
 Java Au Naturel by William C. Jones 12-1 12-1

12 Files And Multidimensional Arrays

Overview

In this chapter you will develop software to manage information about email messages.
The software reads information from hard-disk files into multi-dimensional arrays. Be
sure to read the first three sections of Chapter Nine on Exceptions before reading this
chapter. None of the material in this chapter is required for other chapters.

• Sections 12.2-12.3 introduce basic file-handling Sun library classes.
• Section 12.4 presents the StringTokenizer and StreamTokenizer library classes.
• Section 12.5 develops multi-dimensional arrays in detail.
• Sections 12.6 completes the development of Version 1 of the email software.
• Sections 12.7-12.9 cover more topics related to arrays and files.
• Sections 12.10-12.11 have some information on rarely-used language features and

on Java bytecode.

12.1 Analysis And Design For The Email Software

Your employer wants you to analyze the email messages that are sent between
employees. He wants this for various reasons, among which are:

• He is worried that some employees are overburdening the email system.
• He needs to monitor content of messages to check for discriminatory acts that could

cause him a lot of grief with the government if he does not detect them and do
something about them.

• He wants to see if some employees are not doing their jobs, as indicated by a very
low number of email messages sent.

The data describing the email is in files that are stored on a hard disk. Each day's email
is in a separate file. Such a file contains two lines for each email sent that day. The first
line is two words, the sender followed by the receiver (each employee has a one-word
email name). The second line is the subject line of the email. The company only has
forty-some employees, so one day's file only contains one or two thousand email
messages. Your job is to process this file and produce various statistics describing it.

The first program you are to write is to read one day's email file and produce the following
information:
• How many emails were sent that day.
• How many employees sent email that day.
• Who did not send any email at all that day.
• What was the average number of email messages sent per person.
• Which people sent at least twice as many emails as they received.
• Which people received at least twice as many emails as they sent.
• What kind of idiot sends himself email.
• Which people sent the most amount of email.
• Which people were sent the most amount of email.

Later programs will look at the subject lines themselves, even though this first program
does nothing with them. So the object design should include storing the subject lines.
The top-level design of the program is easily developed from this analysis, as shown in
the accompanying design block.

 Java Au Naturel by William C. Jones 12-2 12-2

STRUCTURED NATURAL LANGUAGE DESIGN for the main logic
1. Ask the user for the name of the file that contains one day's data and
 the name of the output file where the results are to be stored.
2. Open the data file for reading.
3. Read in all the information about email messages and store it in
 some kind of database.
4. Ask questions of that database and print out the answers to the output file.

First you need to know how to work with text files stored on a hard disk. The next two
sections introduce standard library classes for this. The Sun standard library also has
classes for working with files containing numbers and String objects rather than just
characters; those concepts are introduced in later sections of this chapter.

12.2 FileReader And BufferedReader For Input

A text file stores on the hard disk only the characters to be displayed, plus newline and
tab characters. In Word or Wordpad, make sure you select type txt when storing the
file for a program to read, not type doc. The doc type contains special coding that
specifies page numbering, margins, and other extra information that the Word software
uses.

Reading from a text file

You can create an object to read characters from a text file. The statement

 FileReader input = new FileReader ("data.txt");

creates a FileReader object connected to the file stored with the name data.txt in the
current folder on the hard disk. However, this FileReader object is only capable of
reading one character at a time or else a large array of characters.

For instance, input.read() returns the int Unicode value of the next char value (or -1
if at the end of the file). And if lotsOfChars is an array of char values, input.read
(lotsOfChars, 100, 500) attempts to read 500 characters and store them in
lotsOfChars starting at index 100; it returns the number of chars actually read (or -1 if
at the end of the file). This is illustrated by the top part of Figure 12.1.

 Figure 12.1 BufferedReader mediates between you and FileReader

 Java Au Naturel by William C. Jones 12-3 12-3

This is convenient for some purposes, but not for text files. A FileReader has no method
for reading one line of characters at a time. The statement

 BufferedReader file = new BufferedReader (input);

creates out of that FileReader a BufferedReader object that has a readLine method
(illustrated in the lower part of Figure 12.1). This method gets one entire line of input,
discards the end-of-line marker, and returns the rest as a String of characters. If you
have already reached the end of the file, this method returns the null value. You get the
next line of input by using a statement such as the following:

 String s = file.readLine();

The TextFileOp class (not Sun standard library)

It is useful to have a class to collect several independent class methods that work with
text files. Call this utilities class TextFileOp. A start on this class is in Listing 12.1 (see
next page). The findDigits method in the upper part of Listing 12.1 shows how you
can read lines from a file to find the first line that begins with a digit. It tests the condition
si != null to make sure end-of-file has not been reached, and it tests the condition
si.length() > 0 to ignore a blank line.

The BufferedReader class, the IOException class, and other classes introduced in this
section and the next, are all in the java.io package. So you need import java.io.*
at the top of a compilable file that uses these classes.

Another useful independent method would be a compareFiles method that tells
whether two text files are identical in their contents. This requires that you repeatedly
read one line from each file until you get to the end of the files. If you ever see a pair of
lines that are not equal, then the files are not identical. A reasonable structured design of
this method is in the accompanying design block. The lower part of Listing 12.1 contains
the coding for this compareFiles method.

DESIGN for the compareFiles method
1. Create two file objects connected to existing physical text files.
2. Read one line from each file.
3. Repeat the following until one of the files is finished and thus the read fails...
 3a. If the two current lines are not equal then...
 3aa. Return false as the result.
 3b. Read one more line from each file.
4. Return true if both files are finished, otherwise return false.

Reading from the keyboard

You can create an object to read characters from the keyboard. The statement

 InputStreamReader input = new InputStreamReader (System.in);

creates an InputStreamReader object connected to the keyboard, because the System
class has a InputStream object System.in which is connected to the keyboard, and
the InputStreamReader class has a constructor with an InputStream parameter.
However, this InputStreamReader object can only read one character at a time (read()
returns an int value -1 to 65535) or a large array of characters (read(char[]) returns
the number of chars read), just as for a FileReader.

 Java Au Naturel by William C. Jones 12-4 12-4

Listing 12.1 The TextFileOp utilities class; more methods later

import java.io.*; // for FileReader, IOException, and others

public class TextFileOp
{
 /** Find the first line that begins with a digit. */

 public static String findDigit (String fileName)
 throws IOException
 { BufferedReader fi = new BufferedReader
 (new FileReader (fileName));
 String si = fi.readLine();
 while (si != null)
 { if (si.length() > 0 && si.charAt (0) >= '0'
 && si.charAt (0) <= '9')
 return si;
 si = fi.readLine();
 }
 return "";
 } //======================

 /** Tell whether the two files have the same contents. */

 public static boolean compareFiles (String one, String two)
 throws IOException
 { BufferedReader inOne = new BufferedReader
 (new FileReader (one));
 BufferedReader inTwo = new BufferedReader
 (new FileReader (two));
 String s1 = inOne.readLine();
 String s2 = inTwo.readLine();

 while (s1 != null && s2 != null)
 { if (! s1.equals (s2))
 return false;
 s1 = inOne.readLine();
 s2 = inTwo.readLine();
 }
 return s1 == s2; // true only when both are null
 } //======================
}

BufferedReader's constructor accepts any Reader object; FileReader and
InputStreamReader are both subclasses of the abstract Reader class. Figure 12.2
shows the relationships among these classes. So the statement

 BufferedReader keyboard = new BufferedReader (input);

creates out of that InputStreamReader an object that has a readLine method, just as for
the file object, because both are BufferedReader objects. Now you can read whole lines
at a time instead of character-by-character. The new BufferedReader call is
analogous to an upgrade from coach to business-class -- you get the same end result,
but the way you do it is much more comfortable, as in

 String s = keyboard.readLine();

 Java Au Naturel by William C. Jones 12-5 12-5

 Figure 12.2 UML class diagram for Reader and some subclasses

By way of illustration, you could replace the first statement in the findDigit method of
Listing 12.1 by the following if you want the method to be able to read from either the
keyboard or a text file, depending on whether the filename is the empty string:

 BufferedReader fi = fileName.length() > 0
 ? new BufferedReader (new FileReader (fileName))
 : new BufferedReader (new InputStreamReader (System.in));

Handling IOExceptions

Any call of the readLine method of the BufferedReader class could possibly throw an
IOException which you must handle. So can new FileReader. Exception-handling is
discussed in detail at the beginning of Chapter Nine. What you need to know about it for
here is that you have four ways of handling this IOException:

1. Learn how to wrap each call of readLine or new FileReader in a try/catch

statement. This is discussed in Chapter Nine.
2. Write a class to encapsulate the entire problem. The Buffin class in Chapter Nine

does the wrapping for you -- the Buffin class is like an upgrade to first class. None of
its methods throws an Exception under any circumstances.

3. If the proper handling of the Exception depends on circumstances known only to the
method that calls your method, put throws IOException in the heading of your
method and let the calling method use a try/catch statement to handle it properly.

4. Put the phrase throws IOException in the heading of every method that calls
readLine or that calls a method that has that phrase in its heading. Then a failure of
a file access immediately terminates the main method with an appropriate message.

A buffer is a storage location where input values are kept until asked for. A
BufferedReader object obtains roughly 8192 characters at a time from the file and stores
them in its private buffer in RAM. Each time you call the BufferedReader's readLine
method, it gives you some of the characters from its buffer. As a consequence, you may
have only one retrieval of information from the physical hard disk file for each hundred or
so times that you execute readLine. Buffering is a much more efficient way of getting
information than reading one or a few characters at a time.

A precondition for all exercises in this chapter is that all parameters are non-null.

 Java Au Naturel by William C. Jones 12-6 12-6

Exercise 12.1 Write a TextFileOp method public static void findCaps
(String name): It opens a text file with a given name and then prints to System.out
each line of that file that begins with a capital letter.
Exercise 12.2 Write a method public int readInt() for a subclass of
BufferedReader: The executor reads one line of input from the file, parses it as an int
value, and returns that value. Return 0 on end-of-file or any NumberFormatException.
Exercise 12.3 Write a TextFileOp method public static int numChars
(String name): It returns the number of characters in the text file of the given name.
Exercise 12.4 (harder) Revise the preceding exercise to return instead the average
number of characters per line in the text file of the given name.
Exercise 12.5 (harder) Write a TextFileOp method public static boolean
descending (String name): It tells whether the lines in the file of the given name
are in descending order (i.e., if s1 is one line and s2 is the line after it, then
s1.compareTo(s2)>=0).
Exercise 12.6* Write an independent method public static void alternate
(String one, String two): It opens two text files with the given names and then
prints the lines of those two files to System.out, alternating between them. That is,
first line#1 of the first file, then line#1 of the second, then line#2 of the first, then line#2 of
the second, etc. Stop when one file is emptied.
Exercise 12.7* Write a TextFileOp method public static String firstOne
(String name): It returns the lexicographically first line of the text file with the given
name (i.e., a line s1 for which s1.compareTo(s2) <= 0 for each line s2 in the file).
It returns null if the file is empty.
Exercise 12.8** Write an application program: It gets the name of a text file from the
user at the keyboard, opens the file (but opens the keyboard if the name does not have
positive length), and prints every line that is the same as the line before it in the file.
Exercise 12.9** Write a TextFileOp method public static int numWords
(String name): It returns the number of words in the text file of the given name. The
end of a word is a non-whitespace character that is followed by either whitespace or the
end of the line. Whitespace is any character that is less than or equal to a blank.

12.3 FileWriter And PrintWriter For Output

Writing to a text file on a hard disk is slightly simpler than reading from one. You first
create a PrintWriter object using a statement as follows, with whatever String value you
want for filename. The FileWriter constructor can throw an IOException:

 PrintWriter out = new PrintWriter (new FileWriter (filename));

This opens the physical file for output. Printing starts at the beginning of the file, so you
lose whatever was in that disk file before you opened it. However, an alternative is to
open the file for appending data: new FileWriter (fileName, true) means that
whatever is already in the file is preserved, and what you write is added after it.

A FileWriter object can write one character at a time, or a whole array of characters, but
not a String of characters at once. A PrintWriter has the print and println methods
that the System.out variable has, to write many characters at a time. That is why you
"upgrade" to the PrintWriter class. In particular, these two statements

 out.print (whatever);
 out.println (whatever);

can be used to print a String, character, or number. The println method outputs a
newline character '\n' after printing its parameter, but the print method does not.
Both FileWriter and PrintWriter are subclasses of the abstract Writer class.

 Java Au Naturel by William C. Jones 12-7 12-7

It is quite important that you call the close method of a PrintWriter object when you are
finished writing to the file, before you exit the program. If you do not, you may lose the
last few lines of output. The reason is that a PrintWriter may buffer the output to cut
down on the number of times it has to access the physical file. Closing the file flushes
the buffer to the physical file (sends to the file all output that the buffer is holding onto as
an efficiency measure):

 out.close();

Writing to the terminal window

It is sometimes useful to have a PrintWriter object that writes to the terminal window.
This can be done with the following statement. When you use this screen object to print
something that you want to appear before a readLine method is executed, you should
call screen.flush() before calling the readLine method:

 PrintWriter screen = new PrintWriter (System.out);

A PrintWriter never throws an IOException. So there is no real need for an additional
wrapper class analogous to the Buffin wrapper around a BufferedReader. Figure 12.3
shows the standard library classes introduced in this section. The write(int) method
accepts a single int value that it casts to a char to be written to the file.

 Figure 12.3 UML class diagram for text output files

More TextFileOp methods

Listing 12.2 (see next page) illustrates more class methods that work with files. The
createRandoms method repeatedly picks a random integer in the range from 0000 to
9999 inclusive and writes it to the specified file. The file.print call in the inner for-
loop produces a group of four random integers followed by tab characters, so that the
numbers will be separated in the file and appear in nice columns when printed. Then the
file.println call prints the fifth random number on the line and starts a new line. The
outer for-loop produces the number of lines requested. The file is then closed.

The mergeTwo method illustrates logic for sorting information that is too massive to
store in RAM. This method takes two files that have their lines in ascending order and
produces a new combined file containing all the lines in both files, all in ascending order.
Each iteration of the loop determines which of the two String values, s1 or s2, is to be
written next to the merged file. It will be the string from the first file if the second file has
been completely read in (signaled by s2 being null) or if neither file has been completely
read in and s1 comes before s2. In all other cases, the string from the second file will
be written next. The loop continues until both input files have been read.

Exercise 12.10 Write a TextFileOp method public static void copy
(BufferedReader infile, String outName): The method copies every line in
the given BufferedReader to the text file named outName.

 Java Au Naturel by William C. Jones 12-8 12-8

Listing 12.2 More independent class methods working with files

// public class TextFileOp, continued

 /** Print the specified number of lines of random 4-digit
 * non-negative integers, 5 integers per line. */

 public static void createRandoms (String name, int numLines)
 throws IOException
 { PrintWriter file = new PrintWriter (new FileWriter (name));
 java.util.Random randy = new java.util.Random();
 for (int k = 0; k < numLines; k++)
 { for (int i = 0; i < 4; i++)
 file.print (randy.nextInt (10000) + " \t");
 file.println (randy.nextInt (10000));
 }
 file.close();
 } //======================

 /** Read from two BufferedReaders known to have their lines in
 * ascending order. Write all lines to a file named outName
 * so that the file has its lines in ascending order. */

 public static void mergeTwo (BufferedReader inOne,
 BufferedReader inTwo, String outName) throws IOException
 { PrintWriter merged = new PrintWriter
 (new FileWriter (outName));
 String s1 = inOne.readLine();
 String s2 = inTwo.readLine();
 while (s1 != null || s2 != null)
 { if (s2 == null || (s1 != null && s1.compareTo (s2) < 0))
 { merged.println (s1);
 s1 = inOne.readLine();
 }
 else // the line from inTwo is next in order
 { merged.println (s2);
 s2 = inTwo.readLine();
 }
 }
 merged.close();
 } //======================

Exercise 12.11 (harder) Write a TextFileOp method public static void under40
(String inName, String outName): It opens a BufferedReader and a PrintWriter,
then it writes to the output file every line in the input file that has less than 40 characters.
Exercise 12.12* Revise the compareFiles method in Listing 12.1 to return the first
line you see in the first file that does not exactly match the corresponding line of the
second file. Return null if the files are identical.
Exercise 12.13* Rewrite the createRandoms method in Listing 12.2 to use a single
loop, with an if-statement inside the for-loop to call either print or println.
Exercise 12.14* Write a TextFileOp method public static void capsAndSmalls
(String inFile, String outOne, String outTwo): It reads from one named
text file, prints to the second named text file each line that begins with a capital letter, and
prints to the third named text file each line that begins with a lowercase letter.
Exercise 12.15** Write a TextFileOp method public static void reverse
(String fileName): It reads all the lines in the text file of that name and writes them
back to the same file in reverse order. The file has at most 1000 lines. Use an array to
store the lines between reading and writing.

 Java Au Naturel by William C. Jones 12-9 12-9

12.4 The StringTokenizer And StreamTokenizer Classes

The design for the main logic of the Email software, presented in Section 12.1, is
repeated below for your convenience:

STRUCTURED NATURAL LANGUAGE DESIGN for the main logic
1. Ask the user for the name of the file that contains one day's data and
 the name of the output file where the results are to be stored.
2. Open the data file for reading.
3. Read in all the information about email messages and store it in
 some kind of database.
4. Ask questions of that database and print out the answers to the output file.

This design indicates the need for several kinds of objects to implement this design:

• A BufferedReader object for input.
• A PrintWriter object for output.
• A Message object to represent one email message.
• An EmailSet object to store the number of emails from each person to each other

person.

You already have BufferedReader and PrintWriter objects, so next consider what a
Message object has to be able to do. You need to construct a Message object that
contains the information about the next email message obtained from the
BufferedReader object. And you need to be able to ask that Message object for its
sender, its receiver, and its subject heading.

How will you recognize, when you construct a Message object for the next email in the
BufferedReader object, that you have already come to the end of the file? A reasonable
method is to have the constructor return a Message with a null sender when the end of
the input is reached. That is, someMessage.getSender() returns null to signal the
Message had no input to get data from. So we can use this sort of logic:

 Message data = new Message (file);
 while (data.getSender() != null)
 { // various statements go here to process one data value
 data = new Message (file);
 }

 Java Au Naturel by William C. Jones 12-10 12-10

The StringTokenizer methods

The Message constructor uses a new standard library class named StringTokenizer, from
the java.util package, which includes several highly useful methods for breaking up
a string of characters into its individual words:

• new StringTokenizer (inputString) establishes the parameter as the input

string of characters for the executor. It throws a NullPointerException if the
parameter is null.

• someStringTokenizer.nextToken() returns the next available token from the
input string and advances in the sequence of tokens. It throws a
java.util.NoSuchElementException if no more tokens are available.

• someStringTokenizer.hasMoreTokens() tells whether the input string has any
tokens left that have not yet been returned by nextToken.

• someStringTokenizer.countTokens() tells how many more times you may call
nextToken for this StringTokenizer object.

A StringTokenizer easily breaks up a String value into parts separated by blanks. These
parts are called tokens, which is a more general term than "words". Specifically, a token
within a String value is a sequence of non-whitespace characters with whitespace on
each side (the beginning and end of the String value count as whitespace for purposes of
this definition). Using a StringTokenizer is much easier than writing methods such as
trimFront and firstWord in the StringInfo class of Chapter Six. (Whitespace
includes blanks, tab characters, newline characters, and form feeds to start a new page.)
Listing 12.3 (see next page) illustrates the use of a StringTokenizer object for the Email
software.

The following logic illustrates the use of hasMoreTokens to count all tokens in a String
that start with a numeric digit. The if-condition illustrates the kind of hard-to-follow logic
some students produce, thinking it is classier. You would not do anything like that in your
own programs, would you? An exercise has you clean it up:

 public static int countNumerals (String s) // independent
 { int count = 0;
 StringTokenizer data = new StringTokenizer (s);
 while (data.hasMoreTokens())
 { if ((data.nextToken().charAt (0) - '0' + 10) / 10 == 1)
 count++;
 }
 return count;
 } //======================

The StreamTokenizer class

If you need more flexibility than what StringTokenizer offers, java.io contains the
StreamTokenizer class, which reads in a file and separates it into tokens. It can be set
to skip Java comments and to treat everything from a quote mark down to its end-quote
as a single token, with proper adjustments for the backslash character. The following are
a start on understanding StreamTokenizer, but you have to read the javadoc description
in the java documentation on your hard disk or online to use it properly:

• new StreamTokenizer(someReader) creates the file processing object.
• someStreamTokenizer.nextToken() returns an int value such as TT_WORD

(the current token is a word), TT_NUMBER (the current token is a number), TT_EOF
(end-of-file has been reached), or the int equivalent of the one-character token.

 Java Au Naturel by William C. Jones 12-11 12-11

Listing 12.3 The Message object class for the Email software

import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.io.IOException;

public class Message
{
 private String itsReceiver = null;
 private String itsSubject = null;
 private String itsSender = null;

 /** Create a Message object from the next two lines of the
 * source file. Set sender to null at end-of-file. */

 public Message (BufferedReader source) throws IOException
 { String s = source.readLine();
 if (s != null)
 { StringTokenizer line = new StringTokenizer (s);
 if (line.hasMoreTokens())
 { itsSender = line.nextToken();
 if (line.hasMoreTokens())
 { itsReceiver = line.nextToken();
 itsSubject = source.readLine();
 }
 }
 }
 } //======================

 public String getSender()
 { return itsSender;
 } //======================

 public String getReceiver()
 { return itsReceiver;
 } //======================

 public String getSubject()
 { return itsSubject;
 } //======================
}

Exercise 12.16 Revise the Message constructor in Listing 12.3 to return a Message with
itsSender being null when the first line of the input has only one token.
Exercise 12.17 Revise the body of the while-statement in the countNumerals
method to be much clearer to the reader.
Exercise 12.18 Explain why the countNumerals method in the text cannot test the
simpler expression (data.nextToken().charAt (0) - '0') / 10 == 0.
Exercise 12.19* Write an independent method public static int numTokens
(String name): It returns the number of tokens in the text file of the given name.
Exercise 12.20* Write an independent method public static boolean
ascending (String given): It tells whether all of the tokens in a given String
parameter are in ascending order. Use StringTokenizer.

 Java Au Naturel by William C. Jones 12-12 12-12

12.5 Defining And Using Multidimensional Arrays

One part of the Email main logic requires storing the information from a Message object
in some sort of EmailSet database object. This EmailSet object class needs a
constructor and a method for adding the information from a single Message object. For
this Version 1 of the software, that information is just a count of emails between two
specific people without trying to store the subject line.

It also makes sense to have methods to retrieve the total number of Message objects
added so far, the total number of employees who were sending email that day, and the
total number sent from one specific person from to another specific person to. These
methods supply all you need to calculate the average number sent.

The standard way of storing one piece of information for each <from,to> pair of values is
a two-dimensional array. But this requires that <from,to> be non-negative integers rather
than Strings. If a Message object could produce integer-valued codes for the employees,
rather than their actual email names, you could use the structure shown in Listing 12.4 for
the EmailSet objects: itsItem[from][to] is the number sent from from to to.

Listing 12.4 The EmailSet object class, some methods postponed

public class EmailSet
{
 public static final int MAX = 50;
 /////////////////////////////////
 private int[][] itsItem = new int[MAX][MAX];
 // all components of the array are initially zero
 private int itsSize = 0;
 // non-zero entries are indexed 0..itsSize-1
 private int itsNumEmails = 0; // total of all non-zero entries

 /** Add the given message to the set of stored emails. */

 public void add (Message given)
 { // logic to find <from,to> codes for sender and receiver
 itsItem[from][to]++;
 itsNumEmails++;
 } //======================

 /** Return the total number of emails sent. */

 public int getNumEmails()
 { return itsNumEmails;
 } //======================

 /** Return the total number of employees sending email. */

 public int getNumEmployees()
 { return itsSize;
 } //======================

 /** Return the number of emails sent from from to to. */

 public int numSent (int from, int to)
 { return itsItem[from][to];
 } //======================
}

 Java Au Naturel by William C. Jones 12-13 12-13

Defining multi-dimensional arrays

You declare an N-dimensional array the same way as a one-dimensional array, except
that you give N empty pairs of brackets where you would otherwise give just one. In the
constructor phrase of the new array, you give N pairs of brackets, each filled with the
number of different index values you want to use in that position.

Examples: To declare and construct a 2-dimensional array to record a money amount
owed to any of 7 different loan companies by any of 20 students, you could use this:

 double [] [] amountOwed = new double [7] [20];

So amountOwed[5][2] is the amount owed to loan company #5 by student #2,
numbering from 0 on up. Figure 12.4 shows an illustration of this.

 Figure 12.4 Two-dimensional array of numbers

To record a Color value for each pixel in a display 300 pixels wide and 400 pixels tall, you
could use this:

 Color [] [] itsColor = new Color [300] [400];

To record whether any of 12 different computer professionals are competent in the use
any of 30 different pieces of software, you could use this:

 boolean [] [] isCompetent = new boolean [12] [30];

To record the character in any of 40 different books on a bookshelf, on any of up to 300
pages in the book, on any of the 45 different lines on that page, in any of the 65 different
character positions (reading left to right) on that line, you could use this:

 char [] [] [] [] letter = new char [40] [300] [45] [65];

However, Java programmers virtually never use an array of more than two dimensions. It
is almost always clearer to have a one- or two-dimensional array of objects that embody
several more dimensions. For instance, a Color is actually a sequence of three int values
ranging 0 to 255, each representing an RGB value (red/green/blue), so that the
itsColor array declared above is actually a 5-dimensional array in disguise.

 Java Au Naturel by William C. Jones 12-14 12-14

The book example could be done as follows, where a bookshelf is a 2-dimensional
array of Pages, and a Page is an object that contains a rectangular array of letters:

 Page[][] bookshelf = new Page[40][300];
 class Page { private char[][] letter = new char[45][65];...}

Applications to EmailSet objects

All indexes in all Java arrays start from 0 and go on up. An
EmailSet object stores the number of emails sent from person
from to person to in the variable itsItem[from][to], part
of a two-dimensional array of ints. The following EmailSet methods
all adapt logic you have seen before with one-dimensional arrays or
other kinds of sequences. Figure 12.5 shows what this array of int
values might contain if there were only five employees. Figure 12.5

You may ask an EmailSet object for the total number of emails sent to a person with a
particular code number, which it could answer if it had this method, running through all
permissible values of the first index:

 public int numSentTo (int code) // in EmailSet
 { int count = 0;
 for (int from = 0; from < itsSize; from++)
 count += itsItem[from][code];
 return count;
 } //======================

You could ask an EmailSet object for the smallest number of emails sent from a person
with a particular code, which it could answer if it had this method, running through the
values of the second index:

 public int minSentFrom (int code) // version 1; in EmailSet
 { int min = itsItem[code][0];
 for (int to = 1; to < itsSize; to++)
 { if (min > itsItem[code][to])
 min = itsItem[code][to];
 }
 return min;
 } //======================

Some people find this logic easier to understand when it is written as follows, where the
one-dimensional int array variable oneRow replaces itsItem[code]:

 public int minSentFrom (int code) // version 2; in EmailSet
 { int[] oneRow = itsItem[code]; // name the row, for clarity
 int min = oneRow[0];
 for (int to = 1; to < itsSize; to++)
 { if (min > oneRow[to])
 min = oneRow[to];
 }
 return min;
 } //======================

You could ask an EmailSet object for the code of the person who sent the largest number
of emails to himself, which it could answer if it had the following method, running along
the diagonal of the array (where indexes are equal). Note that there is no need to have
a separate variable max that keeps track of the largest value seen so far (on the
diagonal). All you need to track is the row and column number code of the largest item.

 Java Au Naturel by William C. Jones 12-15 12-15

 public int codeOfMaxSelfSent() // in EmailSet
 { int code = 0;
 for (int k = 1; k < itsSize; k++)
 { if (itsItem[code][code] < itsItem[k][k])
 code = k;
 }
 return code;
 } //======================

Note that all four of the preceding methods in this section return zero if itsSize is zero,
since int array components are always initialized to zero by the runtime system.

You could ask an EmailSet object whether any person sent more than ten emails to any
one person, which it could answer if it had this method, called with the parameter 10 and
running through all possible combinations of the values of both indexes:

 public boolean anyMoreThan (int cutoff) // in EmailSet
 { for (int from = 0; from < itsSize; from++)
 { for (int to = 0; to < itsSize; to++)
 { if (itsItem[from][to] > cutoff)
 return true;
 }
 }
 return false;
 } //======================

Exercise 12.21 Declare and construct a 3-dimensional array representing the names of
the three best friends of the 25 different students in five different classrooms. What
expression represents the name of the second friend listed of student #12 in classroom
#2, numbering students and classrooms from 0 up?
Exercise 12.22 Declare and construct a 2-dimensional array representing the ages of
each of two children of each of two people. Then write an expression for the average
age of all four children.
Exercise 12.23 Revise the anyMoreThan method to ignore emails one sends to
oneself.
Exercise 12.24 Write an EmailSet method public boolean allLessThan (int
cutoff): The executor tells whether everyone sent less than cutoff emails to every
other person. Call the anyMoreThan method to do most of the work.
Exercise 12.25 (harder) Write an EmailSet method public int maxSentTo (int
code): The executor tells the largest number of emails sent to a person with a given
code.
Exercise 12.26 (harder) Write an EmailSet method public int numPeopleSentBy
(int code): The executor tells the number of people to whom one or more emails
were sent by a person with a given code.
Exercise 12.27* Write an EmailSet method public boolean complex (int code,
int cutoff, int num): The executor tells whether a given person sent more than
cutoff emails to at least num different people.
Exercise 12.28** Write an EmailSet method public int howMany (int cutoff,
int num): The executor tells the number of people who sent more than cutoff
emails to at least num different people.
Exercise 12.29** Write an EmailSet method public boolean pariah (int
cutoff): The executor tells whether there is any person who was sent less than
cutoff emails by all other persons. That is, tell whether there is any column of the
rectangular array where all non-diagonal components are less than 5.

 Java Au Naturel by William C. Jones 12-16 12-16

Part B Enrichment And Reinforcement

12.6 Implementing The Email Software With A Two-Dimensional
Array

The discussion so far leads to the implementation of the Email software shown in Listing
12.5. Each line of the main logic design translates to just a few Java statements except
for printing the statistics. So a printStatistics method goes in a helper class
EmailOp to carry out that task separately.

The program can be run by entering e.g.

 java EmailStats email09Sep02.dat results.dat

as the command line in the terminal window. That passes the two file names to the
program in the command line arguments args[0] and args[1]. Since it is easy for
a user to occasionally forget to enter one or both file names, the program begins by
verifying that it has at least two String values for the file names. If it does not, it prints an
appropriate message and terminates the program.

Listing 12.5 Application program for the Email software

import java.io.*;

public class EmailStats
{
 /** Read one day's email file and print several usage
 * statistics about it. */

 public static void main (String[] args) throws IOException
 {
 if (args.length < 2)
 System.out.println ("Specify the two file names");
 else
 {
 // CONSTRUCT THE EMAIL FILE AND THE DATABASE
 BufferedReader inputFile = new BufferedReader
 (new FileReader (args[0]));
 EmailSet database = new EmailSet();

 // READ THE EMAIL FILE AND STORE IT IN THE DATABASE
 Message data = new Message (inputFile);
 while (data.getSender() != null)
 { database.add (data);
 data = new Message (inputFile);
 }

 // PRINT THE RESULTS TO THE OUTPUT FILE
 if (database.getNumEmployees() > 0)
 EmailOp.printStatistics (database, new PrintWriter
 (new FileWriter (args[1])));
 }
 } //======================
}

 Java Au Naturel by William C. Jones 12-17 12-17

Reading the Messages uses the standard sentinel-controlled loop: You must check each
Message read to see if it signals the end-of-file condition was present when it tried to get
the data. As long as it was not, add it to the database. When it signals end-of-file, the
program can stop reading values and start printing results.

The printStatistics method call has two parameters, the database and the output
file, because the database provides the results and the output file accepts the output.
The next thing to be done is to design the logic for the printStatistics method in
the EmailOp class. In the process, you will see what additional methods the EmailSet
class needs.

The printStatistics method

Statistics to be printed include the number of emails sent, the number of people who sent
them, and the average sent per person. The earlier Listing 12.4 has EmailSet methods
that provide the information needed to calculate these statistics.

You also need to go through the employees one at a time (code numbers going from 0 up
to the number of employees) and print out for each one whether he did not send any
email. If he sent email, you need to print out whether he received at least twice what he
sent, or he sent at least twice what he received, and whether he ever sent email to
himself.

To obtain this information, you need to be able to ask an EmailSet for the name of the
employee with a given code number and for the number of emails sent to or from a given
code number. Call the former method findEmployee. You should calculate the ratio
db.numSentTo(k)/db.numSentFrom(k) and then print db.findEmployee(k) if
that ratio is at least 2.0 or at most 0.5. Listing 12.6 (see next page) contains an
implementation of this logic for the printStatistics method.

Programming Style: The printStatistics method contains three cases
in which a value is obtained from the database by a method call and stored in a
simple variable to make the execution faster or the logic clearer. Two cases are
size = db.getNumEmployees() and largest = db.mostSent(), to

avoid making the method calls many times during the for-loops. The general principle is
that, when you retrieve the same value three or more times, you should usually retrieve it
once and remember it. The other case is name = db.findEmployee(k). It does not
save significant time, but it seems clearer to use a simple name in four places rather than
the method call.

The EmailSet class

The most important addition to make to the EmailSet class is a way of shifting back and
forth between the name (email address) of an employee and the code number used to
store information about him in the database. When you add a given Message to the data
base, you have to find the code that corresponds to given.getSender() and
given.getReceiver(). And when printStatistics has information about a
code number, it wants findEmployee(k), the name corresponding to k, for its output.

An elementary way of doing this is to have each EmailSet object maintain another array
of names entered so far. Call it itsName. The first name entered goes in
itsName[0], and 0 is its code. The second name entered goes in itsName[1], and 1
is its code, and so forth. You can keep track of the total number of different names
entered so far in a variable named itsSize (P.S. You know, don't you, that you can
choose any name you like, such as ralph? It is just that itsSize is so much more
informative).

 Java Au Naturel by William C. Jones 12-18 12-18

Listing 12.6 The EmailOp helper class

class EmailOp // helper class for Email
{
 /** Print the statistics about email usage. Precondition:
 * db and out are non-null, and db is not empty. */

 public static void printStatistics (EmailSet db,
 PrintWriter out)
 { // PRINT OVERALL AVERAGE
 int size = db.getNumEmployees(); // for speed of execution
 out.println (db.getNumEmails() + " email sent by "
 + size + " people; average sent per person = "
 + (1.0 * db.getNumEmails()) / size);

 // PRINT THOSE WITH HEAVY IMBALANCE IN SENT VS RECEIVED
 for (int k = 0; k < size; k++)
 { String name = db.findEmployee (k);
 if (db.numSentFrom (k) == 0)
 out.println (name + " did not send any email.");
 else
 { double ratio = 1.0 * db.numSentTo (k)
 / db.numSentFrom (k);
 if (ratio >= 2.0)
 out.println (name + " received twice the sent.");
 else if (ratio <= 0.5)
 out.println (name + " sent twice the received.");
 if (db.numSent (k, k) > 0)
 out.println (name + " sent himself email.");
 }
 }

 // PRINT THOSE WHO SENT THE MOST AMOUNT OF EMAIL
 int largest = db.mostSent();
 for (int k = 0; k < size; k++)
 { if (db.numSentFrom (k) == largest)
 out.println (db.findEmployee (k) + " sent most.");
 }
 out.close();
 } //======================
}

When you get a Message object, you need to search for each of the sender and the
receiver of the message. So you call a private method findCode(employee) to ask
the EmailSet object to search through the itsName array to see if the employee (a
String value) is already in it. If so, it returns the index where it found that employee. If
not, it adds the employee at the end of the list in itsName[itsSize] and returns that
index, after incrementing itsSize by 1.

The public findEmployee method that the application uses need only return
itsName[code]. The mostSent method has to find the code of the person who sent
the most amount of email. It can go through each of the code values to find the value of
numSentFrom(k) that is largest. This uses the standard logic for finding the maximum
value in an array.

 Java Au Naturel by William C. Jones 12-19 12-19

The finished EmailSet class is in Listing 12.7, except for the parts already presented in
the earlier Listing 12.4 and the numSentTo method which is in the next section. Two
defects left to be fixed in the exercises are (a) the mostSent method is unnecessarily
slow in execution and (b) the program crashes if you have more than MAX employees.

Listing 12.7 The rest of the EmailSet class except numSentTo

// public class EmailSet continued

 private int[][] itsItem = new int[MAX][MAX]; // initially zero
 private String[] itsName = new String[MAX];
 private int itsSize = 0;
 private int itsNumEmails = 0;

 public void add (Message given)
 { int from = findCode (given.getSender());
 int to = findCode (given.getReceiver());
 itsItem[from][to]++;
 itsNumEmails++;
 } //======================

 /** Precondition: 0 <= code < getNumEmployees() */

 public String findEmployee (int code)
 { return itsName[code];
 } //======================

 private int findCode (String employee)
 { for (int k = 0; k < itsSize; k++)
 { if (employee.equals (itsName[k]))
 return k;
 }
 itsName[itsSize] = employee;
 itsSize++;
 return itsSize - 1;
 } //======================

 public int numSentFrom (int code)
 { int count = 0;
 for (int k = 0; k < itsSize; k++)
 count += itsItem[code][k];
 return count;
 } //======================

 public int mostSent()
 { int max = numSentFrom (0);
 for (int k = 1; k < itsSize; k++)
 { if (max < numSentFrom (k))
 max = numSentFrom (k);
 }
 return max;
 } //======================

 Java Au Naturel by William C. Jones 12-20 12-20

Exercise 12.30 How would you rewrite Listing 12.5 and Listing 12.6 so that the
PrintWriter is created within the printStatistics method rather than on the way to it?
Exercise 12.31 Rewrite the mostSent method in Listing 12.7 to avoid two calls to the
same method, since that method executes a for-statement on each call.
Exercise 12.32* The variable name is mentioned four times in the printStatistics
method after it is declared. How many times is it actually evaluated on each iteration?
Exercise 12.33* Perhaps the employer would at times like a shortened version of the
statistics, giving only the total number sent and the average sent per person. This is to
be indicated by a third command-line argument. What would you revise in Listing 12.5
and Listing 12.6 to terminate the printStatistics method after the one line is
printed whenever the command line contains at least one more argument?
Exercise 12.34* What changes would be required in Listing 12.6 and Listing 12.7 so that
the software reports those who sent the least amount of email rather than the most?
Exercise 12.35* Draw the UML class diagram for the EmailStats class.
Exercise 12.36* Draw the UML class diagram for the EmailOp class.
Exercise 12.37** Revise the Email software to terminate gracefully when there are more
than MAX employees. As it is now, it crashes with an ArrayIndexOutOfBoundsException
in the findCode method.

12.7 Using A Two-Dimensional Array Of Airline Data

Suppose you are working on software to handle a database of airline flights between
various cities. Each city has a code number from 0 up through MAX-1, where MAX is a
positive integer. An appropriate data structure for this information is a two-dimensional
array of Flight objects stored in RAM:

 private Flight [][] plane = new Flight [MAX][MAX];

So plane[dep][arr] is one component of this array. It is a description of the
airplane flight departing from the city with code dep and arriving in the city with code arr.
If that particular city-to-city combination does not have a direct flight, then null is stored in
the array at that component.

The Flight class could have the following instance variables. Note that all are final,
which means that, once the constructor assigns a value, it cannot be changed. The
objects are immutable. So it does not violate encapsulation principles (and it is
convenient) to make the instance variables all public:

 // public class Flight: five instance variables
 public final String aircraftType;
 public final double ticketPrice;
 public final int numSeats; // available unreserved
 public final int numReservations;
 public final long filePosition;

These instance variables are self-explanatory except filePosition, which is
explained shortly. This Flight class has one constructor and no other methods. The
constructor simply initializes all fields:

 public Flight (String type, double price, int seats,
 int reservations, long position)
 { aircraftType = type;
 ticketPrice = price;
 numSeats = seats;
 numReservations = reservations;
 filePosition = position;
 } //======================

 Java Au Naturel by William C. Jones 12-21 12-21

Suppose you have a FlightSet class with the plane array as one instance variable, a
2-dimensional array of Flight objects. The logic for a method to find the cheapest ticket
price from any city to any other city could then be as follows, relying on the quite
reasonable assumption that there must be at least one flight with a price under a million
dollars: (1) Set smallestSoFar to be a million dollars. (2) Inspect each Flight object
in the database and, wherever you see one that is not null and has a smaller ticket price
than the value stored in smallestSoFar, replace that value. (3) return the value of
smallestSoFar. Listing 12.8 contains this logic.

This technique of initializing smallestSoFar to a ridiculously high value, to assure it is
replaced by the first real piece of data, is not as efficient and not as robust as the usual
technique of initializing it to the first value in the data set. But the latter technique does
not work as well when several values can be null, as in this example.

Listing 12.8 The FlightSet class, but with only one of its methods

public class FlightSet
{
 public static final int MAX = 20;
 private Flight[][] plane = new Flight[MAX][MAX];

 /** Return the fare for the flight with the lowest fare.
 * However, return any value if there are no flights. */

 public double cheapestFare()
 { double smallestSoFar = 1000000.0; // a million dollars
 for (int dep = 0; dep < MAX; dep++)
 { for (int arr = 0; arr < MAX; arr++)
 { if (plane[dep][arr] != null
 && plane[dep][arr].ticketPrice < smallestSoFar)
 smallestSoFar = plane[dep][arr].ticketPrice;
 }
 }
 return smallestSoFar;
 } //======================
}

Exercise 12.38 Write a FlightSet method public int howManyArriveAt (int
city): The executor tells how many flights arrive at a given city.
Exercise 12.39 Write a FlightSet method public int numSeatsAvailableFrom
(int city): The executor tells the total number of seats available (unreserved) out of
a given city to all the rest of the cities.
Exercise 12.40 (harder) Write a FlightSet method public int flightsOver():
The executor tells the total number of flights that are more than half full.
Exercise 12.41 (harder) Write a FlightSet method public int roundTrips(): The
executor tells how in many cases two different cities have direct flights both ways.
Exercise 12.42* Write a FlightSet method public boolean fairlyDirect (int
fromCity, int toCity): The executor tells whether you can get from one given city
to another given city either directly or with one stopover.
Exercise 12.43** Write a FlightSet method public void costlyDirect(): The
executor prints out all cases in which it is more expensive to fly directly from a city to
another city than it is to go by way of some other city as the one stopover.
Exercise 12.44** Write a FlightSet method public int planeTypes(): The
executor tells the number of different airplane types, computed over all flights. Hint:
Study what findCode does in Listing 12.7.

 Java Au Naturel by William C. Jones 12-22 12-22

12.8 The RandomAccessFile Class

The airline data described in the previous section is kept in an array in RAM because it is
far cheaper in terms of execution time to answer requests for information using the array
rather than reading it from a data file. But you have to worry that someone could kick the
plug or spill a drink on the computer, thereby losing all your data. So each time a change
is made in the data stored in RAM (in the plane array), this data should be updated in a
binary file on the hard disk.

A binary file is one that stores values in the form that they have in RAM, not in the form
that they appear on the screen. For instance, the int values 3 and 47312 are one
character and five characters, respectively, when written on the screen or stored in a
String value. But in RAM, every int value takes up exactly four bytes of space. Writing
information in binary form executes much faster than writing it in textual form.

The RandomAccessFile class

The FlightSet class could define a binary file instance variable as follows:

 java.io.RandomAccessFile raf = new java.io.RandomAccessFile
 ("flight.data", "rw");

Random-access means that you can read from or write to any point in the file without
first going through all the values at the beginning of the file, as you have to do with a
sequential file. "rw" signals that you can both read and write with this particular file;
the other choice for the second parameter is "r" for a read-only file. You can write all
the basic kinds of values to the file if you use the appropriate method, e.g.:

 raf.writeDouble(-3.72) // write 8 bytes
 raf.writeInt(47) // write 4 bytes
 raf.writeChar('x') // write 2 bytes, Unicode
 raf.writeChars("test case") // write that many 2-byte chars
 raf.writeBoolean (done) // write 1 byte (1==true)

You also have the corresponding methods for reading values, except that the String input
is somewhat different: The readLine method only handles the basic Unicode values 0
to 255 well; it stops reading when it read in a newline or end-of-file, but it does not include
the newline character in the String value returned. The following all return the value of
the type specified:

 raf.readDouble() // read 8 bytes
 raf.readInt() // read 4 bytes
 raf.readChar() // read 2 bytes, Unicode
 raf.readLine() // read to newline or end-of-file
 raf.readBoolean() // read 1 byte; 0 is false, others true

Of course, you have the corresponding input and output methods for bytes, shorts, floats,
and longs. The only other RandomAccessFile methods you need for now are as follows:

 raf.close() // disconnect when done with the file
 raf.length() // return the long number of bytes in the file
 raf.seek(n) // set the point where reading or writing next
 // takes place. n is a long value.

raf.seek(n) sets the read/write point, called the file-pointer position, at the byte of
that number, numbering from 0 on up as always. So raf.seek(1000);
raf.writeInt(47) writes four byte values at positions 1000, 1001, 1002, and 1003.

 Java Au Naturel by William C. Jones 12-23 12-23

All the RandomAccessFile methods can throw an IOException or a subclass of
IOException. Figure 12.6 illustrates the use of these methods.

 Figure 12.6 illustration of reading and writing with a random-access file

Now the purpose of the filePosition field in a Flight record should be clear. When
you modify the data stored in a particular component of the plane array (replacing the
existing Flight record by a new one), you backup the RAM data as follows:

 public void writeRecord (Flight flit) throws IOException
 { raf.seek (flit.filePosition);
 raf.writeChars (flit.aircraftType + "\n");
 raf.writeDouble (flit.ticketPrice);
 raf.writeInt (flit.numSeats);
 raf.writeInt (flit.numReservations);
 } //======================

Each time you write to a random-access file, the file-pointer position moves forward by
the number of bytes written. That is why the writeRecord method works without
having the int values overwrite the chars and double. The same forward motion happens
with reading from a random-access file.

Writing beyond the end of the file is allowed; it extends the file to that point. Reading
beyond the end of the file throws an IOException of some kind. You may find the current
position of the file pointer by calling raf.getFilePointer(); it returns a long value.

Categories of standard file classes

The Sun standard library has six basic groups of classes of file objects, all in java.io:

1. Reader is an abstract class whose many subclasses read into arrays of chars.
2. Writer is an abstract class whose many subclasses write from arrays of chars.
3. InputStream is an abstract class whose many subclasses read into arrays of bytes.
4. OutputStream is an abstract class whose many subclasses write from arrays of

bytes.
5. StreamTokenizer is a concrete class for treating a text file as a Java program.
6. RandomAccessFile is a concrete class for random access of a text file.

Exercise 12.45 Write a FlightSet method public void readRecord (Flight
flit, long filePosition): The executor reads a record from the random access
file raf at a particular file position into a particular Flight variable. The record was
written by the writeRecord method coded in this section.
Exercise 12.46* Write an independent method public static swapTwo (long
filePosition): It reads two consecutive double values from the random-access file
raf at a given file position and swaps the two values in the file.

 Java Au Naturel by William C. Jones 12-24 12-24

12.9 How Buffering Is Done

Pretend for a bit that you do not have BufferedReader, only the InputStreamReader class
and its subclass FileReader. The purpose of this exercise is twofold: (a) You will
understand the separate roles of the BufferedReader class and the other two classes,
and (b) you will develop more competence with arrays, particularly char arrays.

A structure that occurs frequently in the Sun standard library is an array of characters.
This can be used to store one character in each component. A text file, for instance, is
just a long sequence of characters. If it is not overly large, you can read it into a single
char array and process the information in it.

FileReader is a subclass of InputStreamReader that adds only some constructors. This
is to make opening a file a one-step process rather than a two- or three-step process.
The main non-constructor methods you have in InputStreamReader (and thus in
FileReader by inheritance) are as follows. All three can throw an IOException:

• int read() obtains a single character from the file. It returns -1 at end-of-file.
• int read(char[] cbuf, int off, int len) attempts to read len

characters into the char array cbuf starting at component off. It returns the number
of characters read, except it returns -1 if it previously reached end-of-file.

• void close() disconnects from the file.

You can create your own class to read values from the file 8192 characters at a time and
respond to readLine requests. This Buffy class, shown in Listing 12.9 (see next
page), has five instance variables. The itsBuf array is to hold 8192 characters you
read from the itsInput file, or less if you have reached the end of the file. The
itsSize variable keeps track of the number of useable characters in the array; this will
be 8192 unless you have reached the end of the file. The itsNextChar variable
keeps track of the index of the next available character in the array. So the characters
indexed itsNextChar... itsSize-1 have been read from the file but not
"consumed" by readLine yet. The logic for readLine is rather complex, so you
need to design it carefully. The accompanying design block gives a reasonable plan.

STRUCTURED NATURAL LANGUAGE DESIGN for the readLine method
If the number of "unconsumed" characters in the buffer gets below 2000 and
there are more characters in the file then...
 Move the ones you have to the front of the array.
 Go get some more characters from the file.
If you are still out of characters then...
 Return null as the answer to the readLine query.
Record in start the current position in the buffering array.
Count the number of characters down to the next newline character '\n'.
Return a String consisting of that many characters starting from start.

You also need a private method to fill in the buffer starting from some particular index;
you could call it using fillBufferStartingAt(front). It uses the read method
from InputStreamReader to get as much as possible into the array. A call of the read
method must supply the char array to be filled in, the first index where the filling is to
begin, and the number of characters to fill in. The array will be filled completely
(itsSize == MAX) unless you get to the end of the file first.

The logic for readLine uses the String constructor that accepts a slice of a char array:
new String (itsBuf, start, count). This logic is simplified by the assumption
that no line has more than 2000 characters. It is an exercise to remove this assumption.

 Java Au Naturel by William C. Jones 12-25 12-25

Listing 12.9 The Buffy class

import java.io.Reader;
import java.io.IOException;

public class Buffy
{
 public static final int MAX = 8192;
 /////////////////////////////////
 private Reader itsInput; // the file or keyboard input
 private char[] itsBuf; // chars read but not used
 private int itsSize; // number of chars stored
 private int itsNextChar; // position of next char
 private boolean itsAtEndOfFile; // true when no more to read

 public Buffy (Reader given) throws IOException
 { itsInput = given;
 itsBuf = new char[MAX];
 fillBufferStartingAt (0); // get the first characters
 } //======================

 private void fillBufferStartingAt (int loc) throws IOException
 { itsSize = loc + itsInput.read (itsBuf, loc, MAX - loc);
 itsAtEndOfFile = itsSize < MAX;
 if (itsAtEndOfFile)
 itsInput.close();
 itsNextChar = 0;
 } //======================

 public String readLine() throws IOException
 { if (itsNextChar >= itsSize - 2000 && ! itsAtEndOfFile)
 downShiftAndFill();
 if (itsNextChar >= itsSize) // no more characters
 return null;
 int start = itsNextChar;
 int count = 0;
 while (itsBuf[start + count] != '\n')
 count++;
 itsNextChar = start + count + 1; // prepare for next call
 return new String (itsBuf, start, count);
 } //======================

 private void downShiftAndFill() throws IOException
 { for (int k = itsNextChar; k < itsSize; k++)
 itsBuf[k - itsNextChar] = itsBuf[k];
 itsSize -= itsNextChar;
 fillBufferStartingAt (itsSize);
 } //======================
}

Exercise 12.47* It is actually possible for the last line in the file to not have a newline
character at the end of it. Revise the condition of the while-statement in Listing 12.9 to
prevent a wrong result in such a case.
Exercise 12.48** Revise the readLine method in Listing 12.9 so it works no matter
how many characters a line has. However, insert a newline character into any line with
more than 8192 characters, to break it up.

 Java Au Naturel by William C. Jones 12-26 12-26

12.10 Additional Java Language Features (*Enrichment)

The following are features of the Java language that do not appear elsewhere in this
book, but you may find them useful in your software development.

Visibility modifiers

You have only seen the two visibility modifiers public and private. Java has four levels of
visibility: public, private, protected, and default. A member of a class can be marked as
public, private, or protected; default visibility applies when you do not use any of them.

• public visibility of a member of class X: Any statement anywhere can mention the

member.
• protected visibility of a member of class X: Only statements in the same package

with X or in a subclass of X can mention the member.
• default visibility of a member of class X: Only statements in the same package with

X can mention the member.
• private visibility of a member of class X: Only statements that are within X can

mention the member.

Bitwise operators

Each byte value is a sequence of 8 bits and each int value is a sequence of 32 bits. Java
provides several operators to work on the individual bits of byte and int values, as well as
the bits of char, short, and long values. One is the bitwise-and, for which the symbol is
&. This operator produces the value that has a 1-bit in each position where both of the
two operands have a 1-bit, and a 0-bit in every other position. For instance, 13 & 10 is
8, because the binary notation is 00001101 for 13 and 00001010 for 10, and thus the
result is 00001000 for 8.

The bitwise-or operator is |, which produces the value that has a 1-bit in each position
where either one of the two operands has a 1-bit, and a 0-bit in every other position. For
instance, 13 | 10 is 15, because the result is 00001111 for 15.

The bitwise-negation operator is ~, which produces the value that has a 1-bit wherever
the single operand has a 0-bit, and a 0-bit wherever the single operand has a 1-bit. For
instance, ~13 is 242, because the result of "inverting" 00001101 for 13 is 11110010 for
242. This applies if 13 is stored in a byte variable. In general, the bitwise-negation of a
byte value is 255 minus that byte value, and the bitwise-negation of a short value (16 bits;
note that 216 - 1 is 65535) is 65535 minus that short value.

The bitwise-exclusive-or operator is ^, which produces the value that has a 1-bit in
each position where exactly one of the two operands has a 1-bit, and a 0-bit in every
other position. For instance, 13 ^ 10 is 00001101 ^ 00001010 in binary, so the
answer is 00000111 in binary, which is 7. In summary: Since 13 is 8+4+1 and 10 is 8+2,
13 & 10 is 8, 13 | 10 is 8+4+2+1, and 13 ^ 10 is 4+2+1.

The left-shift operator is <<; x << n shifts all the bits of x to the left by n places, filling
in zeros in the places left empty. So 13 << 1 is 26 (00011010) and 13 << 2 is 52
(00110100). In general, a left-shift by n places multiplies the number by 2n. The
right-shift operator works as follows: x >>> n shifts all the bits of x to the right by n
places, filling in zeros in the places left empty. 26 is 00011010 in binary, so 26 >>> 1
is 13 (00001101) and 26 >>> 2 is 6 (00000110, since the last bit "drops off the end").
In general, a right-shift by n places divides by 2n, dropping the remainder.

 Java Au Naturel by William C. Jones 12-27 12-27

Other stuff you can do in Java

• You may declare a parameter of a method as final, which means that the coding in

the method cannot change its value.
• You may have one method whose heading is simply static. This initializer class

method will be executed before any user of the class calls one of its methods.

Exercise 12.49* Calculate 22 & 12, 22 | 12, and 22 ^ 12.
Exercise 12.50* Calculate 47 << 1, 47 << 2, 47 >>> 1 and 47 >>> 2.

12.11 Java Bytecode Commands (*Enrichment)

The .class file contains primarily bytecode. This is a sequence of byte values to be
executed by the runtime system, carrying out the instructions in the various methods of
the class. The bytecode sequence for each method consists of a number of commands.
Each command is a single byte, called the opcode, followed by a number of bytes,
called the operands of the opcode. The Java Virtual Machine (JVM) executes these
commands one at a time.

An opcode can be any of the numbers 0 through 255 (since a byte is eight bits, and 28 is
256). For instance, the command to add two double values is 99 and the command to
subtract one int value from another is 100. Since the numbers are difficult to remember,
we use a standard set of verbal clues in their place. The mnemonic code for 99 is dadd
and the mnemonic code for 100 is isub. In general, mnemonic codes starting with i
operate on int values and those starting with d operate on double values.

The number of bytes in the command depends on the particular opcode. Some opcodes
require no operands at all, others require one or two, each of which might be 1, 2, 4, or 8
bytes long.

The operand stack

Each method has an operand stack for doing computations. When a method is called, it
becomes the current method and its operand stack is created. When the current
method finishes executing, the method that called it becomes the current method and
takes up where it left off, with its own operand stack.

Some commands add values on the top of the stack, others take values off the top of the
stack. The stack is a LIFO structure -- last-in-first-out. So if you add two values to the
stack and then remove one, you will get the second one that you added.

The JVM typically numbers the parameters of a method in order starting from 0, then
applies the next few numbers to the variables declared inside the method. As an
example, consider the following method:

 public static int diff (int x, int y) // independent
 { int answer = x - y;
 return 2 * answer;
 } //======================

The body of this method is translated into bytecode as a sequence of only 12 bytes, as
you will see shortly. The three variables are given the index numbers 0 for x, 1 for y,
and 2 for answer. Then the first statement is translated to bytecode as follows:

 Java Au Naturel by William C. Jones 12-28 12-28

• iload 0 (numerically, 21 0) is the command to load the value of local #0, which is
x, onto the operand stack.

• iload 1 (numerically, 21 1) is the command to load the value of local #1, which is
y, onto the operand stack. So far, the stack contains the value of y on top of the
value of x.

• isub (numerically, 100) is the command to pop off the top two values of the operand
stack and push back onto the stack the result of subtracting the top value from the
second-from-top value. So now the operand stack contains only one value, x - y.

• istore 2 (numerically, 54 2) is the command to pop off the top value from the
operand stack and store it in local #2, which is answer. Now the stack contains no
values at all, but the variable named answer contains the value of x - y.

What actually appears in the bytecode to implement the first statement is therefore this
sequence of seven bytes: 21 0 21 1 100 54 2.

Standard bytecode descriptions

A compact but fairly clear description of the bytecode commands mentioned above is as
follows. In these descriptions, the phrase "causes..." shows how the stack changes, e.g.,
for iload, an int value is added to the top of the stack without changing what is already
there. The part before the ==> is what the stack looks like before the command is
executed, the part after the ==> is what the stack looks like after the command is
executed, and the ellipsis ... indicates the part of the stack that remains unchanged.

iload (21) byteVal causes ... ==> ... intVal
 // The current value stored in local variable #byteVal is pushed onto the stack.
istore (54) byteVal causes ... intVal ==> ...
 // The int value on top of the stack is popped and stored into local variable #byteVal.
isub (100) causes ... intVal1 intVal2 ==> ... intVal3
 // The two int values on top of the stack are popped, and intVal1 - intVal2 is pushed.

Some additional bytecode commands needed for the diff method are as follows:

iconst_2 (5) causes ... ==> ... intVal
 // The constant int value of 2 is pushed onto the stack.
imul (104) causes ... intVal1 intVal2 ==> ... intVal3
 // The two int values on top of the stack are popped, and intVal1 * intVal2 is pushed.
ireturn (172) causes ... intVal ==>
 // The int value on top of the stack is popped and returned to the calling method.
 // The operand stack of the current method is discarded, and the returned value is
 // pushed onto the operand stack of the calling method, which now becomes the
 // current method.

Now the second statement in the diff method can be translated as

 iconst_2; iload 2; imul; ireturn;

which numerically is this sequence of five bytes: 5 21 2 104 172. Other byte codes
whose meaning should now be clear are as follows:

iadd (96) causes ... intVal1 intVal2 ==> ... intVal3
 // The two int values on top of the stack are popped, and intVal1 + intVal2 is pushed.
idiv (108) causes ... intVal1 intVal2 ==> ... intVal3
 // The two int values on top of the stack are popped, and intVal1 / intVal2 is pushed.
irem (112) causes ... intVal1 intVal2 ==> ... intVal3
 // The two int values on top of the stack are popped, and intVal1 % intVal2 is pushed.

 Java Au Naturel by William C. Jones 12-29 12-29

iconst_1 (4) causes ... ==> ... intVal
 // The constant int value of 1 is pushed onto the stack.
iconst_0 (3) causes ... ==> ... intVal
 // The constant int value of 0 is pushed onto the stack.
iconst_m1 (2) causes ... ==> ... intVal
 // The constant int value of -1 is pushed onto the stack.

Branching instructions

You know that the if-statement and while-statement and others can cause execution to
jump from one instruction to another, skipping those in between. This is implemented in
bytecode by a branching instruction. The main one is goto shortVal, where
shortVal is a two-byte whole number in the range from -32768 to +32767. The effect of
goto +20 is that the next command executed is the one that is 20 bytes forward of the
goto byte in the bytecode sequence. The effect of goto -52 is that the next command
executed is the one that is 52 bytes before the goto byte in the bytecode sequence. In
both cases, the new position must be the first byte in a command within the same
method.

You also have six bytecode commands for a conditional branch. The mnemonic codes
for these six are all the same except for the last two characters, which tell what kind of
comparison is to be made. For instance ifeq +80 means to pop off the top int value
on the operand stack and, if it equals zero, branch forward 80 bytes from the ifeq byte;
and iflt -40 means to pop off the top int value on the operand stack and, if it is less
than zero, branch backward 40 bytes from the iflt byte. The standard descriptions of
these byte codes are as follows:

goto (167) shortVal causes ... ==> ...
 // The stack is not changed. Branch shortVal bytes away, forward or backward.
ifeq (153) shortVal causes ... intVal ==> ...
 // The int value is popped, and if intVal == 0 then branch shortVal bytes away.
iflt (155) shortVal causes ... intVal ==> ...
 // The int value is popped, and if intVal < 0 then branch shortVal bytes away.

The bytecode also has ifne (154), ifge (156), ifgt (157), and ifle (158). Now
consider the following method to find the smaller of two int values:

 public static int smaller (int x, int y) // independent
 { int answer;
 if (x >= y)
 answer = y;
 else
 answer = x;
 return answer;
 } //======================

Remember than x is local variable #0, y is local variable #1, and answer is local variable
#2. The mnemonic codes for this method would be as follows:

 iload 0; iload 1; isub; ifge +10;
 iload 1; istore 2;
 goto +7;
 iload 0; istore 2;
 iload 2; ireturn;

You are probably wondering how the +10 and +7 could be calculated before the rest of
the bytecode commands were written. The answer is, they could not be. You leave the
offset amount (+10 or +7 in this case) blank until you have written enough more of the

 Java Au Naturel by William C. Jones 12-30 12-30

bytecode that you can count the bytes to see how much it should be. Remember when
you count that each offset amount takes up two bytes.

This section has presented only 20 of the 255 possible bytecodes. Some perform
operations with float, byte, short, and long values; and some perform operations with
object and array references. To see the other possibilities, you may look at
http://java.sun.com/docs/books/vmspec/html/VMSpecTOC.doc.html,
particularly the section titled "The Java Virtual Machine Instruction Set".

Assembly language

An assembly language is basically machine code with mnemonics for operands and
other things, as well as opcodes. For instance, an assembly language for Java bytecode
could specify these memory aids:

int x, y, answer means that x represents local #0, y represents local #1,
answer represents local #2, and similarly wherever a byteValue operand is called for.
double u, v, result means that u represents local #0, v represents local #2,
result represents local #4, and similarly wherever a byteValue operand is called for
(since each double value requires the space of two int values).

The counter is assumed to continue with further such "declarations"; so if both of those
declarations appeared in a single method in that order, then u would represent local #3,
v would represent local #5, and result would represent local #7.

It is then not too hard to develop an assembler program to translate a source file
containing such mnemonics to the actual machine code. You would also save yourself
the trouble of counting bytes (and re-counting if you make modifications) by specifying
that an "instruction" which is some name followed by a colon denotes the location of the
immediately following byte; that name could be called a target. The assembly program
could allow a target to be mentioned directly after any of the seven branching instructions
in place of the byteVal offset; the assembly program will compute the offset for you.
Then the smaller method using double values could be expressed in assembly
language as follows (dcmpg means compare the two double values on top of the
operand stack to see which is larger):

 double x, y, answer;
 dload x; dload y; dcmpg; ifge xLarger;
 dload y; dstore answer;
 goto endif;
 xLarger: dload x; dstore answer;
 endif: dload answer; dreturn;

Surely you can see how it would be much easier to write a bytecode program in
assembly language and have the assembler make the conversion for you. Programmers
almost uniformly wrote all programs in an assembly language up until around 1955, when
FORTRAN was invented. Clearly they were hardy souls. Of course, it is even easier to
write in Java itself and let the Java compiler make the translation for you.

Exercise 12.51 The assembler language for the smaller method for double values
could have one or more instructions omitted and still have the same effect. What would
the change be?
Exercise 12.52* Write the diff method in the assembly language described here.
Exercise 12.53* Write an assembly language method to calculate the greatest common
divisor of two positive integer parameters. Hint: Repeatedly subtract the smaller from
the larger until they become equal.

 Java Au Naturel by William C. Jones 12-31 12-31

12.12 About Networking Using Sockets (*Sun Library)

The java.net.ServerSocket class has the following useful methods:

• new ServerSocket(portInt, queueInt) creates a new socket that can be

used as a server for various clients. The portInt is the port number by which the
ServerSocket is identified to its clients; the portInt can be any int value from 1024
to 65535. The queueInt is the number of clients requesting a connection that it can
hold in its backlog queue for later processing while it is already busy with a client.
The queueInt can be any non-negative int value.

• someServerSocket.accept() waits until some client socket asks for a
connection (we say that it blocks until asked). At that point the method returns the
Socket object that requested the connection.

• someServerSocket.close() terminates the existence of that ServerSocket.

The java.net.Socket class has the following useful methods:

• new Socket(hostString, portInt) creates a new socket that is connected to

port number portInt on the remote host whose internet name is hostString.
• someSocket.getInputStream() returns an InputStream object for reading bytes

from this client.
• someSocket.getOutputStream() returns an OutputStream object for writing

bytes to this client.
• someSocket.close() terminates the existence of that ServerSocket.

All of these methods can throw a java.io.IOException. The constructors and the
accept method can also throw a java.lang.SecurityException (which is a
RuntimeException).

Example of using Sockets

The best way to understand how all of these methods interact is to see an example. My
friend would like all her relatives to be able to suggest names for the baby she is
expecting. So she has an account on which she runs the Telnetting application program
given in Listing 12.10 (see next page). It starts by creating a Handler object. Then each
time some relative telnets to that account, the Handler's getMore method executes.

Note that the getMore method is completely independent of sockets. It is simply given
an input and an output by which it communicates with the relatives. It prints a list of all
names suggested so far for the baby, then gets any additional suggestions the relative
has and adds them to the list. When my friend wants to know the list so far, she telnets
in to the account to see what it displays.

The main method creates a new Handler for the baby names and a new ServerSocket
with an arbitrarily-chosen port number of 12345. It allows up to twenty relatives to be
queued up waiting to make suggestions (it is a very large extended family). Then a loop
executes over and over again until the server is shut down (e.g., by CTRL/C at the
terminal).

The loop executes the accept method, which blocks execution until some relative
telnets in to the server. Then it creates a BufferedReader object that accepts input from
the input stream associated with that client, as well as a PrintWriter object that sends
output to the output stream associated with that client. After that, it sends these two
communication channels to the Handler object so it can do its job, then closes the
connection and waits for another connection.

 Java Au Naturel by William C. Jones 12-32 12-32

Listing 12.10 The Telnetting application program

import java.net.*;
import java.io.*;

public class Telnetting
{
 public static void main (String[] args)
 { try
 { Handler birthNames = new Handler();
 ServerSocket server = new ServerSocket (12345, 20);
 for (;;)
 { Socket client = server.accept(); // blocks
 BufferedReader input = new BufferedReader
 (new InputStreamReader(client.getInputStream()));
 PrintWriter output = new PrintWriter
 (client.getOutputStream());
 birthNames.getMore (input, output);
 client.close();
 }
 }catch (IOException e)
 { System.out.println ("could not open server or socket");
 }
 } //=======================
}
//##

import java.io.*;

public class Handler
{
 private String itsInfo = "";

 public void getMore (BufferedReader input, PrintWriter output)
 { try
 { if (itsInfo.length() > 0)
 output.println ("Suggestions so far:" + itsInfo);
 output.println ("What do you suggest for a baby name?");
 output.flush();
 String data = input.readLine();
 while (data != null && data.length() > 0)
 { itsInfo += " " + data;
 output.println ("Another suggestion? ENTER to quit");
 output.flush();
 data = input.readLine();
 }
 output.close();
 }catch (IOException e)
 { // no need for any statements here
 }
 } //=======================
}

If this application is running in an account named sam.ccsu.edu, all a relative has to do
to suggest a baby name is to enter the following command in his or her terminal window:

 telnet sam.ccsu.edu 12345

 Java Au Naturel by William C. Jones 12-33 12-33

12.13 About File And JFileChooser (*Sun Library)

You can make the user's choice of which file to use more comfortable with a standard
library class named JFileChooser. This is a subclass of JComponent in the
javax.swing package. You create a JFileChooser object and show either an Open
dialog or a Save dialog. If it returns the APPROVE_OPTION, you can access the file
chosen using a statements such as the following:

 File selected = someJFileChooser.getSelectedFile();
 FileReader file = new FileReader (selected);

• new JFileChooser() creates a JFileChooser object.
• someJFileChooser.showOpenDialog(null) returns one of the three int values

listed below, after opening a window that allows the user to choose a file to open.
• someJFileChooser.showSaveDialog(null) returns one of the three int values

listed below, after opening a window that allows the user to save a file.
• JFileChooser.APPROVE_OPTION int value indicating the user selected a file.
• JFileChooser.CANCEL_OPTION int value indicating the user canceled out.
• JFileChooser.ERROR_OPTION int value indicating that some error occurred.
• someJFileChooser.getSelectedFile() returns the File value chosen.

A File object is not a file itself, only the description of a file including the drive and
subfolder. You need to open a FileReader to actually access the file itself. The File class
is in the java.io package. It allows the following useful operations:

• someFile.exists() tells whether there actually is a file of that name and folder.
• someFile.canRead() tells whether you have permission to read from this file.
• someFile.canWrite() tells whether you have permission to write to this file.
• someFile.delete() removes this file from its folder.

12.14 Review Of Chapter Twelve

Listing 12.1, Listing 12.2, and Listing 12.3 illustrate the main new library facilities
discussed in this chapter.

About sequential file input and output (all are in java.io):

Ø A sequential input file is a file from which you can only obtain values in the order in

which they were written; you cannot jump directly to another input position in the file.
Ø A sequential output file is a file to which you can only write values in order.
Ø new BufferedReader(new FileReader(filenameString)) opens a text

file for sequential input. The FileReader constructor can throw an IOException.
Ø someBufferedReader.readLine() gets one line of input. It can throw an

IOException.
Ø new BufferedReader(new InputStreamReader(System.in)) opens the

keyboard for input. It can throw an IOException.
Ø new PrintWriter(new FileWriter(filenameString)) opens a text file for

sequential output. Any pre-existing file of the same name is lost, unless you add a
second parameter value of true to indicate appending. It can throw an IOException.

Ø somePrintWriter.flush() clears out all characters left in the buffer, if any.
Ø somePrintWriter.close() is executed when you are done with the file.
Ø somePrintWriter.print(someString) writes the characters to the file.
Ø somePrintWriter.println(someString) writes the characters to the file

followed by a newline.
Ø new PrintWriter(System.out) opens the terminal window for output.

 Java Au Naturel by William C. Jones 12-34 12-34

About the java.util.StringTokenizer and java.io.StreamTokenizer classes:

Ø new StringTokenizer(inputString) creates a tokenized form of the String of

characters. A token is a sequence of non-whitespace characters with whitespace on
each side, counting beginning and end of the String as whitespace (but you can
customize that definition). StringTokenizer is in the java.util package.

Ø someStringTokenizer.hasMoreTokens() tells whether you can get another
token from the inputString without throwing a RuntimeException.

Ø someStringTokenizer.nextToken() returns the next available token in the
inputString and advances in the sequence.

Ø new StreamTokenizer(someReader) creates the file processing object.
Ø someStreamTokenizer.nextToken() returns an int value that tells whether the

next token is a word, number, string, end-of-file, etc. It skips Java comments. It can
throw an IOException.

About random-access file input and output (from java.io):

Ø new RandomAccessFile (filenameString, "rw") opens a file for random-

access. Use "r" instead of "rw" if you will not be writing to it.
Ø someRandomAccessFile.writeInt(someInt) writes one int value.
Ø someRandomAccessFile.writeChar(someChar) writes one char value.
Ø someRandomAccessFile.writeDouble(someDouble) writes one double value.
Ø someRandomAccessFile.writeBoolean (someBoolean) writes one boolean.
Ø someRandomAccessFile.writeChars(someString) writes without a newline.
Ø someRandomAccessFile.readInt() returns an int value.
Ø someRandomAccessFile.readChar() returns a char value.
Ø someRandomAccessFile.readDouble() returns a double value.
Ø someRandomAccessFile.readBoolean() returns a boolean value.
Ø someRandomAccessFile.readLine() returns a String value. It only handles the

basic Unicode values 0 to 255 well, stops reading at a newline or end-of-file, and
does not include the newline character in the returned value.

Ø someRandomAccessFile.length() returns a long value telling the number of
bytes in the file.

Ø someRandomAccessFile.seek(someLong) sets the file pointer value to be the
given long value.

Ø someRandomAccessFile.close() is executed when you are done with the file.
Ø Read through the documentation for the java.io package partially described in

this chapter. Look at the API documentation at http://java.sun.com/docs or
on your hard disk.

Other vocabulary to remember:

Ø An output file is buffered if it saves up in RAM the small chunks of data you give it

until it has a big chunk of data that it can write to the hard disk or screen all at once.
An input file is buffered if it gets one big chunk of data at a time from the hard disk
and saves it in RAM until you ask for it, typically in small chunks. If you have a
reason to move the saved-up output to its ultimate destination before the buffering
algorithm feels like doing so, you flush the buffer.

Ø A binary file is one that stores values in the form that they have in RAM, not in the
textual form that appears on the screen. Random-access means that you can read
from or write to any point in the file without first going through all the values at the
beginning of the file, which is what you have to do with a sequential file.

Ø The file-pointer position is the byte number at which the next read or write
operation will take effect in a file. You use it to specify where you will next read or
write in a random-access file.

 Java Au Naturel by William C. Jones 12-35 12-35

Answers to Selected Exercises

12.1 public static void findCaps (String name) throws IOException
 { BufferedReader fi = new BufferedReader (new FileReader (name));
 for (String si = fi.readLine(); si != null; si = fi.readLine())
 { if (si.length() > 0 && si.charAt (0) >= 'A' && si.charAt (0) <= 'Z')
 System.out.println (si);
 }
 }
12.2 public int readInt()
 { String si = readLine();
 try
 { return (si == null) ? 0 : Integer.parseInt (si);
 }catch (NumberFormatException e)
 { return 0;
 }
 }
12.3 public static int numChars (String name) throws IOException
 { BufferedReader file = new BufferedReader (new FileReader (name));
 int count = 0;
 for (String si = file.readLine(); si != null; si = file.readLine())
 count += si.length();
 return count;
 }
12.4 public static double averageCharsPerLine (String name) throws IOException
 { BufferedReader file = new BufferedReader (new FileReader (name));
 int lines = 0;
 int count = 0;
 for (String si = file.readLine(); si != null; si = file.readLine())
 { lines++;
 count += si.length();
 }
 return (lines == 0) ? 0 : (1.0 * count) / lines;
 }
12.5 public static boolean descending (String name) throws IOException
 { BufferedReader file = new BufferedReader (new FileReader (name));
 String previous = file.readLine();
 if (previous != null)
 { for (String si = file.readLine(); si != null; si = file.readLine())
 { if (previous.compareTo (si) < 0)
 return false;
 previous = si;
 }
 }
 return true;
 }
12.10 public static void copy (BufferedReader infile, String outName) throws IOException
 { PrintWriter outfile = new PrintWriter (new FileWriter (outName));
 for (String si = infile.readLine(); si != null; si = infile.readLine())
 outfile.println (si);
 outfile.close();
 }
12.11 public static void under40 (String inName, String outName) throws IOException
 { BufferedReader infile = new BufferedReader (new FileReader (inName));
 PrintWriter outfile = new PrintWriter (new FileWriter (outName));
 for (String si = infile.readLine(); si != null; si = infile.readLine())
 { if (si.length() < 40)
 outfile.println (si);
 }
 outfile.close();
 }
12.16 Replace the line "if (line.hasMoreTokens())" by the following:
 if (! line.hasMoreTokens()) itsSender = null; else
12.17 Replace the body of the while statement by the following:
 char ch = data.nextToken().charAt (0);
 if (ch >= '0' && ch <= '9')
 count++;
12.18 That simpler expression will be true when the character is anything between '0' + 9 and '0' - 9,
 because integer division by 10 of any number from -1 to -9 yields 0.
12.21 String [] [] [] friend = new String [5] [25] [3];
 friend [2] [12] [1]
12.22 int[][] age = new int [2][2]. (age[0][0] + age[0][1] + age[1][0] + age[1][1]) * 1.0 / 4.

 Java Au Naturel by William C. Jones 12-36 12-36

12.23 Replace the line beginning with "if" by the following:
 if (itsItem[from][to] > cutoff && from != to)
12.24 public boolean allLessThan (int cutoff)
 { return ! anyMoreThan (cutoff - 1);
 }
12.25 public int maxSentTo (int code) // in EmailSet
 { int max = itsItem[0][code];
 for (int from = 1; from < itsSize; from++)
 { if (max < itsItem[from][code])
 max = itsItem[from][code];
 }
 return max;
 }
12.26 public int numPeopleSentBy (int code) // in EmailSet
 { int count = 0;
 for (int to = 0; to < itsSize; to++)
 { if (itsItem[code][to] > 0)
 count++;
 }
 return count;
 }
12.30 Replace the method call in Listing 12.5 by the following:
 printStatistics (database, args[1]);
 Replace "PrintWriter out" in the heading of printStatistics by "String outName" and insert
 the following as the first statement in that method:
 PrintWriter out = new PrintWriter (new FileOutputstream (outName));
12.31 Replace the body of the for-statement by the following:
 int numSent = numSentFrom (k);
 if (max < numSent)
 max = numSent;
12.38 public int howManyArriveAt (int city)
 { int count = 0;
 for (int dep = 0; dep < MAX; dep++)
 { if (plane[dep][city] != null)
 count++;
 }
 return count;
 }
12.39 public int numSeatsAvailableFrom (int city)
 { int count = 0;
 for (int arr = 0; arr < MAX; arr++)
 { if (plane[city][arr] != null)
 count += plane[city][arr].numSeats;
 }
 return count;
 }
12.40 public int flightsOver ()
 { int count = 0;
 for (int dep = 0; dep < MAX; dep++)
 for (int arr = 0; arr < MAX; arr++)
 { if (plane[dep][arr] != null
 && plane[dep][arr].numSeats < plane[dep][arr].numReservations)
 count++;
 }
 return count;
 }
12.41 public int roundTrips()
 { int count = 0;
 for (int dep = 0; dep < MAX; dep++)
 for (int arr = dep + 1; arr < MAX; arr++)
 { if (plane[dep][arr] != null && plane[arr][dep] != null)
 count++;
 }
 return count;
 }
12.45 public void readRecord (Flight flit, long filePosition)
 { raf.seek (filePosition);
 flit.filePosition = filePosition;
 flit.aircraftType = raf.readLine();
 flit.ticketPrice = raf.readDouble();
 flit.numSeats = raf.readInt();
 flit.numReservations = raf.readInt();
 }
12.51 Remove the dstore answer command in 2 places and the dload answer command in 1 place.

