequence method public boolean addAll
(Collection that) to repeatedly call the executor's add method.
Exercise 15.40* Write the ArraySequence method public boolean add (Object
ob).
Exercise 15.41* Rewrite the add method for NodeSequence without using recursion.
Exercise 15.42* Rewrite the remove method for NodeSequence without using
recursion (use a for-loop).

15.9 Implementing The ListIterator Interface For A Linked List

An ordinary Iterator allows you to remove an element you come across in the iteration,
but it does not allow you to add an element at a specific position in the sequence, nor
does it allow you to replace one element by another at a specific position. For this
capability you need a ListIterator kind of object. ListIterator is an interface in the
java.util package that extends the Iterator interface. If lit is a ListIterator, then
lit.add(ob) and lit.set(ob) are method calls that do just what you want.

However, the ListIterator interface requires two methods named hasPrevious and
previous, which do the same as hasNext and next, respectively, except they go
backwards in the list. This you do not want (how do you go backwards in a
straightforward linked list?). Not to worry -- in accordance with the Java convention, you
just include implementations of these methods with the standard coding that lets people
know not to use them:

 throw new UnsupportedOperationException();

It would be preferable if the Sun standard library offered a SequenceIterator interface that
had only the add and set methods in addition to the Iterator methods. The
SequenceIterator interface would extend Iterator and ListIterator would extend
SequenceIterator. But apparently they did not think of that.

 Java Au Naturel by William C. Jones 15-27 15-27

The ListIterator interface has the nine non-constructor methods named in Listing 15.12,
which completes the implementation of NodeSequenceIterator. The ListIterator
operations nextIndex and previousIndex are unsupported. They use zero-based
indexing, e.g., if next() would return the fourth element of the list, then nextIndex()
returns 3 and previousIndex() returns 2. We add another method in the
NodeSequence and ArraySequence classes with the same coding as for the iterator
method but with the following heading:

 public ListIterator listIterator()

Listing 15.12 The NodeSequenceIterator nested class of objects, revised

private static class NodeSequenceIterator implements ListIterator
{
 private Node itsPos; // next() is itsPos.itsNext.itsData
 private Node itsPrevious; // == itsPos when remove disallowed
 private NodeSequence itsSeq;

 /** Replace the object last returned by next(). Throw an
 * IllegalStateException if removal is not allowed. */

 public void set (Object ob)
 { if (ob == null)
 throw new IllegalArgumentException ("no nulls allowed");
 if (itsPrevious == itsPos)
 throw new IllegalStateException ("nothing to replace");
 itsPos.itsData = ob;
 } //======================

 /** Add the given object just before the element that will be
 * returned by next(), or at the end if hasNext() is false.
 * Disallow set or remove until next is used again. */

 public void add (Object ob)
 { if (ob == null)
 throw new IllegalArgumentException ("no nulls allowed");
 itsPos.itsNext = new Node (ob, itsPos.itsNext);
 itsPos = itsPos.itsNext;
 if (itsSeq.itsFirst == itsPos.itsNext)
 itsSeq.itsFirst = itsPos;
 itsPrevious = itsPos; // so no one can remove it
 } //======================

 // hasNext(), next(), remove(), and NodeSequenceIterator()
 // are already implemented in Listing 15.9

 // The following four do not apply to sequences
 public boolean hasPrevious() // is there a previous one?
 { throw new UnsupportedOperationException(); }
 public Object previous() // return the one before
 { throw new UnsupportedOperationException(); }
 public int nextIndex() // index of what next() returns
 { throw new UnsupportedOperationException(); }
 public int previousIndex() // index of what previous() returns
 { throw new UnsupportedOperationException(); }
}

 Java Au Naturel by William C. Jones 15-28 15-28

Implementation of the set and add methods

The set and remove methods can only be called if next has been called with no
intervening call of add or remove. That is, calling next makes a value available for
removing or replacing, and calling add or remove leaves no value available for
removing or replacing. So if set is allowed, you just replace the data in the node
itsPos.itsNext. The coding for this is in the upper part of Listing 15.12.

The add method is allowed anytime; when hasNext() is false, you add at the end
of the sequence. You first check that no one is trying to add null. Then you create a new
node and link it in after the node referenced by itsPos. Then you can set itsPos to
be that new node, since executing next() should return the element after the one just
added. This coding is in the middle part of Listing 15.12. Figure 15.11 should clarify what
is going on here.

 Figure 15.11 UML object diagram before and after a call of add(Y)

One special case occurs: If you added a node before the first node in the sequence, then
you have to reset itsSeq.itsFirst to now indicate the newly-added node.

The header-node variant

An implementation of NodeSequenceIterator that simplifies the coding and lowers the
execution time has the NodeSequence object create one dummy header node that all of
its iterators use. This header-node implementation of a sequence is left as a major
programming project. Since that dummy header will store in itsNext the first node
that contains data, the NodeSequence object does not need to keep track of that data
Node separately. So itsFirst can instead record the one dummy header node that
all iterators use, as follows:

 public NodeSequence() // header-node implementation
 { itsFirst = new Node (null, null);
 } //======================

 Figure 15.12 UML class diagram for NodeSequenceIterator

 Java Au Naturel by William C. Jones 15-29 15-29

Implementing stacks and queues with sequences

You can easily implement a stack (described in Listing 14.1) as a subclass of any class
that implements a modifiable Collection in which the order is important. The peekTop()
call is to return the value on top of the stack, so it could be written as follows:

 public Object peekTop() // in a stack subclass
 { return iterator().next();
 } //======================

If the stack is empty, peekTop() throws an Exception, as it should. The push(ob)
call is to add a value to the top of the stack, so it could be as follows:

 public void push (Object ob) // in a stack subclass
 { iterator().add (ob);
 } //======================

The pop() call is to remove the value on top of the stack; it is a bit more complex:

 public Object pop() // in a stack subclass
 { Iterator it = iterator();
 Object valueToReturn = it.next();
 it.remove();
 return valueToReturn;
 } //======================

A queue class (also described in Listing 14.1) can be implemented just as easily. The
dequeue method is coded the same as pop and the peekFront method is coded
the same as peekTop. The isEmpty() method for both stacks and queues is the
one inherited from Collection. The enqueue(ob) call is just one statement:

 public Object enqueue (Object ob) // in a queue subclass
 { this.add (ob); // put it at the end of the list
 } //======================

Exercise 15.43 Write the ArraySequenceIterator method public void set (Object
ob): It replace the current value by ob.
Exercise 15.44 Write the stack push and pop methods to be added to the
NodeSequence class without using an iterator; just code them directly in terms of Nodes.
Exercise 15.45* Add another instance variable itsSize to the NodeSequence class.
Modify everything that has to be modified in Listings 15.6 through 15.12 so that the size
method can simply return itsSize.
Exercise 15.46* Write an independent method public static Object findMax
(Collection par): It finds the largest value in the Collection. Precondition: All
elements of the Collection are mutually Comparable.
Exercise 15.47* Essay: Explain what can go wrong if one creates a
ArraySequenceIterator, then calls its methods several times, then uses the add or
remove methods in the ArraySequence class, and then calls more methods in
ArraySequenceIterator.
Exercise 15.48** Essay: Same as the preceding exercise, but for Nodes instead.

 Java Au Naturel by William C. Jones 15-30 15-30

15.10 Implementing The ListIterator Interface For A Doubly-Linked
List

The ListIterator interface has methods to allow client classes to move backward one step
in the sequence of values (described in the last four methods of Listing 15.12). This is
highly inefficient with standard linked lists. It becomes quite easy if you define a new kind
of node that records the node before it as well as the node after it, as shown in Listing
15.13. This Node class would be defined inside a class named TwoWaySequence that
implements the Collection interface.

Listing 15.13 The Node class for the TwoWaySequence class

private static class Node // inside TwoWaySequence
{
 public Object itsData;
 public Node itsNext;
 public Node itsPrevious;

 public Node (Object data, Node next, Node previous)
 { itsData = data;
 itsNext = next;
 itsPrevious = previous;
 } //======================
}

Implementing the TwoWaySequence class

The coding for the TwoWaySequence class is greatly simplified if we use a dummy
header node. That is, a TwoWaySequence object has one instance variable itsHead,
which has null for itsData. itsHead.itsNext is a Node containing the first
element on the list, and the itsNext value for that node is a node containing the second
element on the list. This continues to the last node containing data, whose itsNext
value is the header node (so it is a circular list).

For every case in which p.itsNext is the Node q, it will be true that q.itsPrevious
is p, and vice versa. This is called a doubly-linked list. If the sequence is empty, then
its linked list consists only of the header node, and so itsHead.itsNext is itsHead
and also itsHead.itsPrevious is itsHead.

 Figure 15.13 Two different doubly-linked lists

 Java Au Naturel by William C. Jones 15-31 15-31

The contains method for a doubly-linked list requires the Some-A-are-B logic: You
have a Node variable p go through each node that contains data (starting with the first
one p = itsHead.itsNext) and return true if you see a node where itsData
equals the parameter. But if you run out of nodes to look in (when p == itsHead),
return false. This method and a constructor are in the upper part of Listing 15.14.

Listing 15.14 The TwoWaySequence class of objects, partial listing

import java.io.*;
import java.util.*;

public class TwoWaySequence implements Collection
{
 private final Node itsHead = new Node (null, null, null);

 public TwoWaySequence()
 { itsHead.itsNext = itsHead; //1
 itsHead.itsPrevious = itsHead; //2
 } //======================

 public boolean contains (Object ob)
 { for (Node p = itsHead.itsNext; p != itsHead; p = p.itsNext)
 { if (p.itsData.equals (ob)) //4
 return true; //5
 } //6
 return false; //7
 } //======================

 public TwoWaySequence (Collection that)
 { itsHead.itsNext = itsHead; //8
 itsHead.itsPrevious = itsHead; //9
 Iterator it = that.iterator(); //10
 while (it.hasNext()) //11
 { Node last = itsHead.itsPrevious; //12
 last.itsNext = new Node (it.next(), itsHead, last); //13
 itsHead.itsPrevious = last.itsNext; //14
 } //15
 } //======================

 public boolean equals (Object ob)
 { if (! (ob instanceof Collection)) //16
 return false; //17
 Node p = this.itsHead.itsNext; //18
 Iterator it = ((Collection) ob).iterator(); //19
 while (it.hasNext()) //20
 { if (p == this.itsHead || ! p.itsData.equals (it.next()))
 return false; //22
 p = p.itsNext; //23
 } //24
 return p == this.itsHead; // != means p has more than it
 } //======================

 public Iterator iterator()
 { return new TwoWaySequenceIterator (this); //26
 } //======================
}

 Java Au Naturel by William C. Jones 15-32 15-32

The constructor that makes a copy of a given Collection parameter runs through each
element produced by the parameter's iterator, each time finding its last node (the one
before itsHead) and creating a new node linked after that last node containing the
iterator's element. This coding is in the middle part of Listing 15.14.

For the equals method, you first make sure that the parameter is in fact a Collection
kind of object, otherwise you return false. You then get an iterator for the parameter
and start with a local node variable p equal to the first node on the executor's list that
contains data. Now verify that the iterator's next() value equals p's data at each
point. Advance with p = p.itsNext each time (the iterator automatically moves on).
You also have to make sure that the iterator and p run out of values at the same time.
This coding is in the lower part of Listing 15.14. The rest of the TwoWaySequence
methods are left as exercises.

Implementing the ListIterator class

The doubly-linked list makes the ListIterator easier to implement. You can make
itsPos always be the node before the one containing the data that next() will return.
If next() is illegal, then itsPos is just before the header node. Execution of
previous() always returns the element immediately before the one that next()
would return (except if there is no element before it). Execution of next() immediately
after a call of previous returns the same value that was returned by previous().

When remove is called, the one removed is determined by the direction in which the
iterator last moved, i.e., you remove the result of the most recent execution of next()
or previous(). So you need to keep track of that direction, say in an int variable
named itsDirection: +1 if next() was the most recent call, -1 if previous()
was, 0 if removal is not even allowed.

A ListIterator must also be able to return the index (zero-based) of the element that a call
of previous will return (-1 if there is no previous value) and the index of the element
that a call of next will return (size() if there is none). The easiest way to do that is
for the iterator to have another instance variable that keeps track of the index of the node
to which it currently refers. Call it itsIndex. So previousIndex() returns
itsIndex.

Internal invariant for TwoWaySequenceIterators
• The instance variable itsPos is the Node such that itsPos.itsNext.itsData

always contains the element that next() will return, except next() is illegal when
itsPos.itsNext is the header node (recognized by having itsData == null).

• The instance variable itsIndex is the zero-based index of the element that a call
of previous() would return; it is -1 if previous() is illegal.

• The instance variable itsDirection is 0 if remove() is illegal, otherwise it is +1
or -1 depending on whether next() or previous() was the most recent method
call.

The only thing the hasNext method has to do is to say whether the node after itsPos
contains any data, i.e., is not the header node. The coding for hasNext and the
constructor is in the upper part of Listing 15.15 (see next page).

The basic idea of the previous method is to back up itsPos by one node to be
itsPos.itsPrevious, make a note that itsDirection is -1, and return the
element in the original itsPos node. However, if itsPos was at the header node, a
call of itsPrevious should throw a NoSuchElementException. The coding for the
previous method is in the middle part of Listing 15.15.

 Java Au Naturel by William C. Jones 15-33 15-33

Listing 15.15 The TwoWaySequenceIterator nested class of objects

private static class TwoWaySequenceIterator
 implements ListIterator
{
 // Internal invariant: itsPos.itsNext is the header node if
 // hasNext() is false; otherwise, itsPos.itsNext is the node
 // containing the data that next() will return.

 private Node itsPos;
 private int itsDirection = 0; // signals remove() not allowed
 private int itsIndex = -1; // returned by previousIndex()

 public TwoWaySequenceIterator (TwoWaySequence given)
 { itsPos = given.itsHead; //1
 } //======================

 public boolean hasNext()
 { return itsPos.itsNext.itsData != null; //2
 } //======================

 public Object previous()
 { if (itsPos.itsData == null) //3
 throw new NoSuchElementException ("cannot back up");//4
 itsPos = itsPos.itsPrevious; //5
 itsDirection = -1; //6
 itsIndex--; //7
 return itsPos.itsNext.itsData; //8
 } //======================

 public void add (Object ob)
 { if (ob == null) //9
 throw new IllegalArgumentException ("no nulls allowed");
 itsPos = new Node (ob, itsPos.itsNext, itsPos); //11
 itsPos.itsNext.itsPrevious = itsPos; //12
 itsPos.itsPrevious.itsNext = itsPos; //13
 itsDirection = 0; //14
 itsIndex++; //15
 } //======================

 // the first three of the following are left as exercises
 public Object next() { return null; }
 public void remove() { }
 public void set (Object ob) { }
 public boolean hasPrevious() { return itsIndex >= 0; }
 public int nextIndex() { return itsIndex + 1; }
 public int previousIndex() { return itsIndex; }
}

The add method for the TwoWaySequenceIterator can begin by creating a new node
containing the given data. Then the new node is linked in after itsPos and before
itsPos.itsNext, and itsDirection is set to 0. The value of itsPos has to
become the new node, so itsIndex has to be incremented. The coding for the add
method is in the lower part of Listing 15.15. The rest of the methods are left as
exercises.

 Java Au Naturel by William C. Jones 15-34 15-34

The List interface and the LinkedList implementation

The List interface in the Sun standard library is a sub-interface of Collection (which
corresponds to a class extension). It has ten methods in addition to those of Collection,
as follows. The first five specify the index where the action is to take place. These List
methods throw Exceptions if the index values are out of range.

• someList.get(indexInt) returns the Object at that index.
• someList.set(indexInt, someObject) replaces the Object at that index by

someObject and returns the Object that was replaced.
• someList.add(indexInt, someObject) inserts someObject at that index.
• someList.remove(indexInt) removes and returns the Object at that index.
• someList.addAll(indexInt, someCollection) adds the entire Collection at

the specified index and returns true.
• someList.indexOf(someObject) returns the first index at which the Object

occurs; it returns -1 if the Object is not in the list.
• someList.lastIndexOf(someObject) returns the last index instead.
• someList.subList(fromInt, toInt) returns a List containing the elements at

index fromInt on up to but not including toInt.
• someList.listIterator() returns a new iterator, ready to start at the beginning

of the list.
• someList.listIterator(indexInt) returns a new iterator ready to start at the

specified index, so that next() produces get(indexInt).

The java.util.LinkedList class implements the List interface and has six additional
methods that perform all of the operations of a stack or queue (and then some):

• addFirst(someObject), removeFirst(), and getFirst() can be used for

the stack operations push(someObject), pop(), and peekTop().
• addLast(someObject), removeLast(), and getLast() do the same thing

except at the rear of the LinkedList instead of at the front.

Exercise 15.49 Write the TwoWaySequence method public boolean isEmpty().
Exercise 15.50 Write the TwoWaySequence method public int size().
Exercise 15.51 (harder) Write the TwoWaySequence method public boolean add
(Object ob) to add ob at the end of the sequence.
Exercise 15.52 (harder) Write the TwoWaySequenceIterator method public Object
next().
Exercise 15.53 (harder) Write the TwoWaySequenceIterator method public void
remove().
Exercise 15.54* Write the TwoWaySequence method public void clear().
Exercise 15.55* Write the constructor for the TwoWaySequence class that has a String
parameter naming the file from which String values are read.
Exercise 15.56* Write the TwoWaySequence method public boolean remove
(Object ob).
Exercise 15.57* Write the TwoWaySequenceIterator method public void set
(Object ob).
Exercise 15.58** Add the push, pop, and peekTop methods to TwoWaySequence
to provide full stack capabilities. Code them to execute as fast as possible.
Exercise 15.59** Add the addLast, removeLast, and getLast methods to
TwoWaySequence with the same function as those of LinkedList. Code them to execute
as fast as possible.
Exercise 15.60** Write the NodeSequenceIterator method public Object
previous() to be added to Listing 15.12 (no references to the previous node are
stored in any node). You will need a loop to find the node before the current node.

 Java Au Naturel by William C. Jones 15-35 15-35

15.11 About AbstractList and AbstractCollection (*Sun Library)

If you want to write an implementation of the Collection class, you have to code 13
methods plus some constructors. If you want to write an implementation of the List class,
you have to code 23 methods plus some constructors. The AbstractCollection and
AbstractList classes are intended to save you most of that trouble.

The AbstractCollection class

AbstractCollection is a class in java.util that implements the Collection interface. If
you declare a class to be a subclass of AbstractCollection, you only have to write the
iterator method and the size method (overriding those abstract methods in the
AbstractCollection class). Your iterator must implement hasNext and next, though it
can leave remove to throw an UnsupportedOperationException.

Generic coding for all the other Collection methods is provided for you. It uses the
iterator method you provide. For instance, the coding for contains might be as
follows (this generic Collection class allows null to be in the Collection). You may
override this and the other pre-coded methods for efficiency:

 public boolean contains (Object ob)
 { Iterator it = this.iterator();
 while (it.hasNext())
 { if ((ob == null && it.next() == null)
 || (ob != null && ob.equals (it.next()))
 return true;
 }
 return false;
 } //======================

If you want your subclass of AbstractCollection to be modifiable, you have to code the
add method for the AbstractCollection and the remove method for the Iterator.

The AbstractList class

AbstractList is a class in java.util that implements the List interface (specified in the
preceding section). If you declare a class to be a subclass of AbstractList, you only have
to write the get method and the size method (overriding those abstract methods in
the AbstractList class). Coding for all the other List methods is provided for you, though
the basic methods that modify the List object throw an UnsupportedOperationException.
You may override any of the pre-coded methods for efficiency if you want.

If you want your subclass of AbstractList to be modifiable, you have to override one or
more of set(int,Object), remove(int), and add(int,Object), since these
are the only methods that throw an UnsupportedOperationException. The AbstractList
class provides a ListIterator implementation on top of the methods you provide.

The Sun standard library provides the ArrayList class, which is a complete
implementation of List using an array. Use this class for situations where it is not
worthwhile to develop your own implementation tailored to a particular piece of software.
Its use is illustrated in Section 7.11. The iterator for ArrayList is fail-fast: If the ArrayList
object is modified by any method other than the iterator's own remove or add method,
and then any method is called for that iterator, the iterator throws a runtime Exception.

 Java Au Naturel by William C. Jones 15-36 15-36

15.12 Review Of Chapter Fifteen

About the Java language:

Ø You may declare a class inside of another class X, called a nested class. If the word

"static" appears before "class", this is no different from declaring it outside X except
for visibility: Private variables of X are accessible in the nested class, and public
variables of the nested class are accessible in X. The nested class itself is not
accessible to classes outside of X if the nested class is declared to be a private
member of the class. For statements and declarations inside X, the nested class
shadows (supercedes) any outside class of the same name.

Ø A class of objects with an instance variable of that same class is called naturally
recursive. Naturally recursive nodes are used to form a linked list. An extra node
with no data at the beginning of the list is a header node; it simplifies the coding.

Ø A circular list has its last node link up to its first node.
Ø A doubly-linked list has each node link up to the preceding node as well as the

node after it.

About the java.util.Collection interface:

Ø A Collection of elements may not allow duplicates (in which case it is a java.util.Set

kind of object) or may not guarantee a particular ordering or may not allow null (and
so throw a java.lang.IllegalArgumentException if you try to add null).

Ø The methods that modify a Collection may be optional, which means they may throw
a java.lang.UnsupportedOperationException. A sequence, as the term is used in
this book, is a Collection for which a particular order is guaranteed, duplicates are
allowed, but null is not allowed.

Ø someCollection.size() returns the number of elements in the executor.
Ø someCollection.isEmpty() tells whether the executor has any elements.
Ø someCollection.clear() removes all elements from the executor.
Ø someCollection.iterator() returns an Iterator over the executor's elements.
Ø someCollection.toArray() returns an array containing the executor's elements.
Ø someCollection.toArray(anArrayOfObjects) returns an array containing

the executor's elements. It will be the array parameter if the parameter has room
(with null at the end if room), otherwise it will be a newly-created array.

Ø someCollection.containsAll(aCollection) tells whether the executor
contains every element of the parameter.

Ø someCollection.contains(anObject) tells whether anObject is one of the
executor's elements.

Ø someCollection.add(anObject) adds anObject to the Collection unless
anObject is already in there and the Collection does not allow duplicates. It returns
true if and only if the Collection changed, as do the other four methods listed below.

Ø someCollection.remove(anObject) deletes one instance of anObject from
the executor unless anObject was not in there in the first place.

Ø someCollection.addAll(aCollection) in essence repeatedly executes add
for each element of the parameter.

Ø someCollection.removeAll(aCollection) in essence repeatedly executes
remove for each element of the parameter.

Ø someCollection.retainAll(aCollection) in essence repeatedly executes
remove for each element of the executor that the parameter does not contain.

 Java Au Naturel by William C. Jones 15-37 15-37

About the java.util.Iterator interface:

Ø someIterator.next() returns the next available element. A call of next()

throws a java.util.NoSuchElementException if called when none is available.
Repetition of next() calls produces each element of the Collection one time.

Ø someIterator.hasNext() tells whether next has more elements available.
Ø someIterator.remove() removes the element most recently returned by next.

It throws a java.lang.IllegalStateException if that element has already been
removed or if next has not been called. If removal is not allowed, it throws a
java.lang.UnsupportedOperationException.

About the java.util.List interface:

Ø The List interface extends the Collection interface, adding the following ten methods:
Ø someList.get(indexInt) returns the Object at that index.
Ø someList.set(indexInt, someObject) puts someObject at that index and

returns the Object that it replaces.
Ø someList.add(indexInt, someObject) inserts someObject at the

specified index.
Ø someList.remove(indexInt) removes and returns the Object at that index.
Ø someList.addAll(indexInt, someCollection) adds the entire Collection at

the specified index and returns true.
Ø someList.indexOf(someObject) returns the first index at which someObject

occurs; it returns -1 if someObject is not in the list.
Ø someList.lastIndexOf(someObject) returns the last index at which

someObject occurs; it returns -1 if someObject is not in the list..
Ø someList.subList(fromInt, toInt) returns a List containing the elements at

index fromInt on up to but not including toInt.
Ø someList.listIterator() returns a new iterator, ready to start at the beginning

of the list.
Ø someList.listIterator(indexInt) return a new iterator ready to start at the

specified index, so that next() produces the value get(indexInt).

About the java.util.ListIterator interface:

Ø The ListIterator interface extends the Iterator interface, adding the following six

methods. The remove and set methods delete/replace the element most
recently returned by next or previous, except they throw a
java.lang.IllegalStateException if next has not yet been called, or if neither next
nor previous has been called since the last call of remove or add.

Ø someListIterator.add(someObject) puts someObject just before the
element that next would return, or at the end if hasNext() is false.

Ø someListIterator.set(someObject) puts someObject in place of the
element that the most recent call of next or previous returned.

Ø someListIterator.nextIndex() returns the zero-based index of the element
that a call of next would return; it returns the number of elements if hasNext() is
false.

Ø someListIterator.previous() returns the element immediately before the
element next would return; it returns the last element if hasNext() is false. It
throws a java.util.NoSuchElementException if such an element does not exist.

Ø someListIterator.hasPrevious() tells whether previous has more
elements available to be returned.

Ø someListIterator.previousIndex() returns 1 less than what nextIndex()
returns.

 Java Au Naturel by William C. Jones 15-38 15-38

Answers to Selected Exercises

15.1 public int size()
 { return itsSize;
 }
15.2 public boolean isEmpty()
 { return itsSize == 0;
 }
15.3 public boolean contains (Object ob)
 { for (int k = 0; k < itsSize; k++)
 { if (itsItem[k].equals (ob))
 return true;
 }
 return false;
 }
15.4 public ArraySequence()
 { itsItem = new Object[100]; // an arbitrary choice of length
 }
15.5 public Object[] toArray()
 { return copyOf (itsItem, 1);
 }
15.8 public boolean isEmpty()
 { return itsFirst == null;
 }
15.9 public int howManyEqual (Object ob)
 { int count = 0;
 for (Node p = this.itsFirst; p != null; p = p.itsNext)
 { if (p.itsData.equals (ob))
 count++;
 }
 return count;
 }
15.13 Replace the if statement in the body of the for-statement by the following:
 if (p == null)
 return true;
 else if (! p.itsData.equals (q.itsData))
 return false;
15.14 public Object[] toArray()
 { Object[] valueToReturn = new Object [this.size()];
 int count = 0;
 for (Node p = this.itsFirst; p != null; p = p.itsNext)
 { valueToReturn[count] = p.itsData;
 count++;
 }
 return valueToReturn;
 }
15.15 public void removeEvens() // in Node
 { for (Node p = this; p != null && p.itsNext != null; p = p.itsNext)
 p.itsNext = p.itsNext.itsNext;
 }
15.18 public boolean contains (Object ob)
 { return isIn (itsFirst, ob);
 }
 private static boolean isIn (Node pos, Object ob)
 { return pos != null && (pos.itsData.equals (ob) || isIn (pos.itsNext, ob));
 }
15.19 public void removeEvens() // in Node
 { if (itsNext != null)
 itsNext = itsNext.itsNext;
 if (itsNext != null) // which it could be after the previous statement is executed
 itsNext.removeEvens();
 }

 Java Au Naturel by William C. Jones 15-39 15-39

15.21 Put the following statement before the for-statement:
 Object valueToReturn = itsItem[itsPos];
 Put the following statement at the end of the method body:
 return valueToReturn;
15.22 public boolean containsAll (Collection that)
 { Iterator it = that.iterator();
 while (it.hasNext())
 { if (! this.contains (it.next()))
 return false;
 }
 return true;
 }
15.23 Replace the while statement by the following:
 Iterator inven = inventory.iterator();
 Object stopper = inven.hasNext() ? inven.next() : null;
 while (it.hasNext())
 { Object data = it.next();
 if (! data.equals (stopper))
 System.out.println (data.toString());
 else
 stopper = inven.hasNext() ? inven.next() : null;
 }
15.24 In Listing 15.8, remove the constructor, the declaration of itsSeq, and all uses of "itsSeq."
 in the coding of methods, since an inner class can refer to itsSize and itsItem directly.
 Also omit "static" from the class heading; that is what makes it an inner class.
 public Iterator iterator()
 { return this.new ArraySequenceIterator();
 }
15.31 Add another instance variable to the NodeSequenceIterator class, declared as follows:
 private int itsIndex = 0;
 Add one statement to the next method: itsIndex++;
 Add one statement to the remove method: itsIndex--;
 Add the following instance method:
 public int nextIndex()
 { return itsIndex;
 }
15.32 public NodeSequence (Collection that)
 { this.itsFirst = copyList (that.iterator());
 }
 private static Node copyList (Iterator it) // uses recursion
 { return it.hasNext() ? new Node (it.next(), copyList (it)) : null;
 }
15.33 Initialize itsPos = null in the constructor. Replace the return statement in hasNext by:
 return (itsPos == null) ? itsSeq.itsFirst != null : itsPos.itsNext != null;
 Replace the next-to-last statement in next by:
 itsPos = (itsPos == null) ? itsSeq.itsFirst : itsPos.itsNext;
 Replace the last four lines in remove by the following (adding an "else"):
 if (itsSeq.itsFirst == itsPos)
 itsSeq.itsFirst = itsPos.itsNext;
 else
 itsPrevious.itsNext = itsPos.itsNext;
 itsPos = itsPrevious;
15.35 public void clear()
 { itsFirst = null;
 }
15.36 1. Move addLater and removeLater to the NodeSequence class, changing the method headings
 as follows:
 private static void addLater (Node current, Object ob)
 private static boolean removeLater (Node current, Object ob)
 2. Put "current." before each itsNext as a stand-alone variable in addLater or removeLater.
 3. Replace the statements in add and remove that call these two methods by the following:
 addLater (this.itsFirst, ob);
 return removeLater (this.itsFirst, ob);
 4. Replace the statements in addLater and removeLater that call these two methods by:
 addLater (current.itsNext, ob);
 return removeLater (current.itsNext, ob);

 Java Au Naturel by William C. Jones 15-40 15-40

15.37 public boolean retainAll (Collection that)
 { boolean valueToReturn = false;
 while (this.itsFirst != null && ! that.contains (this.itsFirst.itsData))
 { this.itsFirst = this.itsFirst.itsNext;
 valueToReturn = true;
 }
 if (this.itsFirst == null)
 return valueToReturn;
 Node p = this.itsFirst;
 while (p.itsNext != null)
 { if (! that.contains (p.itsNext.itsData))
 { p.itsNext = p.itsNext.itsNext;
 valueToReturn = true;
 }
 else
 p = p.itsNext;
 }
 return valueToReturn;
 }
15.43 public void set (Object ob)
 { if (! isRemovable)
 throw new IllegalStateException();
 itsSeq.itsItem[pos] = ob;
 }
15.44 public void push (Object ob)
 { itsFirst = new Node (ob, itsFirst);
 }
 public Object pop ()
 { if (itsFirst == null)
 throw new NoSuchElementException();
 Object valueToReturn = itsFirst.itsData;
 itsFirst = itsFirst.itsNext;
 return valueToReturn;
 }
15.49 public boolean isEmpty()
 { return itsHead.itsNext == itsHead;
 }
15.50 public int size()
 { int count = 0;
 for (Node p = itsHead.itsNext; p != itsHead; p = p.itsNext)
 count++;
 return count;
 }
15.51 public boolean add (Object ob)
 { if (ob == null)
 throw new IllegalArgumentException ("no nulls allowed");
 itsHead.itsPrevious = new Node (ob, itsHead, itsHead.itsPrevious);
 itsHead.itsPrevious.itsPrevious.itsNext = itsHead.itsPrevious;
 return true;
 }
15.52 public Object next()
 { if (itsPos.itsNext.itsData == null) // the sequence's header node
 throw new NoSuchElementException ("already at end");
 itsPos = itsPos.itsNext;
 itsDirection = 1;
 itsIndex++;
 return itsPos.itsData;
 }
15.53 public void remove()
 { if (itsDirection == 0)
 throw new IllegalStateException ("cannot remove");
 if (itsDirection == 1)
 { itsPos = itsPos.itsPrevious; // so either way, itsPos is before the data to be removed
 itsIndex--;
 }
 itsDirection = 0; // so it cannot be removed again
 itsPos.itsNext = itsPos.itsNext.itsNext;
 itsPos.itsNext.itsPrevious = itsPos;
 }

