15-1 Java Au Naturel by William C. Jones 15-1

15 Collections And Linked Lists

Overview

This chapter requires that you have a solid understanding of arrays (Chapter Seven) and
some idea of recursion (Section 5.9 or 13.4). It is also valuable to have studied Sections
10.1-10.2 (Exceptions) and 14.1-14.3 (stacks and queues implemented with linked lists).

Section 15.1 presents a software context in which you need programs that work with
large collections of data.

Section 15.2 introduces the official (Sun standard library) Collection interface and an
array-based implementation of the methods that do not modify the Collection.
Sections 15.3-15.5 describe linked lists and their application to implementing the non-
modifying methods of the Collection interface, in some cases recursively.

Sections 15.6-15.7 define the Iterator interface and show how it can be implemented
in both the array and linked list forms.

Section 15.8 implements the methods that modify a Collection object.

Sections 15.9-15.10 discuss an implementation of Listlterator and List using doubly-
linked lists.

This chapter should help you develop a strong understanding of the Collection and List
interfaces, strengthen your abilities in working with arrays, and further develop facility
with linked lists. In everyday programming, when you want to use a Collection or List
object, you will tend to choose the "built-in" ArrayList class (Section 7.11) or some other
standard library implementation rather than one you build yourself (in accordance with
the "don't reinvent the wheel" principle). But you can only learn about linked lists by
using them to code various methods, so that is what we do here.

15.1 Analysis And Design Of The Inventory Software

You have a client who needs a number of programs that read in two files of data and then
process them. One file lists all the retail items that the company currently has on hand
(its inventory). Another file lists all the retail items that the company has purchased and,
according to its records, not yet sold. Obviously, the two lists should match up.
However, discrepancies are common.

For the first such program, it is sufficient to tell whether the two lists are exactly equal
and, if not, whether the inventory file at least contains all the retail items purchased (so
the store has not had any retail items stolen). If even that is not true, then you need to
say how many retail items are in each list. A reasonable plan for the program, developed
after a bit more discussion with the client to clear up some details, is shown in the
accompanying design block.

STRUCTURED NATURAL LANGUAGE DESIGN of the main logic

1. Read the "inven.dat" file into an appropriate object named i nvent ory.

2. Read the "purch.dat" file into an appropriate object named pur chased.

3. If one list has the same elements in the same order as the other list then...
Print the message "a perfect match".

4. Otherwise, if the i nvent or y list has no elements at all then...
Print the message "we've been robbed".

5. Otherwise, if every element of the pur chased list is in the i nvent ory list then...
Print the message "no losses and some gains".

6. Otherwise...
Print the message "inventory has N and purchased has M"
where N and M are the number of values in the respective lists.

15-2 Java Au Naturel by William C. Jones 15-2

Object design

We need a class of objects that store sequences of data items. We will call it the
ArraySequence class. We will make it a Collection kind of class; Collection is an
interface in the Sun standard library that specifies the names of thirteen methods, how
they are called, and what they should accomplish. The Collection methods provide all
the capabilities that you need for this program. The next section describes them in detail.
Listing 15.1 shows how some of them are used to solve the client's problem.

Listing 15.1 The Inventory application program

public class Inventory
/** Read 2 files of data and nake conpari sons between them */

public static void main (String[] args)
{ ArraySequence inventory;
ArraySequence purchased;
try
{ inventory = new ArraySequence ("inven.dat");
pur chased = new ArraySequence ("purch.dat");
}catch (java.io.|OException e)
{ throw new Runti meException ("Afile is defective.");

}

if (inventory.equals (purchased))
Systemout.println ("a perfect match");
else if (inventory.isEnpty())
Systemout.println ("we've been robbed");
else if (inventory.containsAll (purchased))
Systemout.println ("no | osses and sonme gai ns");
el se
Systemout.println ("inventory has " + inventory.size()
+ " and purchased has " + purchased. size());

1y

The ArraySequence constructor takes a String value as a parameter, opens the disk file
of that name, and reads in the values from the file one line at a time. The lines from the
file are stored in the ArraySequence object in the order they were read. If the file is not
accessible, the constructor throws an IOException; this main method catches it and
notifies the caller of the method (it throws a new Exception instead of terminating the
program because this main method may be called from another method).

The effects of the other methods used in this program should be clear when compared
with the design block. In any case, they are explained in detail in the next section.
Figure 15.1 is a UML diagram for this Inventory class.

Irvertory IDE=ception
BasicTequence newy [String
main (String [rieyy (Steing)
zizel)

izErmpty() 4| 5| Collection interface
equals (BasicSeguence)

cortainzAll (BasicSequence)

Figure 15.1 UML class diagram for Inventory

15-3 Java Au Naturel by William C. Jones 15-3

15.2 Implementing The Collection Interface With Arrays

A sequence is a collection of data values in a particular order. The data values are
called the elements of the sequence. We define here the ArraySequence class with two
constructors and several other methods, implemented using a partially-filled array. The
sequence is allowed to have duplicates (two or more elements that are equal to each
other), but it is not allowed to have an element be null.

The Collection interface

The Sun standard library contains a number of interfaces for describing ways of
structuring collections of data. The most fundamental one is the Collection interface (in
the java. util package) for storing Object values. The ArraySequence class will be
an implementation of the Collection interface when we finish adding enough methods.
Listing 15.2 (see next page) gives the documentation for the Collection interface, with full
descriptions of those methods that do not change the elements in the Collection.

People use a number of variants of Collection implementations. The main variants are as
follows:

Some variants do not allow null as an element; some do.

Some variants do not allow duplicates (i.e., all elements must be different from each
other); some do.

Some variants do not allow changes in the number or ordering of the elements once
they are set by a constructor; some do. Those that do not allow changes have the
last six listed methods throw an UnsupportedOperationException.

This description of Collection specifies that the order of the elements is important;
some variants of Collection do not require this.

Some variants restrict the class of the objects stored, e.g., only Comparable objects
can be stored in certain collections.

The specification for the ArraySequence implementation of Collection is that ordering is
important, modifications and duplicates are allowed, but nulls are not. This section is
concerned with the coding of the first seven methods using an array. A later section
discusses the Iterator interface so we can implement the it erat or method. After that,
we discuss implementations of the remaining six methods.

Implementing the ArraySequence constructors

The ArraySequence class implements the Collection class using a partially-filled array,
very much like the WorkerList class in Chapter Seven. Specifically, each ArraySequence
object has two instance variables itsltem and itsSi ze. The former is an array that
is filled with Objects in components indexed O up to but not including the int value

i tsSi ze. The values in higher-indexed components are not relevant to the logic. One
ArraySequence constructor creates an empty Collection; it is left as an exercise.

Another ArraySequence constructor has the name of a disk file as its parameter. lItis to
read all the values from the disk file one at a time and put them in its array, starting from
index 0. The first question is, how large do you make the array? The file could have 15
lines in it or 15,000. A reasonable approach is to start with an array of moderate size,
say 100, and then replace it by one twice as large each time the one you have fills up.
You first have to open the disk file with the specified name:

Buf f eredReader file = new BufferedReader
(new Fi | eReader (fileNane));

15-4 Java Au Naturel by William C. Jones 15-4

Listing 15.2 The Collection interface

[** The Col l ection interface specifies 13 nethod headi ngs in
* addition to those inherited from Object, e.g., equals. */

public interface Collection

{
[** Return the nunber of elenents in this sequence. */
public int size();

[** Tell whether this sequence has no elenents in it. */
publ i c bool ean i sEnpty();

[** Tell whether ob is an el enent of this sequence. */
publ i c bool ean contai ns (Cbject ob);

[** Tell whether every el enent of that sequence is
* somewhere in this sequence. */
publ i c bool ean containsAll (Collection that);

/[** Return an array filled with the elenents of this
* sequence in the sane order. */
public Object[] toArray();

/[** The sanme as the above if array.length < this.size().

* Oherwise fill the given array with the elenments of the
* sequence in the sane order and put a null value after

* those values if it will fit. */

public Object[] toArray (Cbject[] array);

[** Tell whether the two sequences have the sane el enents
* in the sanme order. */
publ i c bool ean equal s (Obj ect ob);

/** Return an iterator that goes through the el enments of
* this sequence in an established order. */
public Iterator iterator();

/1l The remai ning six, to be described fully in Listing 15. 10,
[/l are coded as follows when the Collection is unnodifiable:
/1 "throw new java. | ang. Unsupport edOper ati onException();"
public void clear();

publ i c bool ean add (Cbject ob);

publ i c bool ean addAll (Collection that);

publ i c bool ean renmove (Obj ect ob);

public bool ean renmoveAll (Collection that);

public bool ean retainAll (Collection that);

Now you read one line at a time from the file into a String variable named perhaps s.
When the value of s is null, you are at the end of the file and you can stop. Otherwise
you copy s into the next available component itsltenfitsSi ze] andthen
increment it sSi ze. The coding for this constructor is in the upper part of Listing 15.3
(see next page).

15-5 Java Au Naturel by William C. Jones 15-5

Listing 15.3 The ArraySequence class of objects, parts left as exercises

i mport java.io.?*;
i mport java.util.*;

public class ArraySequence inplenments Collection

{
private Qoject[] itsltem
private int itsSize = 0;
public ArraySequence (String fileNane) throws | OException
{ BufferedReader file = new BufferedReader /11
(new Fi | eReader (fileNane)); /12
itsltem = new Cbj ect[100] ; /13
String s = file.readLine(); /14
while (s !'= null) /15
{ if (itsSize == itsltem]| ength) /16
itsltem = copyd (itsltem 2); 117
itsltenfitsSize] = s; /18
i tsSizet++; /19
s = file.readLine(); /110
} /111
|
private Object[] copyOd (Cbject[] given, int big)
{ Object[] valueToReturn = new Object [given.length * big];
for (int k = 0; k < given.length; k++) /113
val ueToRet urn[k] = given[Kk]; /114
return val ueToRet ur n; /115
|
public ArraySequence (ArraySequence that)
{ this.itsltem= copyO>d (that.itsltem 1); /116
this.itsSize = that.itsSi ze; /117
|
publ i c bool ean equal s (Obj ect ob)
{ if (! (ob instanceof ArraySequence)) /118
return false; /119
ArraySequence that = (ArraySequence) ob; /120
if (this.itsSize !'= that.itsSize) /121
return false; /122
for (int k = 0; k <that.itsSize; k++) /123
{ if (! this.itsltenfk].equals (that.itslten{k])) /124
return false; /125
} /126
return true; /127
|
}

Another ArraySequence constructor just requires that you make the new i tsltem an
exact copy of the given one (the private copyOf method can be used for this as well as
for doubling the size of an array, since it is written with an int parameter to specify
whether the new array is twice the size of the old one or not). Then you record the size
of the newly-constructed array. The coding is in the middle part of Listing 15.3.

15-6 Java Au Naturel by William C. Jones 15-6

Implementing the equals method

The equal s method tests whether a given ArraySequence parameter has the same
elements in the same order as the executor. The parameter is declared to be of type
Object, not ArraySequence, because you want this equal s method to override the one
for the Object class. So you first check that the parameter is in fact a ArraySequence
kind of Object. The condition x i nstanceof Y tells whether x is an object whose
classis Y or extends Y or implements Y. This condition is false when x is null.

The accompanying design block is a reasonable plan for solving this problem. The
coding is in the lower part of Listing 15.3. The other methods of the ArraySequence class
are left for exercises.

STRUCTURED NATURAL LANGUAGE DESIGN for equals
1. If the parameter is not a ArraySequence kind of object then...
The parameter is not equal to the executor.
2. Otherwise, if the parameter does not have the same number of elements as the
executor then...
The parameter is not equal to the executor.
3. Otherwise, for each element of the parameter do the following...
If the current element of the parameter is not equal to the corresponding
element of the executor then...
The parameter is not equal to the executor.
4. The parameter is equal to the executor if you get to this point in the logic.

It is standard procedure to have a constructor that has a Collection parameter, but you
cannot write such a method until later in this chapter, when you learn what an Iterator is.

Exercise 15.1 Write the ArraySequence method public int size().

Exercise 15.2 Write the ArraySequence method publ i ¢ bool ean i sEnpty().
Exercise 15.3 Write the ArraySequence method publ i ¢ bool ean cont ai ns

(Obj ect ob).

Exercise 15.4 Write the ArraySequence constructor publ i ¢ ArraySequence() that
creates an empty Collection.

Exercise 15.5 Write the ArraySequence method public Qbject[] toArray().
Exercise 15.6* Write the ArraySequence method publ i ¢ bool ean cont ai nsAl |
(Col l ection that). You may throw an Exception if t hat is nota ArraySequence.
Exercise 15.7* Write the ArraySequence method publ i c oject[] toArray
(oject[] array).

15.3 Linked Lists With A Nested Private Node Class

You may define one class X inside the body of another class with the modifier stati c
in X's heading. This makes X a nested class of the other class. We define the
NodeSequence class with two constructors analogous to those of ArraySequence, and
with all the Collection methods, but we implement it as a linked list of Nodes with a
nested private Node class. That is, we define the Node class within the body of the
NodeSequence class. This keeps outside classes from directly changing the value in a
Node belonging to a NodeSequence object.

The Node class is defined in Listing 15.4 (see next page). A Node object stores two
pieces of information: a reference to a single piece of data (of type Object) and a
reference to another Node object. A Node object's data is referenced by it sDat a and
the Node that comes next after it in the linked list is referenced by it sNext .

15-7 Java Au Naturel by William C. Jones 15-7

Listing 15.4 The Node class

private static class Node
/1 nested in the NodeSequence cl ass

{
public Object itsData;
publ i c Node itsNext;
public Node (Object data, Node next)
{ itsData = data;
i tsNext = next;
}
|

If for instance p refers to a particular Node, then p.itsDat a is the information at that
position in the list and p. i t sNext is the Node containing the information at the
following position in the list. If, however, p.itsDat a is the last information in the list,
then we normally set p. it sNext to null toindicate this.

The natural Node constructor is defined and no other Node methods. Since this is a
private class in the NodeSequence class and it has public instance variables, the
NodeSequence class can access the instance variables directly. However, the principle
of encapsulation is not violated since no class outside the NodeSequence class can refer
to the instance variables of a class that is declared privately inside another class. Note:
Chapter Fourteen defined a Node class outside of any class and provided public methods
to control access to its private variables. That way of defining the Node class is not better
or worse than this one, just different. Both approaches maintain encapsulation.

Nodes in a NodeSequence object

A NodeSequence object will have an instance variable it sFirst for the first Node
object on its list. Suppose a particular NodeSequence object has a linked list of two or
more Nodes. Coding to print the two elements at the beginning of this list is as follows:

Systemout.println (itsFirst.itsData.toString());
Systemout.println (itsFirst.itsNext.itsData.toString());

Coding to add a new element "long" between the first and second Nodes could be as
follows (illustrated in Figure 15.2). Actually, this coding will work even if only one Node is
in the linked list, but it will throw a NullPointerException if i t sFi r st has the value null:

Node newNode = new Node ("long", itsFirst.itsNext);
itsFirst.itsNext = newNode;

Before itsFirst.itsHext = new Hode ("long”, itsFirst.itslext):

‘ModeSequence ‘Mode Mode Mode
o it=Data it=Diata finked) it=Diata Clizf)
tsFirst S |itahet o tshlext (e [itsMext (AuiD

After itsFirst.itsHext = new Hode ("long™, itsFirst.tsHext):
‘MocleSedquence ‘Mode ‘Mode ‘Mode ‘Mode

o it=Data it=Diata (Tong) it=Diata finked) it=Data st
tsFirst B litzhet o ehlent (21— [tshlext s |itsMext Gl

Figure 15.2 Inserting a new Node into a sequence of Nodes

15-8 Java Au Naturel by William C. Jones 15-8

If you want to add a new element named gi venDat a at the front of the list, you could
use the following coding, which will work even if no Node at all is in the linked list:

itsFirst = new Node (givenData, itsFirst);
Looping through a linked list

You know that the standard way you go through all the components in a partially-filled
array one at a time, processing each one's data, is as follows:

for (int k =0; k <itsSize; k++)
processData (itsltenfk]);

This is precisely analogous to the standard way you go through all the nodes in a linked
list one at a time, processing each one's data. Figure 15.3 shows the parallelism with the
following coding:

for (Node p = itsFirst; p!=null; p = p.itsNext)
processData (p.itsData);

Components in an array Nodes in a linked list

k indicates the current component p indicates the current node

k = 0 selects the first component p = itsFirst selects the first node

k == itsSi ze if no more components p == nul | if no more nodes

k++ moves the indicator to the next p = p.itsNext moves the indicator to
component the next node

itslten] k] isthe data k indicates p.itsData isthe data p indicates

Figure 15.3 Parallelism of loops through arrays and loops through linked lists

The coding for the cont ai ns method in the ArraySequence array implementation is the
following (as you saw in an exercise):

for (int k =0; k <itsSize; k++)

{ if (itsltenfk].equals (ob))
return true;

}

return fal se;

It follows that the coding for the cont ai ns method in the NodeSequence linked list
implementation is the analogous logic you can see in the upper part of Listing 15.5 (see
next page). Compare it piece-by-piece with the array form. This is a form of the Some-A-
are-B looping action: Return true as soon as you see a good one, return f al se after
you looked everywhere and saw nothing but bad ones.

The cont ai nsAl | method requires a form of the All-A-are-B looping action: Return
fal se as soon as you see a bad one, return true after you looked everywhere and
saw nothing but good ones. That logic is in the middle part of Listing 15.5. It throws a
ClassCastException if the parameter is not a NodeSequence. This is unavoidable for
now, since you do not know iterators, but it is fixed in an exercise in Section 15.6.

The si ze method tells how many elements the sequence has. The NodeSequence
coding has the standard loop heading and it uses the very common Count-cases looping
action: Initialize a variable to 0 and then increment it once each time through the loop to
see how many times the loop iterates. This logic is in the lower part of Listing 15.5.

15-9 Java Au Naturel by William C. Jones 15-9

Listing 15.5 The NodeSequence class of objects, part 1

/** A sequence of non-null values in a particular order. */

i mport java.io.*;
i mport java.util.*;

public cl ass NodeSequence i npl enents Col |l ection

{
private Node itsFirst = null;
publ i c NodeSequence()
{ super(); /] creates an enpty NodeSequence /11
/1
publ i c bool ean contains (Cbject ob)
{ for (Node p = itsFirst; p!=null; p = p.itsNext) /12
{ if (p.itsData.equals (ob)) /13
return true; /14
/15
return false; /16
|
publ i c bool ean containsAll (Collection that)
{ for (Node p = ((NodeSequence) that).itsFirst; 117
p!=null; p = p.itsNext) /18
{ if (! this.contains (p.itsData)) /19
return false; /110
} /111
return true; /112
|
public int size()
{ int count = O; /113
for (Node p = itsFirst; p !=null; p = p.itsNext) /114
count ++; /115
return count; /116
|
}

Exercise 15.8 Write the NodeSequence method publ i ¢ bool ean i sEnpty().
Exercise 15.9 Write a NodeSequence method publ i ¢ i nt howManyEqual

(Ohj ect ob): The executor tells how many of its elements are equal to ob.
Exercise 15.10* Write a NodeSequence method publ i ¢ bool ean

al | AreStrings(): The executor tells whether every element is a String value. Hint:
Use the i nst anceof operator.

Exercise 15.11* Write a NodeSequence method publ i ¢ Obj ect renmoveFirst():
The executor removes and returns the first element in its sequence. It returns null if its
sequence is empty.

Exercise 15.12** Write a NodeSequence method publ i ¢ voi d t akeAway (Obj ect
ob) : The executor removes all Objects from the front of the list down to but not including
the first one that equals ob. Leave the NodeSequence empty if none are equal.

15-10 Java Au Naturel by William C. Jones 15-10

15.4 Implementing The Collection Interface With Linked Lists

The previous section began the coding of the NodeSequence class (Listing 15.5) with the
"easy" methods. This section develops three more complex methods for that class. But
first it is best to explicitly state the internal invariant for this class, i.e., the state of the
NodeSequence object that every method preserves. It describes the connection between
the user's abstract concept of the sequence of data values and the reality of Nodes.

Internal invariant for NodeSequences
If the sequence does not contain any data values, it sFirst isnull. Otherwise
i t sFirst refersto the first Node in a linked list of Nodes.
For each Node x in that linked list, the value in x. it sDat a is one non-null data
value in the abstract sequence of data values.
The data values are in the linked list in the same order that they are in the abstract
sequence of data values, with it sFi rst containing the first one (if it exists).
The Nodes in one NodeSequence are all different objects from those in any other.

Implementing the equals method

The coding for the equal s method is not too much different from the coding for the
ArraySequence equal s method in the earlier Listing 15.3. You make sure the
parameter actually is a NodeSequence and then you cast it to make the coding easier to
read and faster to execute. You should not check the sizes to see if they are equal,
because that takes a significant amount of time with linked lists (by contrast, each
ArraySequence object knows its size). Next you go through the list of all values in the
parameter one at a time. Since the coding in the ArraySequence method is

for (int k =0; k <that.itsSize; k++)

{ if (! this.itsltenfk].equals (that.itslten{k]))
return fal se;

}

the analogous coding for the NodeSequence method should have two Node variables
that progress through the two linked lists in tandem, something like this:

Node p = this.itsFirst;
for (Node g = that.itsFirst; g !=null; q = g.itsNext)
{ if (! p.itsData.equals (g.itsData))
return fal se;
p = p.itsNext;

}
Initially:
P
thiz iteFirst (—s[almost] o—=[the [o}—s[zame] o—s[izt [«}—=[here Jnul]
q

that itzFirst (3— [almost] s—s[the | }—=[zame] o}—s[zeries] «}—s[here Jnul]

After one iteration:
fa

thiz itzFirst — [aimost] o—s[the | o—s[zame] [t | «}—=[here Jul]

A
that it=First (— [almost] o—=[the | o}—=[zame] «—s[zeriez] «}—[here Jnul]

In each Mode, the left side iz itzData and the right zide iz itaMext

Figure 15.4 Two stages of execution of the equals method

15-11 Java Au Naturel by William C. Jones 15-11

Figure 15.4 shows how the two lists and these two position indicators look. However,
you have not checked that the sizes of the two lists match, so it is possible that p could
become null while the loop executes, which would throw a NullPointerException. You
need a crash-guard; have the if-statement check p == nul | and, if so, return f al se
without trying to evaluate p. it sDat a.

This reasoning leads to the coding in the upper part of Listing 15.6. Note that successful

completion of the loop does not guarantee equality; you have to verify that the executor's
list ran out at the same time as the parameter's list (verified in line 10).

Listing 15.6 The NodeSequence class of objects, part 2

/1 public class NodeSequence, 3 nore of the nethods

publ i c bool ean equal s (Obj ect ob)

{ if (! (ob instanceof NodeSequence)) /11

return false; /12

NodeSequence t hat = (NodeSequence) ob; /13

Node p = this.itsFirst; /14

for (Node q = that.itsFirst; q!=null; g = g.itsNext) //5

{ if (p==mnull || ! p.itsData.equals (q.itsData)) /16

return false; 17

p = p.itsNext; /18

} /19

return p == null; /110
|

publ i c NodeSequence (String fileNanme) throws | OException

{ BufferedReader file = new BufferedReader /111

(new Fi | eReader (fileNane)); /112

String s = file.readLine(); /113

if (s !=null) /114

{ this.itskFirst = new Node (s, null); /115

Node previous = this.itsFirst; /116

s = file.readLine(); /117

while (s !'= null) /118

{ previous.itsNext = new Node (s, null); /119

previ ous = previous.itsNext; /120

s = file.readLine(); /121

} /122

} /123
|

publ i c NodeSequence (NodeSequence t hat)

{ if (that.itsFirst !'= null) /124
{ this.itsFirst = new Node (that.itsFirst.itsData, null);

Node previous = this.itsFirst; /126

for (Node p = that.itsFirst.itsNext; /127

p!=null; p = p.itsNext) /128

{ previous.itsNext = new Node (p.itsData, null); /129

previ ous = previous.itsNext; /130

} /131

} /]32

15-12 Java Au Naturel by William C. Jones 15-12

Implementing the NodeSequence constructor that uses a file

The logic for constructing a new NodeSequence object out of input from a disk file is only
mildly different from the corresponding ArraySequence constructor in the earlier Listing
15.3. After you open the file and read the first line, you check it to see if you obtained null
(line 14 of Listing 15.6). If so, the file is empty and so you simply leave thi s.itsFirst
as null.

If the file is not empty, you put its first String value into a node and make that the first
node on the NodeSequence object's node list (line 15). Now it gets a little tricky. You
cannot add a node to the end of the linked list unless you change the i t sNext value in
the previous node. So you have to keep track of that previous node throughout the loop
that reads String values in from the file.

You initialize a local variable previous = this.itsFirst (line 16), since that will
be the node previous to the one you are going to add next. Now you write the standard
loop for reading data from a file until you run out. The only difference is that the two
statements

itsltenfitsSize] = s;
itsSize++,

in the body of the loop in the ArraySequence constructor are replaced by these two
statements (lines 19-20), which do much the same thing:

previous.itsNext = new Node (s, null);
previ ous = previous.itsNext;

This coding is in the middle part of Listing 15.6. It illustrates an important design
principle: If you have to process a sequence of values and the first value requires a
different kind of processing from the rest of them, do not try to have a loop process all the
values. Instead, process the first value before the loop and have the loop start its
processing with the second value. If you were to try to write the coding for this
constructor by having a while-statement but no if-statement, you would quickly see why
this is a valuable principle.

Implementing the constructor that has a NodeSequence parameter

To create a NodeSequence object that has the same elements in the same order as a
given NodeSequence parameter, you first verify that the parameter does not have an
empty list. If it does not, you make the executor's first node a new Node object
containing the data from the first node of the parameter. Initialize a local variable
previous = this.itsFirst andenteraloop processing the second and all later
elements on the parameter's list. This logic is in the lower part of Listing 15.6.

At each such element, link a new node after previ ous containing that element from
the parameter and move previ ous on to that newly-constructed node (lines 29-30,
basically the same as lines 19-20). Figure 15.5 (see next page) illustrates this coding.
Note that again the first node on the executor's list must be processed differently from all
other nodes, because the first node is the only one that does not have a previous node.

Exercise 15.13 How would you modify the equal s method for the NodeSequence
class to tell whether the executor is a "prefix" of a NodeSequence parameter, i.e., the
elements of the executor are at the beginning of the parameter in the same order, but the
parameter may have more elements besides those?

Exercise 15.14 (harder) Write the NodeSequence method publ i ¢ Obj ect[]
toArray(). Hint: Use new Object[this.size()].

15-13 Java Au Naturel by William C. Jones 15-13

After lines 26-27: previous = this.itgFirst; p = that.n=sFirst.itzHext;
previous O
thiz itsFirst —
4

that tsFirst — [almast] =—s[the | -}—>[zame] «;—[zeries] ~}—>[here Jrudl]

After one iteration of the for-loop:
previous

thiz itsFirst & [almost] =}—=[the nul]

Py
that itsFirst — [amost] =}—s[the | -}—s[zame] «}—[zeries] =}—>[here Jrudl]

In each Mode, the left side is tzData and the right side is tshext

Figure 15.5 Two stages of execution of the second constructor

Exercise 15.15 (harder) Write a Node method publi ¢ voi d renmoveEvens(): The
executor removes every other Node from its linked list, i.e., the second, fourth, sixth, etc.
Exercise 15.16* Write another constructor for the NodeSequence class with an

hj ect [] parameter: It constructs a Collection with the same elements in the same
order as the array has, except it omits any null values that might be there. Hint: Work
backwards from gi ven[gi ven.l ength - 1].

Exercise 15.17* Write a NodeSequence method publ i ¢ Col | ection reverse():
The executor returns a new NodeSequence object with the same elements as the
executor but in the opposite order.

15.5 Recursion With Linked Lists

The coding for each method in Listing 15.6 is lengthy and hard to follow. This is because
the coding works with linked lists, which are naturally recursive structures, but it does not
use recursion. A naturally recursive structure is a structure that can be implemented

with a class X of objects that have instance variables of class X. Some people call these
"self-referential objects” but technically they are not; p. it sNext refers to another Node

object, notto p.
Deciding whether a String is a palindrome

Let us start with a recursion refresher, a method that uses recursion to tell whether a
given String value reads the same forwards as backwards. Such a String is called a
palindrome; an example is what Napoleon is rumored to have said: "able was | ere | saw
elba". There are two kinds of palindromes, trivial and not:

Any string that only has one character, or no characters at all, is trivially a
palindrome.

Any string with two or more characters is a palindrome when the first character is the
same as the last and the smaller part in-between is a palindrome.

This logic is expressed quite naturally by the following independent method:

public static boolean isPalindrome (String s) // independent
{ return s.length() <=1
|| (s.charAt (0) == s.charAt (s.length() - 1)
&% isPalindrome (s.substring (1, s.length() - 1)));

15-14 Java Au Naturel by William C. Jones 15-14

The equals method for NodeSequences

Two NodeSequence objects are equal if their linked lists of nodes have exactly the same
data in the same order. So the equal s method for NodeSequences is quite easy to
work out if you put off most of the work to a separate ar eEqual method that tests
whether two linked lists of nodes are equal:

public bool ean equal s (Obj ect ob)
{ return ob instanceof NodeSequence
&& areEqual (this.itsFirst,
((NodeSequence) ob).itsFirst);

The ar eEqual method determines whether two linked lists have the same data values
in the same order. There are two cases to consider, depending on whether one of the
linked lists is empty or not:

If either linked list is empty, then they are equal only if both are empty.
If both are non-empty, then they are equal only if their first data values (in it sDat a)
are equal to each other and their sublists (starting from i t sNext) are also equal.

The coding for ar eEqual follows directly from those two cases:

private static bool ean areEqual (Node one, Node two)

{ return (one == null || two == null) ? one ==two
one.itsData.equals (two.itsData)
&& areEqual (one.itsNext, two.itsNext);

See how much easier and more natural those two parts are together than the coding in
Listing 15.6? Of course, you need a secondary method that recurses through the linked
list of Nodes. The reason is that the equal s method has a NodeSequence executor,
and a NodeSequence is not a naturally recursive structure (since it does not have a
NodeSequence instance variable). So equal s calls the ar eEqual method for a pair
of Node objects which store the naturally recursive linked lists.

The NodeSequence constructor using afile

The first NodeSequence constructor reads data from a disk file and creates a linked list
from that sequence of data values. You first create the file, then you can call a recursive
method to give you the linked list that the file provides:

publ i c NodeSequence (String fileNane) throws | OException
{ BufferedReader file = new BufferedReader
(new Fi | eReader (fileNane));
this.itsFirst = readFrom (file);

The r eadFr om method gets all the String values in the file and returns the linked list of
Nodes containing those values in the order read. It first reads a single String value from
the file and then sees which of two cases applies -- the String exists or not:

If the String value does not exist, then return the empty linked list.

If the String value exists, then return a non-empty linked list for which the first Node
contains the String you just read as its data and the Node's sublist contains all the
rest of the String values from the file.

15-15 Java Au Naturel by William C. Jones 15-15

The coding for r eadFr om following directly from those two cases:

private static Node readFrom (BufferedReader file)
t hrows | OException
{ String s = file.readLine();
return s == null ? null : new Node (s, readFrom (file));
Y o

The NodeSequence constructor using another NodeSequence

To make a new NodeSequence that is a copy of another, you make a new linked list that
is a copy of the given linked list:

publ i c NodeSequence (NodeSequence given)
{ this.itsFirst = copyList (given.itsFirst);
Y ol

This calls a private copyLi st method whose job is to return a copy of the given linked
list. This recursive method sees which of two cases applies:

If the list to copy is empty, then return an empty list as its copy.

Otherwise, return a non-empty linked list for which the first Node contains the data in
the first Node of the given linked list and the Node's sublist contains all the rest of the
data values.

The coding for copyLi st following directly from those two cases:
private static Node copyLi st (Node toCopy)

{ return toCopy == null ? null : new Node (toCopy.itsData,
copylLi st (toCopy.itsNext));

y o1
Callection
size() : int toArray) : Ohject]] todrray (Ohject[]) : Object[]
izEmptyl : boolean containg (Ohject) | boolean cortainsAll (Collection) : boolean
equals (Ohject) : boolean add (Ohject) : boolean addaAll (Collection) © bhoolean
iterator() ; terator remove (Object): boolean removedll (Collecton) © boolean
clear) retaindll {Caollection) : boolean
Maode FileReader BufferedReader Cibject
newy [(Ohiect, Mode) newy [String) newy | Reader) equalz (Ohject) : hoolean
T A reacLinel) AT
I | T |
I | I |
1 | . 1
ModeSequence
neswi) nesw [String) neswy [Callection)

Figure 15.6 UML class diagram for the NodeSequence class

Exercise 15.18 Rewrite the cont ai ns method of Listing 15.5 by calling on a private
recursive method with a Node parameter. Have only one statement in each method.
Exercise 15.19 (harder) Write a recursive Node method publ i ¢ voi d
renoveEvens() : The executor removes even-numbered Nodes from the linked list, i.e.,

the second, fourth, sixth, eighth, etc.
Exercise 15.20* Write a recursive Node method publ i ¢ void onit (Cbject ob):
The executor removes all Nodes after itself that contain a data value equal to ob.

15-16 Java Au Naturel by William C. Jones 15-16

15.6 Implementing The Iterator Interface For An Array-Based
Collection

Your client needs a program that lists all purchased items that are missing from the
inventory, both of which are stored in Collection objects. For this task you need to have
an Iterator object. The Collection interface prescribes a method for which

someCol | ection.iterator() returns an Iterator object connected to the Collection.

Definition of an Iterator

An lterator provides the values in a Collection one at a time in some order. Ifitis a
Collection for which order is important, it should always return the values in the
Collection's own order. A class satisfies the Iterator interface (in the j ava. uti |
package) if it has the following three instance methods:

hasNext () tells whether there is an element of the Collection that has not yet been
provided by the Iterator.

next () advances to the next element to be provided and returns it.

renove() deletes from the Collection the element that was returned by the most
recent call of next (). After removal, next () provides what it would have
provided without the removal. Note: Many implementations of Iterator specify that
no one is to call its r enrove method; so it throws an UnsupportedOperationException
if you call it.

Naturally, next () throws an Exception if there is no additional element and r enove()
throws an Exception if next () has not yet been called. The application program in
Listing 15.7 (see next page) shows how an Iterator object can be used. The same coding
would also work if "ArraySequence" were replaced by "NodeSequence" throughout. It is
important that the value that i t. next () returns be assigned to a variable, since the
one value is used twice. If you called it . next () twice inthe body of the loop, it would
give you the next two values, not the same value twice.

An lterator acts as a non-pushable stack containing the elements in the Collection.
it.next() correspondsto stack. pop(); ittakes the next available element out of
the stack and returns it. it. hasNext () correspondsto ! stack.isEnpty().

A private nested class

An lterator object constructed for a ArraySequence object needs access to the private
instance variables of that sequence. Encapsulation is maintained if you make this
ArraySequencelterator class a private nested class of ArraySequence, which means that
no outside class can mention the name ArraySequencelterator. It is declared inside the
ArraySequence class with the following class heading:

private static class ArraySequencelterator inplenments Iterator

The instance method in the ArraySequence class that produces an Iterator for outside
classes to use can be coded as follows. An outside class (such as Lostltems in Listing
15.7) that calls this method must store the object the method returns in an Iterator
variable, not a ArraySequencelterator variable, because the latter name is private:

public Iterator iterator() // in ArraySequence
{ return new ArraySequencelterator (this);
Y o/

15-17 Java Au Naturel by William C. Jones 15-17

Listing 15.7 The Lostltems application program

public class Lostltens
/[** List all purchased itens not in inventory. */

public static void main (String[] args)

{ java.util.Collection inventory; /11
java.util.Col |l ection purchased; /12
try /13
{ inventory = new ArraySequence ("inven.dat"); /14

pur chased = new ArraySequence ("purch.dat"); /15
}catch (java.io.|OException e) /16
{ throw new Runti meException ("Afile is defective.");//7
} /18
if (inventory.equals (purchased)) /19

Systemout.println ("a perfect match"); /110
else if (! inventory.containsAll (purchased)) /111
{ Systemout.println ("Listing all values we lost:"); //12

java.util.lterator it = purchased.iterator(); /113

while (it.hasNext()) /114

{ Object data = it.next(); /115

if (! inventory.contains (data)) /116
Systemout.println (data.toString()); /117

} /118
} /119

|

The ArraySequence object is passed as a parameter to this i t er at or method so that
its Iterator object can refer to its partially-filled array and to the size of that array.

Array implementation of an Iterator

For the ArraySequencelterator class, we choose to keep track of the current position of
the Iterator in an int instance variable named i t sPos. Each time next () is executed,
we add 1 to the value of i t sPos and then return the elementin itsltenfitsPos].

We need to keep track of whether calling r enove is allowed. We can do this with a
boolean variable i sRenovabl e. When the Iterator object is first created, this variable is
initialized to f al se. Whenever next is called, this variable is made true.

The very first time we execute next (), we should get itslteniO]. Itfollows that
i t sPos must be initialized to -1 so that adding 1 to it puts it at 0. And of course, we
cannot execute next () ifthereisnoelementin itslteniitsPos+1],i.e., if

i tsPos+1 equals itsSize. The coding for the constructor and the hasNext and
next methods is in the upper part of Listing 15.8 (see next page).

Internal invariant for ArraySequencelterators
The instance variable it sSeq is the ArraySequence it iterates through.
The instance variable it sPos istheintsuchthatitsSeq.itsltenfitsPos+1]
contains the element that next () will return, except next () is illegal when
itsPos+l == itsSeq.itsSize.
The instance variable i sRenovabl e tells whether a call of r enpve is allowed.

15-18 Java Au Naturel by William C. Jones 15-18

Listing 15.8 The ArraySequencelterator nested class of objects

/1 This class goes inside the ArraySequence cl ass

private static class ArraySequencelterator inplenments Iterator
{
private int itsPos = -1; /[l next() is itsltenitsPos+1]
private bool ean i sRenovabl e = fal se;
private ArraySequence itsSeq;

public ArraySequencelterator (ArraySequence gi venSequence)
{ 1itsSeq = givenSequence; /11
|

[** Tell whether there is a next elenent to be returned. */

publ i ¢ bool ean hasNext ()
{ return itsPos + 1 < itsSeq.itsSize; /12
|

/** Advance to the next object to be returned and return it.
* Throw NoSuchEl enment Exception if hasNext() is fal se. */

public Object next()

{ if (! hasNext()) /13
t hr ow new NoSuchEl enent Excepti on ("hasNext is fal se");
i SRenovabl e = true; /15
i t sPos++; /16
return itsSeq.itsltenfitsPos]; 117
|

/** Renpbve the object that was just returned by next().

* Throw Il| egal St at eException if next() has never been
called, or if next() has not been called since the
nost recent call of renmove(). */

public void renove()

{ if (! isRenovable) /18
throw new ||| egal St at eExcepti on ("nothing to renove");
for (int k = itsPos + 1; k < itsSeq.itsSize; k++) /110
itsSeq.itsltenfk - 1] = itsSeq.itsltenKk]; /111
itsSeq.itsSize--; /112
i tsPos--; /113
i SRenovable = false; // no renove twice in a row /114
|

The lterator interface specifies that a NoSuchElementException be thrown if there is no
next element to return. This Exception class is inthe java. util package. The way
you throw a NoSuchElementException object is quite simple -- just execute the following
statement (the phrase in quotes is whatever you choose):

t hr ow new NoSuchEl enent Exception ("hasNext is fal se");

15-19 Java Au Naturel by William C. Jones 15-19

The remove method for Iterators

The renmpve method deletes the element that was returned by the most recent
execution of next (). That of course is impossible if next has not yet been called or if
the element it returned has already been removed. In such cases you are to throw an
lllegalStateException (in j ava. | ang).

When renove is called, you remove the elementin itsSeq.itsltenfitsPos]
(shifting other values down one) and make a note that another immediate call of r enove
is now forbidden (you cannot remove what is already gone). The next call of next
should return the first value that was shifted down. That means that you should
decrement it sPos in preparation for the next call of next. This coding is in the lower
part of Listing 15.8. Figure 15.7 should clarify what is going on.

After a call of next() which returns C:

:BasicSeqguencefterator ‘BasicSequence o1 2 3 4 5 6 7 &
izRemovakle tstem 025 }l A | B D | E | F | e | | |
t=Pos (2 t=Size (T

After a call of remove() immediately thereafter:

:BasicSequencelterator ‘BasicSequence o1 2 3 4 5 6 7 &
isRemovakle tstem (=5 ?’| &, D | E | F | G | | | |
tsPos (1) t=size (B

Figure 15.7 UML object diagrams for ArraySequencelterator operations

Removal of itslteniitsPos] requires shifting each element indexed it sPos+1
and higher to the component indexed 1 less than itself. If you think about it a while, you
will see why this shifting is easier if you work from it sPos toward itsSi ze rather
than vice versa.

Exercise 15.21 What changes would you make in the r enove method of Listing 15.8 if
it specified that you are to return the Object that is removed?

Exercise 15.22 Write a generic Collection cont ai nsAl |l method, i.e., coding that
works correctly for any Collection executor and for any Collection parameter. Hint: Use
the parameter's Iterator to go through its elements one at a time and call cont ai ns.
Exercise 15.23 (harder) Modify Listing 15.7 to execute much faster on the precondition
that every element of the i nvent ory Collection is known to be in the pur chased
Collection and those elements are listed in the same order.

Exercise 15.24 (harder) If you studied inner classes in Chapter Ten, rewrite the
ArraySequencelterator class as an inner class. Also rewrite the it erat or method.
Exercise 15.25* Rewrite the r emove method in ArraySequencelterator to explicitly
state the executor wherever possible.

Exercise 15.26* Generalize the second ArraySequence constructor in Listing 15.3 to
have a Collection parameter. Use its iterator to create the copy.

Exercise 15.27* Rewrite the NodeSequence equal s method in Listing 15.6 to tell
whether it has the same elements in the same order as its parameter, which can be any
Collection object (i.e., do not return f al se just because it is not a NodeSequence).
Hint: Instead of Node g, use an Iterator.

Exercise 15.28* Rewrite Listing 15.8 with a different internal invariant, namely, the
element that next () returnsis itsltenfitsPos+1] only wheni sRenovabl e is
true. Otherwise next () returns itsltenfitsPos].

Exercise 15.29* Draw the UML class diagram for the Lostltems class.

Exercise 15.30** Rewrite the r enmove method in Listing 15.8 to shift elements down
starting from the far end of the array, working from itsSi ze-1 on down.

15-20 Java Au Naturel by William C. Jones 15-20

15.7 Implementing The Iterator Interface For A Linked-List-Based
Collection

For the NodeSequence's Iterator class, you can use something analogous to what was
just described for arrays: You keep track of the current position of the Iterator in a Node
instance variable named i t sPos . Each time you execute next (), you advance

i t sPos to the next Node and return the data in that Node. The primary problem occurs
when you have to remove the data in the Node that i t sPos refers to.

The easiest way to do that is to make a note of the Node just before it sPos. That is
the Node that i t sPos advances from when next () is executed. You could record that
information in an instance variable named it sPr evi ous, since it is the Node before the
element that can be removed. If you set it sPrevi ous tobe itsPos when
renove() is not allowed, you do not need an extra boolean instance variable to keep
track of that information. Then the coding for next would be the exact analog of its
coding for the array implementation, to wit:

if (! hasNext())
t hr ow new NoSuchEl enent Exception ("hasNext is fal se");
itsPrevious = itsPos;
itsPos = itsPos.itsNext;
return itsPos.itsData;

But now you have another problem: The first node does not have a node before it, so
what do you initialize i t sPos to? This problem is easily fixed: Construction of an
iterator creates a dummy header node that links to it sFi rst and initializes it sPos
to that dummy header node. So the status of the implementation, i.e., the internal
invariant, will always be as follows. Compare this description with the internal invariant in
the previous section. In particular, it sPrevi ous gives the information required to do
the equivalent of it sPos- -, while the condition it sPrevi ous != itsPos gives the
same information as the value of i sRenovabl e:

Internal invariant for NodeSequencelterators
- The instance variable it sSeq is the NodeSequence it iterates through.
The instance variable it sPos is the Node such thatitsPos.itsNext.itsData
always contains the element that next () will return when next () is legal.
next () isillegal when it sPos.itsNext isnull.
The instance variable it sPrevi ous is the Node before it sPos if a call of
r enove is allowed, otherwise it sPrevi ous equals it sPos.

What if the sequence is modified during iteration through it? That would cause
unpredictable results in some cases (unless done by the iterator's own r enpove method,
so it can make allowance for the removal). So you should not do that. Sun standard
implementations of iterators are fail-fast: If the list structure is modified by any method
other than the iterator's own methods, and then any of the iterator's methods are called,
the iterator throws a runtime Exception.

To implement this, you could have each Collection object count all additions and
removals with i t sChangeCount er. Then each iterator object notes the value of

i t sChangeCount er when the iterator is created, and each call of next verifies that
i t sChangeCount er has not changed or, if it has, throws an Exception. For simplicity,
we leave this out in Iterator codings in this book.

The coding for the constructor, hasNext , and next is in the upper part of Listing 15.9
(see next page). You must also add the following method to the NodeSequence class:

15-21 Java Au Naturel by William C. Jones 15-21

public Iterator iterator() // in NodeSequence
{ return new NodeSequencelterator (this);
} | | ======================

Listing 15.9 The NodeSequencelterator nested class of objects

/1 This class goes inside the NodeSequence cl ass

private static class NodeSequencelterator inplenments |terator

{
private Node it sPos; /1 next() is itsPos.itsNext.itsData
private Node itsPrevious; // == itsPos when renove disall owed
privat e NodeSequence itsSeq
publ i c NodeSequencelterator (NodeSequence gi venSequence)
{ 1itsSeq = givenSequence; /11
itsPos = new Node (null, itsSeq.itsFirst); /12
i tsPrevious = itsPos; [/l signals no renove allowed //3
|
publ i ¢ bool ean hasNext ()
{ return itsPos.itsNext != null; /14
|
public Object next()
{ if (! hasNext()) /15
t hr ow new NoSuchEl enent Excepti on ("hasNext is fal se");
itsPrevious = itsPos; 17
itsPos = itsPos.itsNext; //so now itsPrevious!=itsPos //8
return itsPos.itsData; /19
|
public void renove()
{ if (itsPrevious == itsPos) /110
throw new ||| egal St at eExcepti on ("nothing to renove");
itsPrevious.itsNext = itsPos.itsNext; /112
if (itsSeq.itsFirst == itsPos) /113
itsSeq.itsFirst = itsPos.itsNext; /114
itsPos = itsPrevious; /Il signals no renove allowed //15
|
}

The remove method for NodeSequencelterator

The renpve coding is far simpler than it was for the array implementation. As the
internal invariant indicates, as long as i t sPr evi ous is not equal to i t sPos, you can
just link from it sPrevi ous around the node i t sPos to delete it from the linked list.

However, there is a special case: If the node to be removed is the first node on the
linked list, then you have to reset it sSeq. it sFi rst to refer to the currently-second
node on the linked list. Either way, you make itsPos be it sPrevious,to prevent an
additional call of renpve. The full logic is in the lower part of Listing 15.9. Figure 15.8
illustrates how things change for a call of next followed by a call of r enove.

15-22 Java Au Naturel by William C. Jones 15-22

initiallyz
: ModeSequenceteratar header: Mode ‘Mode Mode Mode
tePrevious | (5 tsData (ull)| |tsData itsData tsData (C)
it=Pos = itshlest s (tshest E—r|tshext T [itshext E—

then execute next(), which returns A:

. ModeSequencelterator header:Mode ‘Mode ‘Mode ‘Mode
tePrevious | (5 itsData (oul| |tsData it=Diata it=Data

itahlexdt (s |itahlext e fitahlext (ER— [itebext CEH—s

t=Pos 'E-:'—-|

then execute next() again, which returns B:

: ModeSequenceterator header:Node > :Mode :Mode ‘Mode
ePrevious (53 tsData (ul) | |tsData itsData itsData (C)
taPios CE-:'—-| itshlest (E— (Rshest (E—r|tshext TR [itshext (E—
é
then execute remove(), which deletes B from the sequence:
: ModeSequenceterstor header:Mode ; ‘Mode ‘Mode > ‘Mode
tePrevious | (5 tsData (null)| |tsData it=Diata t=Data (2

itehlext (s |itahlext itehlext (E—s [tebext CE—s

it=Pos CE—-|

Figure 15.8 UML object diagrams for NodeSequencelterator operations

Exercise 15.31 How would you change the NodeSequencelterator class to have a
next | ndex method which returns the index number of the element that would be
returned by the next execution of next () (O for the first, 1 for the second, etc.)?
Exercise 15.32 (harder) Generalize the second NodeSequence constructor in Listing
15.6 to have a Collection parameter. Use its iterator to create the copy recursively.
Exercise 15.33 (harder) What changes would you make in Listing 15.9 to initialize

i t sPos to null and thus avoid having a dummy header node?

Exercise 15.34* Revise Listing 15.9 for a different approach: Omit i t sPos and
keep it sPrevi ous with the same meaning. Have a boolean instance variable

i sSRemovabl e to tell when you may remove a value. Adjust everything accordingly.
Hint: i sRenmovabl e is true precisely when itsPrevious != itsPos.

15.8 Implementing A Modifiable Collection With Linked Lists

The Collection interface has six methods that modify the Collection. They are described
in Listing 15.10 (see next page). This listing plus Listing 15.2 describe the Collection
interface in its entirety.

Some implementations of the Collection interface do not allow modifications. The Java
convention is that implementations that do not allow modifications are to have these six
methods throw an UnsupportedOperationException (from j ava. | ang), using e.g. the
following statement (our two implementations will of course allow modifications):

t hr ow new Unsupport edQOper ati onException();

In fact, an implementation of Iterator is allowed to have the preceding statement as the
body of the Iterator's r emove method if the Collection is to be unmodifiable. In this
sense, the six methods mentioned in Listing 15.10 are optional operations for a
Collection and renove is an optional operation for an Iterator.

15-23 Java Au Naturel by William C. Jones 15-23

Listing 15.10 The Collection interface, part 2

/** A Collection class that does not guarantee maintaining a

* specific order ignores the ordering specifications here.
A Col I ection class that does not allow null as an el enent
throws a java.lang. ||| egal Argunent Exception if you add null.
A nmethod that returns a bool ean val ue returns true

if and only if the nmethod nodifies the Collection. */

* % X

/1 public interface Collection, the rest of the 13 net hods

/** Mbake the Coll ection have no elenents at all. */
public void clear();

/** Add the given Object at the end of this sequence.
* No effect if the Collection does not allow duplicates. */
publ i c bool ean add (Cbj ect ob);

/** Same as repeated add for each el enent in sequence. */
publ i c bool ean addAll (Collection that);

/** Renmpve the first instance of the given object fromthe
* Collection, if present. */
publ i c bool ean renmove (Obj ect ob);

/[** Same as repeated renove for each el enent in that
* Collection. */
public bool ean renmoveAll (Collection that);

/** Renmpbve every elenment not in that Collection. Keep the
* original order for those elenents that remain. */
public bool ean retainAll (Collection that);

If you have a Collection implementation that does not maintain a particular order and that
does not allow duplicates, the following expressions produce the set-union, set-
intersection, and set-difference of Collections A and B, without changing A or B:

Col l ection union = new Coll ection (A).addAll (B);
Collection intersection = new Collection (A).retainAll (B);
Collection difference = new Coll ection (A).renmoveAll (B);

The java.util.Set interface in the standard library has the same methods as the
Collection interface. The difference is that it does not allow duplicates (but it allows one
null value) and the order of the elements is not necessarily guaranteed. The Sun library
has the java.util.HashSet class that implements Set, as well as the java.util.TreeSet
class that implements Set with elements sorted using conpar eTo.

Implementing the removeAll method

The renmpoveAl | method is not difficult if you just repeatedly call on the r enove
method. Specifically, you get an iterator from the Collection parameter to run down its
sequence of elements and remove each one. Since you are charged with returningt r ue
when any change in the executor Collection is made, you can initialize a boolean variable
to f al se and then change it to t r ue any time one of the r enbve operations succeeds.

The coding for renoveAl | is in the upper part of Listing 15.11 (see next page). Note
that it is generic: It could be put in any class that implements Collection and it will work
right, assuming the other Collection methods it calls work right.

15-24 Java Au Naturel by William C. Jones 15-24

Listing 15.11 The NodeSequence class of objects, part 3

/1 public class NodeSequence, three nore mnethods

public bool ean renmoveAll (Collection that)

{ bool ean changed = fal se; /11
Iterator it = that.iterator(); /12
while (it.hasNext()) /13

changed = this.renove (it.next()) || changed; /14
return changed; /15
|

publ i c bool ean add (Obj ect ob)

{ if (ob == null) /16

t hrow new ||| egal Argunent Exception ("no nulls allowed");
if (itskFirst == null) /18
itsFirst = new Node (ob, null); /19
el se /110
itsFirst.addLater (ob); /111
return true; // we accept duplicates of elenents /112
|

publ i c bool ean renmove (Obj ect ob)

{ if (itsFirst == null) /113

return false; /114

if (itsFirst.itsData.equals (ob)) /115

{ itsFirst = itsFirst.itsNext; /116

return true; /117

} /118

return itsFirst.renovelLater (ob); /119
|

/1 private static class Node, 2 nore nethods

public void addLater (Cbject ob)

{ if (itsNext == null) /120
i tsNext = new Node (ob, null); /121
el se /122
i t sNext . addLat er (ob); /123
|
publ i c bool ean renovelLater (Object ob)
{ if (itsNext == null) /124
return false; /125
if (itsNext.itsData.equals (ob)) /126
{ itsNext = itsNext.itsNext; /127
return true; /128
} /129
return itsNext.renovelLater (ob); /130
|

The renmpveAl | coding uses two methods that not only take action but also return a
value. Both are legitimized by the fact that they are part of the Sun standard library, but
you can see that doing so much in one phrase can make the logic difficult to follow.
Some people feel it would have been better if the Iterator class had been defined with two
separate methods such as get Next () and noveOn() to take the place of the one
next () method.

15-25 Java Au Naturel by William C. Jones 15-25

Implementing the NodeSequence add method

To add a given Object ob to the end of the linked list whose first node is
this.itsFirst, you first must check that the Object parameter exists. If the parameter
is null, you throw an lllegalArgumentException object (from j ava. | ang). Then if
this.itsFirst isnull you just create a new node to be the only node on the linked
list, as follows:

this.itsFirst = new Node (ob, null);

If, on the other hand, the linked list already has at least one node, you need to add a
node containing ob at the end of the linked list. Since the logic of add has already
become rather complex, just ask the first node to do that job (i.e., call an instance method
in the Node class).

The Node instance method you call could be named addLat er. You ask a node on
your linked list to add ob some place after it. There are two possibilities: Either the
node X you ask is the last node, in which case X simply adds a new node after it
containing ob, or else there is a node after X, in which case X asks that next node to add

ob later. This coding is in the middle part of Listing 15.11. Figure 15.9 shows an
example.

Before calling add("here"}:

thiz tsFirst & [almast] —s[the [~}—[zame] =}—s[ist o]
T
Eventually call addLater("here") for this | node; the result is:

thiz itsFirst (—[almozt] o—s[the [o—s[zame] «o—>list [«}—=[here [nul]
Figure 15.9

Designing the remove method

When you work out a complex logic, it usually helps to figure out what to do in the easy
cases and postpone the hard cases to another method. For r enove, if the executor has
no nodes, do nothing. If it has nodes and the first node contains ob, delete that first
node. Otherwise, ask that first node to do the removing and report back whether it was
able to do so. This plan is formalized in the accompanying design block.

SNL DESIGN to remove ob
1. If the executor has no nodes then...
Return f al se to indicate no change was made.
2. If the first node on the executor's linked list contains ob then...
Make the currently-second node the new first node.
Return t r ue to indicate a change was made.
3. Ask the first node to remove ob from a node later in the linked list, if present.
4. Returntrue if ob was removed from a later node, otherwise return f al se.

What does that first node do when asked to remove ob? The same thing: If it has no
node after it, it does nothing, but if the node after contains ob, it deletes the node after it,
otherwise it asks the node after it to do the removing and report back whether it could do
so. That gives the recursive r enovelat er method in the lower part of Listing 15.11.
Figure 15.10 illustrates how this works.

15-26 Java Au Naturel by William C. Jones 15-26

Before calling remove("same"):

thiz tzFirst — [almast] =—s[the | -}—>[zame] =—[ist | =}—=[here [ruil]

Eventually call removeLater("same"} for this ' node; the result is:

thiz tsFirst &— [@lmast] =F—s[the | -|—| [zame] =}—s[lst | ~+—>[here Jnull]

Figure 15.10 Effect of a call of remove("same")

If you compare the coding for r enovelat er with the coding for r enove, you can see
they are word-for-word the same except i t sSNext plays the role ofitsFirst. And if
you compare the coding for addLat er with the middle four lines of add, they have the
same resemblance.

Exercise 15.35 Write the NodeSequence method publ i c void clear().

Exercise 15.36 (harder) What changes would you make in Listing 15.11 to have
addLat er and renovelat er be private class methods in the NodeSequence class?
Exercise 15.37 (harder) Write the NodeSequence method publ i ¢ bool ean
retainAll (Collection that) as follows: Repeatedly delete the executor's first
node until you see that the Collection parameter contains the data in its first node (or the
executor becomes empty). Then go through each node in the executor's linked list one
at a time, deleting the nodes after it whose data is not in the Collection parameter.
Exercise 15.38* Write a NodeSequence method public void doubl eUp(): The
executor ends up with twice as many nodes, each element occurring twice in a row.
Exercise 15.39* Write the generic NodeSequence method publ i ¢ bool ean addAl |
(Col l ection that) torepeatedly call the executor's add method.

Exercise 15.40* Write the ArraySequence method publ i ¢ bool ean add (Obj ect
ob) .

Exercise 15.41* Rewrite the add method for NodeSequence without using recursion.
Exercise 15.42* Rewrite the r enmove method for NodeSequence without using
recursion (use a for-loop).

15.9 Implementing The Listlterator Interface For A Linked List

An ordinary Iterator allows you to remove an element you come across in the iteration,
but it does not allow you to add an element at a specific position in the sequence, nor
does it allow you to replace one element by another at a specific position. For this
capability you need a Listlterator kind of object. Listlterator is an interface in the
java. util package that extends the Iterator interface. If it is a Listlterator, then
lit.add(ob) and lit.set(ob) are method calls that do just what you want.

However, the Listlterator interface requires two methods named hasPr evi ous and

pr evi ous, which do the same as hasNext and next, respectively, except they go
backwards in the list. This you do not want (how do you go backwards in a
straightforward linked list?). Not to worry -- in accordance with the Java convention, you
just include implementations of these methods with the standard coding that lets people
know not to use them:

t hr ow new Unsupport edQOper ati onException();

It would be preferable if the Sun standard library offered a Sequencelterator interface that
had only the add and set methods in addition to the Iterator methods. The
Sequencelterator interface would extend Iterator and Listlterator would extend
Sequencelterator. But apparently they did not think of that.

15-27 Java Au Naturel by William C. Jones 15-27

The Listlterator interface has the nine non-constructor methods named in Listing 15.12,
which completes the implementation of NodeSequencelterator. The Listlterator
operations next I ndex and previ ousl ndex are unsupported. They use zero-based
indexing, e.g., if next () would return the fourth element of the list, then next | ndex()
returns 3 and previ ousl ndex() returns 2. We add another method in the
NodeSequence and ArraySequence classes with the same coding as for the it er at or
method but with the following heading:

public Listlterator listlterator()

Listing 15.12 The NodeSequencelterator nested class of objects, revised

private static class NodeSequencelterator inplenents Listlterator
{
private Node it sPos; /1 next() is itsPos.itsNext.itsData
private Node itsPrevious; // == itsPos when renove disal |l owed
privat e NodeSequence it sSeq;

/** Repl ace the object |ast returned by next(). Throw an
* |llegal StateException if renmoval is not allowed. */

public void set (Cbject ob)
{ if (ob == null)

t hrow new ||| egal Argunent Exception ("no nulls allowed");
if (itsPrevious == itsPos)

throw new ||| egal St at eException ("nothing to replace");
itsPos.itsData = ob;

y oI

/** Add the given object just before the elenent that will be
* returned by next(), or at the end if hasNext() is false.
* Disallow set or renove until next is used again. */

public void add (Cbject ob)
{ if (ob == null)
t hrow new ||| egal Argunent Exception ("no nulls allowed");
itsPos.itsNext = new Node (ob, itsPos.itsNext);
itsPos = itsPos.itsNext;

if (itsSeq.itsFirst == itsPos.itsNext)
itsSeq.itsFirst = itsPos;
itsPrevious = itsPos; // so no one can renove it
|

/1 hasNext (), next(), renove(), and NodeSequencelterator()
[/l are already inplenmented in Listing 15.9

/[l The follow ng four do not apply to sequences
public bool ean hasPrevious() // is there a previous one?
{ throw new Unsupport edQperati onException(); }

public Object previous() /1 return the one before
{ throw new Unsupport edQperati onException(); }
public int nextlndex() /1 index of what next() returns

{ throw new Unsupport edQperati onException(); }
public int previouslndex() // index of what previous() returns
{ throw new UnsupportedQperati onException(); }

15-28 Java Au Naturel by William C. Jones 15-28

Implementation of the set and add methods

The set and renove methods can only be called if next has been called with no
intervening call of add or renpve. That is, calling next makes a value available for
removing or replacing, and calling add or renove leaves no value available for
removing or replacing. So if set is allowed, you just replace the data in the node

i tsPos.itsNext. The coding for this is in the upper part of Listing 15.12.

The add method is allowed anytime; when hasNext () isfal se, you add at the end
of the sequence. You first check that no one is trying to add null. Then you create a new
node and link it in after the node referenced by it sPos. Then you can set i t sPos to
be that new node, since executing next () should return the element after the one just
added. This coding is in the middle part of Listing 15.12. Figure 15.11 should clarify what
is going on here.

After a call of remove():

: ModeSeguenceterstor ‘Maode ‘Mode

taPrevious (= tsData ftaData

=Pz = itzhext (=3 tshlext Cm{—
Followed by a call of add(¥):

: ModeSequenceterator :Mode |$ ‘Mode ‘Tode

tePrevious =3 ftaData tsData itzData

itsPas 'CB——| ftahlexd ':3_? tshlend Co— fitshext (o4—

After either call, £ is the object that next() returns, if that Hode exists.
Figure 15.11 UML object diagram before and after a call of add(Y)

One special case occurs: If you added a node before the first node in the sequence, then
you have to reset it sSeq. i tsFirst tonow indicate the newly-added node.

The header-node variant

An implementation of NodeSequencelterator that simplifies the coding and lowers the
execution time has the NodeSequence object create one dummy header node that all of
its iterators use. This header-node implementation of a sequence is left as a major
programming project. Since that dummy header will store in it sNext the first node
that contains data, the NodeSequence object does not need to keep track of that data
Node separately. So itsFirst caninstead record the one dummy header node that
all iterators use, as follows:

publ i c NodeSequence() // header-node inplenentation

{ itsFirst = new Node (null, null);
} | | ======================
ModeSegquencelterstor D Liztherstar —[> fterator
newy [acdd (Ohject) hazhext () boolean
hasMext () hoolean =t (Ohject) next (1: Ohject
next () Ohject hazPrevious() : boolean remave [
remove () - ~AMode previous(): Object
add [(Ohject) - nextindex) ; int
et (Chject) nesw [(Dhject Modell |oevyiaysindesx) - int

Figure 15.12 UML class diagram for NodeSequencelterator

15-29 Java Au Naturel by William C. Jones 15-29

Implementing stacks and queues with sequences

You can easily implement a stack (described in Listing 14.1) as a subclass of any class
that implements a modifiable Collection in which the order is important. The peekTop()
call is to return the value on top of the stack, so it could be written as follows:

public Object peekTop() /1 in a stack subcl ass
{ return iterator().next();
} | | ======================

If the stack is empty, peekTop() throws an Exception, as it should. The push(ob)
call is to add a value to the top of the stack, so it could be as follows:

public void push (Object ob) /1 in a stack subcl ass
{ iterator().add (ob);
} | | ======================

The pop() callis toremove the value on top of the stack; it is a bit more complex:

public Object pop() // in a stack subcl ass

{ Iterator it = iterator();
nj ect val ueToReturn = it.next();
it.renmove();
return val ueToRet urn;

} | | ======================

A queue class (also described in Listing 14.1) can be implemented just as easily. The
dequeue method is coded the same as pop and the peekFront method is coded
the same as peekTop. The i sEnpty() method for both stacks and queues is the
one inherited from Collection. The enqueue(ob) call is just one statement:

public Object enqueue (Object ob) /1 in a queue subcl ass
{ this.add (ob); /1 put it at the end of the list
} | | ======================

Exercise 15.43 Write the ArraySequencelterator method publ i ¢ voi d set (Object
ob) : It replace the current value by ob.

Exercise 15.44 Write the stack push and pop methods to be added to the
NodeSequence class without using an iterator; just code them directly in terms of Nodes.
Exercise 15.45* Add another instance variable it sSi ze tothe NodeSequence class.
Modify everything that has to be modified in Listings 15.6 through 15.12 so that the si ze
method can simply return i tsSi ze.

Exercise 15.46* Write an independent method publ i ¢ static Object findMax
(Col I ection par): Itfinds the largest value in the Collection. Precondition: All
elements of the Collection are mutually Comparable.

Exercise 15.47* Essay: Explain what can go wrong if one creates a
ArraySequencelterator, then calls its methods several times, then uses the add or
renove methods in the ArraySequence class, and then calls more methods in
ArraySequencelterator.

Exercise 15.48** Essay: Same as the preceding exercise, but for Nodes instead.

15-30 Java Au Naturel by William C. Jones 15-30

15.10 Implementing The Listlterator Interface For A Doubly-Linked
List

The Listlterator interface has methods to allow client classes to move backward one step
in the sequence of values (described in the last four methods of Listing 15.12). This is
highly inefficient with standard linked lists. It becomes quite easy if you define a new kind
of node that records the node before it as well as the node after it, as shown in Listing
15.13. This Node class would be defined inside a class named TwoWaySequence that
implements the Collection interface.

Listing 15.13 The Node class for the TwoWaySequence class

private static class Node // inside TwoWaySequence
{

public Object itsData;

publ i c Node itsNext;

publ i c Node itsPrevious;

public Node (Object data, Node next, Node previous)
{ itsData = data;

i tsNext = next;

i tsPrevi ous = previous;
|

Implementing the TwoWaySequence class

The coding for the TwoWaySequence class is greatly simplified if we use a dummy
header node. That is, a TwoWaySequence object has one instance variable i t sHead,
which has null for i tsData. itsHead.itsNext isa Node containing the first
element on the list, and the i t sNext value for that node is a node containing the second
element on the list. This continues to the last node containing data, whose i t sNext
value is the header node (so it is a circular list).

For every case in which p. i t sNext is the Node q, it will be true that g. i t SPrevi ous
is p, and vice versa. This is called a doubly-linked list. If the sequence is empty, then
its linked list consists only of the header node, and so it sHead. it sNext is itsHead
and also i tsHead. itsPrevious is itsHead.

doubly-linked list
with no data

TS Mode
Ty OAEySeqUEnCE] -
t=Data (rwi)
; tsfext Ooe
tzHead
&> r@ﬂsF‘reviDus ﬁ

doubly-linked list with
Jelements A, B, C

T Mode Mode Mode Mode
- TwvovEySeguUEnce - - - -
it=Data Cruli) itzDiata itzDiata itzDiata
tsHead & itshlest CE—r|taMext B—|tsMext (= itaMext o=
r@ﬁsF‘revinus ——itsPrevious| ——ED tsPrevious| <D tsPrevious ﬁ

Figure 15.13 Two different doubly-linked lists

15-31 Java Au Naturel by William C. Jones 15-31

The cont ai ns method for a doubly-linked list requires the Some-A-are-B logic: You
have a Node variable p go through each node that contains data (starting with the first
one p = itsHead.itsNext)andreturn true if you see a node where itsDat a
equals the parameter. But if you run out of nodes to look in (when p == it sHead),
return fal se. This method and a constructor are in the upper part of Listing 15.14.

Listing 15.14 The TwoWaySequence class of objects, partial listing

i mport java.io.?*;
i mport java.util.*;

public class TwoWaySequence i npl enents Col | ecti on

{

private final Node itsHead = new Node (null, null, null);

publ i ¢ TwoWaySequence()

{ itsHead.itsNext = itsHead; /11
i tsHead. itsPrevious = itsHead, /12
|
publ i c bool ean contains (Cbject ob)
{ for (Node p = itsHead.itsNext; p !=itsHead; p = p.itsNext)
{ if (p.itsData.equals (ob)) /14
return true; /15
} /16
return false; 17
|

publ i c TwoWaySequence (Col | ection that)

{ itsHead.itsNext = itsHead; /18
i tsHead. itsPrevious = itsHead, /19
Iterator it = that.iterator(); /110
while (it.hasNext()) /111
{ Node last = itsHead.itsPrevious; /112

| ast.itsNext = new Node (it.next(), itsHead, last); //13

itsHead.itsPrevious = |ast.itsNext; /114

} /115
|

publ i c bool ean equal s (Obj ect ob)

{ if (! (ob instanceof Collection)) /116
return false; /117
Node p = this.itsHead.itsNext; /118
Iterator it = ((Collection) ob).iterator(); /119
while (it.hasNext()) /120
{ if (p==this.itsHead || ! p.itsData.equals (it.next()))
return false; /122
p = p.itsNext; /123
} /124
return p == this.itsHead; // != neans p has nore than it
|
public Iterator iterator()
{ return new TwoWaySequencelterator (this); /126
|

15-32 Java Au Naturel by William C. Jones 15-32

The constructor that makes a copy of a given Collection parameter runs through each
element produced by the parameter's iterator, each time finding its | ast node (the one
before it sHead) and creating a new node linked after that | ast node containing the
iterator's element. This coding is in the middle part of Listing 15.14.

For the equal s method, you first make sure that the parameter is in fact a Collection
kind of object, otherwise you return f al se. You then get an iterator for the parameter
and start with a local node variable p equal to the first node on the executor's list that
contains data. Now verify that the iterator's next () value equals p's data at each
point. Advance with p = p.itsNext each time (the iterator automatically moves on).
You also have to make sure that the iterator and p run out of values at the same time.
This coding is in the lower part of Listing 15.14. The rest of the TwoWaySequence
methods are left as exercises.

Implementing the Listlterator class

The doubly-linked list makes the Listlterator easier to implement. You can make

i t sPos always be the node before the one containing the data that next () will return.
If next () isillegal, then it sPos is just before the header node. Execution of

previ ous() always returns the element immediately before the one that next ()
would return (except if there is no element before it). Execution of next () immediately
after a call of previ ous returns the same value that was returned by previ ous() .

When renove is called, the one removed is determined by the direction in which the
iterator last moved, i.e., you remove the result of the most recent execution of next ()
or previous(). Soyou need to keep track of that direction, say in an int variable
named itsDirection: +1if next() was the mostrecent call, -1 if previ ous()
was, 0 if removal is not even allowed.

A Listlterator must also be able to return the index (zero-based) of the element that a call
of previous will return (-1 if there is no previous value) and the index of the element
that a call of next will return (si ze() if there is none). The easiest way to do that is
for the iterator to have another instance variable that keeps track of the index of the node
to which it currently refers. Callit it sl ndex. So previ ousl ndex() returns

i tslndex.

Internal invariant for TwoWaySequencelterators
The instance variable i t sPos is the Node such thati t sPos. it sNext.itsData
always contains the element that next () will return, except next () is illegal when
i t sPos. itsNext isthe header node (recognized by having itsData == nul |).
The instance variable it sl ndex is the zero-based index of the element that a call
of previous() would return;itis-1if previous() isillegal.
The instance variable i t sDi recti onis O if renove() is illegal, otherwise itis +1
or -1 depending on whether next () or previ ous() was the most recent method
call.

The only thing the hasNext method has to do is to say whether the node after i t sPos
contains any data, i.e., is not the header node. The coding for hasNext and the
constructor is in the upper part of Listing 15.15 (see next page).

The basic idea of the previ ous method is to back up it sPos by one node to be

i tsPos. itsPrevious, make a note that i tsDi rection is -1, and return the
element in the original i t sPos node. However, if it SPos was at the header node, a
call of i tsPrevious should throw a NoSuchElementException. The coding for the
previ ous method is in the middle part of Listing 15.15.

15-33 Java Au Naturel by William C. Jones 15-33

Listing 15.15 The TwoWaySequencelterator nested class of objects

private static class TwoWaySequencel t er at or
i npl enents Listlterator

{

/1 Internal invariant: itsPos.itsNext is the header node if

/1 hasNext() is false; otherwise, itsPos.itsNext is the node

/1 containing the data that next() will return.

private Node it sPos;

private int itsDirection = 0; // signals renove() not allowed

private int itslndex = -1; /1 returned by previouslndex()

publ i c TwoWaySequencelterator (TwoWaySequence gi ven)

{ itsPos = given.itsHead; /11

|

publ i ¢ bool ean hasNext ()

{ return itsPos.itsNext.itsData != null; /12

|

public Object previous()

{ if (itsPos.itsData == null) /13

t hr ow new NoSuchEl enent Excepti on ("cannot back up");//4

itsPos = itsPos.itsPrevious; /15
itsDirection = -1, /16
i tslndex--; 17
return itsPos.itsNext.itsData,; /18

|

public void add (Cbject ob)

{ if (ob == null) /19

t hrow new ||| egal Argunent Exception ("no nulls allowed");

itsPos = new Node (ob, itsPos.itsNext, itsPos); /111
itsPos.itsNext.itsPrevious = itsPos; /112
itsPos.itsPrevious.itsNext = itsPos; /113
itsDirection = O; /114
i tslndex++; /115

|

/[l the first three of the following are |l eft as exercises

public Object next() { return null; }

public void renmove() { }

public void set (Cbject ob) {

publ i c bool ean hasPrevi ous() { return itslndex >= 0; }

public int nextlndex() { return itslndex + 1; }

public int previouslndex() { return itslndex; }

}

The add method for the TwoWaySequencelterator can begin by creating a new node
containing the given data. Then the new node is linked in after it sPos and before
itsPos.itsNext,and itsDirection issetto0. The value of i t SPos hasto
become the new node, so it sl ndex has to be incremented. The coding for the add
method is in the lower part of Listing 15.15. The rest of the methods are left as
exercises.

15-34 Java Au Naturel by William C. Jones 15-34

The List interface and the LinkedList implementation

The List interface in the Sun standard library is a sub-interface of Collection (which
corresponds to a class extension). It has ten methods in addition to those of Collection,
as follows. The first five specify the index where the action is to take place. These List
methods throw Exceptions if the index values are out of range.

somelLi st. get (i ndexl nt) returns the Object at that index.

somelLi st. set (i ndexl nt, sonmeQbj ect) replaces the Object at that index by
some(bj ect and returns the Object that was replaced.

somelLi st . add(i ndexl nt, someQbj ect) inserts someCbj ect at that index.
somelLi st . renove(i ndexl nt) removes and returns the Object at that index.
somelLi st. addAl | (i ndexI nt, someCol | ecti on) adds the entire Collection at
the specified index and returns t r ue.

somelLi st. i ndexOF (soneCbj ect) returns the first index at which the Object
occurs; it returns -1 if the Object is not in the list.

someLi st. | astl ndexOf (someQbj ect) returns the last index instead.

someLi st. subList(from nt, tolnt) returns a List containing the elements at
index f r om nt on up to but not including t ol nt .

sonmeList.listlterator() returnsa new iterator, ready to start at the beginning
of the list.

someList.listlterator(indexlnt) returnsanew iterator ready to start at the
specified index, so that next() produces get(indexint).

The java.util.LinkedList class implements the List interface and has six additional
methods that perform all of the operations of a stack or queue (and then some):

addFi r st (some(hj ect), renoveFirst(),and getFirst() canbe used for
the stack operations push(soneCbj ect), pop(),and peekTop().

addLast (someQbj ect), renovelLast (), and get Last () do the same thing
except at the rear of the LinkedList instead of at the front.

Exercise 15.49 Write the TwoWaySequence method public boolean i sEnpty() .
Exercise 15.50 Write the TwoWaySequence method public int size().
Exercise 15.51 (harder) Write the TwoWaySequence method publ i ¢ bool ean add
(Ohj ect ob) to add ob at the end of the sequence.

Exercise 15.52 (harder) Write the TwoWaySequencelterator method publ i ¢ Obj ect
next ().

Exercise 15.53 (harder) Write the TwoWaySequencelterator method publ i ¢ voi d
renove() .

Exercise 15.54* Write the TwoWaySequence method publ i ¢ void cl ear ().
Exercise 15.55* Write the constructor for the TwoWaySequence class that has a String
parameter naming the file from which String values are read.

Exercise 15.56* Write the TwoWaySequence method publ i ¢ bool ean renove
(Obj ect ob).

Exercise 15.57* Write the TwoWaySequencelterator method publ i ¢ voi d set

(Obj ect ob).

Exercise 15.58** Add the push, pop, and peekTop methods to TwoWaySequence
to provide full stack capabilities. Code them to execute as fast as possible.

Exercise 15.59** Add the addLast, renovelLast, and getLast methods to
TwoWaySequence with the same function as those of LinkedList. Code them to execute
as fast as possible.

Exercise 15.60** Write the NodeSequencelterator method publ i c Obj ect

previ ous() to be added to Listing 15.12 (no references to the previous node are
stored in any node). You will need a loop to find the node before the current node.

15-35 Java Au Naturel by William C. Jones 15-35

15.11 About AbstractList and AbstractCollection (*Sun Library)

If you want to write an implementation of the Collection class, you have to code 13
methods plus some constructors. If you want to write an implementation of the List class,
you have to code 23 methods plus some constructors. The AbstractCollection and
AbstractList classes are intended to save you most of that trouble.

The AbstractCollection class

AbstractCollection is a class in j ava. uti | that implements the Collection interface. If
you declare a class to be a subclass of AbstractCollection, you only have to write the

i terator method and the si ze method (overriding those abstract methods in the
AbstractCollection class). Your iterator must implement hasNext and next, though it
can leave renove to throw an UnsupportedOperationException.

Generic coding for all the other Collection methods is provided for you. It uses the
iterator method you provide. For instance, the coding for cont ai ns might be as
follows (this generic Collection class allows null to be in the Collection). You may
override this and the other pre-coded methods for efficiency:

public bool ean contains (Cbject ob)
{ Iterator it =this.iterator();
while (it.hasNext())
{ if ((ob == null & it.next() == null)
|| (ob !'= null && ob.equals (it.next()))
return true;

}

return false;
} | | ======================

If you want your subclass of AbstractCollection to be modifiable, you have to code the
add method for the AbstractCollection and the r enove method for the Iterator.

The AbstractList class

AbstractList is a classin j ava. uti | that implements the List interface (specified in the
preceding section). If you declare a class to be a subclass of AbstractList, you only have
to write the get method and the si ze method (overriding those abstract methods in
the AbstractList class). Coding for all the other List methods is provided for you, though
the basic methods that modify the List object throw an UnsupportedOperationException.
You may override any of the pre-coded methods for efficiency if you want.

If you want your subclass of AbstractList to be modifiable, you have to override one or
more of set (i nt, Qbject), renove(int),and add(i nt, Obj ect), since these

are the only methods that throw an UnsupportedOperationException. The AbstractList
class provides a Listlterator implementation on top of the methods you provide.

The Sun standard library provides the ArrayList class, which is a complete
implementation of List using an array. Use this class for situations where it is not
worthwhile to develop your own implementation tailored to a particular piece of software.
Its use is illustrated in Section 7.11. The iterator for ArrayList is fail-fast: If the ArrayList
object is modified by any method other than the iterator's own r enove or add method,
and then any method is called for that iterator, the iterator throws a runtime Exception.

15-36 Java Au Naturel by William C. Jones 15-36

15.12 Review Of Chapter Fifteen

About the Java language:

>

You may declare a class inside of another class X, called a nested class. If the word
"static" appears before "class", this is no different from declaring it outside X except
for visibility: Private variables of X are accessible in the nested class, and public
variables of the nested class are accessible in X. The nested class itself is not
accessible to classes outside of X if the nested class is declared to be a private
member of the class. For statements and declarations inside X, the nested class
shadows (supercedes) any outside class of the same name.

A class of objects with an instance variable of that same class is called naturally
recursive. Naturally recursive nodes are used to form a linked list. An extra node
with no data at the beginning of the list is a header node; it simplifies the coding.

A circular list has its last node link up to its first node.

A doubly-linked list has each node link up to the preceding node as well as the
node after it.

About the java.util.Collection interface:

>

VVYVYVYVYYV

A Collection of elements may not allow duplicates (in which case it is a java.util.Set
kind of object) or may not guarantee a particular ordering or may not allow null (and
so throw a java.lang.lllegalArgumentException if you try to add null).

The methods that modify a Collection may be optional, which means they may throw
a java.lang.UnsupportedOperationException. A sequence, as the term is used in
this book, is a Collection for which a particular order is guaranteed, duplicates are
allowed, but null is not allowed.

sonmeCol | ecti on. si ze() returns the number of elements in the executor.
someCol | ecti on. i sEnpty() tells whether the executor has any elements.
sonmeCol | ecti on. cl ear () removes all elements from the executor.

sonmeCol | ection.iterator() returns an Iterator over the executor's elements.
sonmeCol | ecti on. t oArray() returns an array containing the executor's elements.
sonmeCol | ecti on. t oArray(anArrayd Obj ect s) returns an array containing
the executor's elements. It will be the array parameter if the parameter has room
(with null at the end if room), otherwise it will be a newly-created array.

sonmeCol | ecti on. cont ai nsAl | (aCol | ecti on) tells whether the executor
contains every element of the parameter.

sonmeCol | ecti on. cont ai ns(anCbhj ect) tells whether anQbj ect is one of the
executor's elements.

sonmeCol | ecti on. add(anCbj ect) adds anObj ect to the Collection unless
an(bj ect is already in there and the Collection does not allow duplicates. It returns
t r ue if and only if the Collection changed, as do the other four methods listed below.
sonmeCol | ecti on. renove(anObj ect) deletes one instance of anCbj ect from
the executor unless anCbj ect was not in there in the first place.

sonmeCol | ecti on. addAl | (aCol | ecti on) in essence repeatedly executes add
for each element of the parameter.

sonmeCol | ecti on. renpveAl | (aCol | ecti on) in essence repeatedly executes
renove for each element of the parameter.

sonmeCol | ecti on. retai nAll (aCol | ecti on) in essence repeatedly executes
renove for each element of the executor that the parameter does not contain.

15-37 Java Au Naturel by William C. Jones 15-37

About the java.util.lterator interface:

>

sonel t er at or . next () returns the next available element. A call of next ()
throws a java.util.NoSuchElementException if called when none is available.
Repetition of next () calls produces each element of the Collection one time.
sonel t er at or . hasNext () tells whether next has more elements available.
sonel terat or. renove() removes the element most recently returned by next .
It throws a java.lang.lllegalStateException if that element has already been
removed or if next has not been called. If removal is not allowed, it throws a
java.lang.UnsupportedOperationException.

About the java.util.List interface:

The List interface extends the Collection interface, adding the following ten methods:
somnelLi st. get (i ndexl nt) returns the Object at that index.

somnelLi st. set (i ndexl nt, sonme(bj ect) puts soneChj ect at that index and
returns the Object that it replaces.

soneli st. add(i ndexl nt, some(bj ect) inserts someQbj ect atthe
specified index.

somnelLi st. renove(i ndexl nt) removes and returns the Object at that index.
sonelLi st. addAl | (i ndexI nt, sonmeCol | ecti on) adds the entire Collection at
the specified index and returns t r ue.

sonelLi st. i ndexOf (sone(Cbj ect) returns the first index at which some(bj ect
occurs; it returns -1 if soneCbj ect is not in the list.

sonelLi st. | astl ndexOf (someQbj ect) returns the last index at which

some(bj ect occurs; it returns -1 if someObj ect is not in the list..

someli st.subList(from nt, tolnt) returns a List containing the elements at
index from nt on up to but not including t ol nt .

sonmeList.listlterator() returnsanew iterator, ready to start at the beginning
of the list.

soneList.listlterator(indexlnt) returna new iterator ready to start at the
specified index, so that next () produces the value get (i ndexlInt).

About the java.util.Listlterator interface:

>

The Listlterator interface extends the Iterator interface, adding the following six
methods. The renove and set methods delete/replace the element most
recently returned by next or previ ous, except they throw a
java.lang.lllegalStateException if next has not yet been called, or if neither next
nor previ ous has been called since the last call of r enove or add.

soneLi stlterator.add(someQbj ect) puts soneCbj ect just before the
element that next would return, or at the end if hasNext () is f al se.

sonelLi stlterator. set (some(bj ect) puts sonebj ect in place of the
element that the most recent call of next or previ ous returned.

soneLi stlterator. nextlndex() returns the zero-based index of the element
that a call of next would return; it returns the number of elements if hasNext () is
fal se.

soneli stlterator. previ ous() returns the element immediately before the
element next would return; it returns the last element if hasNext () isfal se. It
throws a java.util. NoSuchElementException if such an element does not exist.
sonelLi stlterator. hasPrevi ous() tells whether previ ous has more
elements available to be returned.

soneLi stlterator. previ ousl ndex() returns 1 less than what next | ndex()
returns.

15-38 Java Au Naturel by William C. Jones

Answers to Selected Exercises

15.1 public int size()
{ return itsSize;

}
15.2 public boolean isEmpty()
{ return itsSize == 0;

15.3 public boolean contains (Object ob)
{ for (intk = 0; k <itsSize; k++)
{ if (itsltem[k].equals (ob))
return true;

return false;

}
15.4 public ArraySequence()
{ itsltem = new Object[100]; // an arbitrary choice of length

}
15.5 public Object(] toArray()
{ return copyOf (itsltem, 1);

}
15.8 public boolean isEmpty()
{ return itsFirst == null;

}
15.9 public int howManyEqual (Object ob)
{ int count = 0;
for (Node p = this.itsFirst; p !=null; p = p.itsNext)
{ if (p.itsData.equals (ob))
count++;
}

return count;

15.13 Replace the if statement in the body of the for-statement by the following:
if (p == null)
return true;
else if (! p.itsData.equals (g.itsData))
return false;
15.14 public Object(] toArray()
{ Object[] valueToReturn = new Object [this.size()];
int count = 0;
for (Node p = this.itsFirst; p !=null; p = p.itsNext)
{ valueToReturn[count] = p.itsData;
count++;
}

return valueToReturn;

15.15 public void removeEvens() // in Node
{ for (Node p = this; p != null && p.itsNext != null; p = p.itsNext)
p.itsNext = p.itsNext.itsNext;

15.18 public boolean contains (Object ob)
{ return isin (itsFirst, ob);
}
private static boolean isIn (Node pos, Object ob)
{ return pos != null && (pos.itsData.equals (ob) || isIn (pos.itsNext, ob));
}
15.19 public void removeEvens() // in Node
{ if (itsNext != null)
itsNext = itsNext.itsNext;
if (itsNext !=null) // which it could be after the previous statement is executed
itsNext.removeEvens();

15-38

15-39

15.21

15.22

15.23

15.24

15.31

15.32

15.33

15.35

15.36

Java Au Naturel by William C. Jones 15-39

Put the following statement before the for-statement:
Object valueToReturn = itsltem[itsPos];
Put the following statement at the end of the method body:
return valueToReturn;
public boolean containsAll (Collection that)
{ Iterator it = that.iterator();

while (it.hasNext())

{ if (! this.contains (it.next()))

return false;
}

return true;

Replace the while statement by the following:
Iterator inven = inventory.iterator();
Object stopper = inven.hasNext() ? inven.next() : null;
while (it.hasNext())
{ Object data = it.next();
if (! data.equals (stopper))
System.out.println (data.toString());
else
stopper = inven.hasNext() ? inven.next() : null;

In Listing 15.8, remove the constructor, the declaration of itsSeq, and all uses of "itsSeq."
in the coding of methods, since an inner class can refer to itsSize and itsltem directly.
Also omit "static" from the class heading; that is what makes it an inner class.

public Iterator iterator()

{ return this.new ArraySequencelterator();

}

Add another instance variable to the NodeSequencelterator class, declared as follows:
private int itsindex = 0;

Add one statement to the next method: itsindex++;

Add one statement to the remove method: itsindex--;

Add the following instance method:

public int nextindex()

{ return itsindex;

public NodeSequence (Collection that)
{ this.itsFirst = copyList (that.iterator());
}
private static Node copyList (lterator it) // uses recursion
{ return it.hasNext() ? new Node (it.next(), copyList (it)) : null;
}
Initialize itsPos = null in the constructor. Replace the return statement in hasNext by:
return (itsPos == null) ? itsSeq.itsFirst != null : itsPos.itsNext != null;
Replace the next-to-last statement in next by:
itsPos = (itsPos == null) ? itsSeq.itsFirst : itsPos.itsNext;
Replace the last four lines in remove by the following (adding an "else"):
if (itsSeq.itsFirst == itsPos)
itsSeq.itsFirst = itsPos.itsNext;
else
itsPrevious.itsNext = itsPos.itsNext;
itsPos = itsPrevious;
public void clear()
{ itsFirst = null;

1. Move addLater and removeLater to the NodeSequence class, changing the method headings
as follows:

private static void addLater (Node current, Object ob)

private static boolean removeLater (Node current, Object ob)

2. Put "current." before each itsNext as a stand-alone variable in addLater or removeLater.
3. Replace the statements in add and remove that call these two methods by the following:
addLater (this.itsFirst, ob);

return removeLater (this.itsFirst, ob);

4. Replace the statements in addLater and removeLater that call these two methods by:
addLater (current.itsNext, ob);

return removeLater (current.itsNext, ob);

15-40

15.37

15.43

15.44

15.49

15.50

15.51

15.52

15.53

Java Au Naturel by William C. Jones 15-40

public boolean retainAll (Collection that)

{

boolean valueToReturn = false;
while (this.itsFirst |= null && ! that.contains (this.itsFirst.itsData))
{ this.itsFirst = this.itsFirst.itsNext;

valueToReturn = true;

if (this.itsFirst == null)
return valueToReturn;

Node p = this.itsFirst;

while (p.itsNext != null)

{ if (! that.contains (p.itsNext.itsData))
{ p.itsNext = p.itsNext.itsNext;

valueToReturn = true;

}

else
p = p.itsNext;

return valueToReturn;

}
public void set (Object ob)

{

if (! isRemovable)
throw new lllegalStateException();
itsSeq.itsltem[pos] = ob;

}
public void push (Object ob)

{

itsFirst = new Node (ob, itsFirst);

}
public Object pop ()

{

if (itsFirst == null)

throw new NoSuchElementException();
Object valueToReturn = itsFirst.itsData;
itsFirst = itsFirst.itsNext;
return valueToReturn;

}
public boolean isEmpty()

{

return itsHead.itsNext == itsHead;

public int size()

{

int count = 0;

for (Node p = itsHead.itsNext; p = itsHead; p = p.itsNext)
count++;

return count;

}
public boolean add (Object ob)

{

if (ob == null)

throw new lllegalArgumentException ("no nulls allowed");
itsHead.itsPrevious = new Node (ob, itsHead, itsHead.itsPrevious);
itsHead.itsPrevious.itsPrevious.itsNext = itsHead.itsPrevious;
return true;

}
public Object next()

{

if (itsPos.itsNext.itsData == null) // the sequence's header node
throw new NoSuchElementException ("already at end");

itsPos = itsPos.itsNext;

itsDirection = 1;

itsindex++;

return itsPos.itsData;

public void remove()

{

if (itsDirection == 0)
throw new lllegalStateException ("cannot remove");

if (itsDirection == 1)

{ itsPos = itsPos.itsPrevious; // so either way, itsPos is before the data to be removed
itsindex--;

}

itsDirection = 0; // so it cannot be removed again
itsPos.itsNext = itsPos.itsNext.itsNext;
itsPos.itsNext.itsPrevious = itsPos;

