11-1 Java Au Naturel by William C. Jones 11-1

11 Abstract Classes And Interfaces

Overview

This chapter presents some additional standard library classes from the j ava. | ang
package and an extended example illustrating polymorphism. You would help to study
Sections 10.1-10.3 (Exceptions and the elements of input files) before reading this
chapter. Arrays are used heavily starting in Section 11.7.

Section 11.1 introduces a new software design problem, the Numeric class.

Sections 11.2-11.4 define and illustrate all of the new language features for this
chapter: abstract classes, interfaces, instanceof operator, final methods, and final
classes. They also describe the standard wrapper classes Integer, Double, Long,
etc. This is as far as you need to go to understand all remaining chapters.

Sections 11.5-11.8 develop three different subclasses of the Numeric superclass and
a class of objects representing arrays of Numeric values.

Sections 11.9-11.11 are enrichment topics: a concept from theoretical computability,
an elementary introduction to the use of threads, and some details on the Math and
Character classes from the Sun standard library.

11.1 Analysis And Design Of The Mathematicians Software

You are hired by a think-tank of mathematicians to write software that they will use in
their work. When you discuss with them the kinds of software they need, you find that
they work with various kinds of humbers that the Java language does not have.

One kind of number they work with is fractional -- one whole number divided by another.
A fraction such as 1/3 cannot be represented exactly using a double value. For some
software situations, these mathematicians want the answer calculated as a fraction
reduced to lowest terms, not as a decimal number approximation.

Another category of numbers that Java does not provide is complex humbers, and a third
is very long integers of perhaps 40 to 50 digits. Many of the things you do with fractions
you will also want to do with complex numbers and with very long integers. So you will
want basically the same methods for each of the Complex and VeryLong classes that you
have for the Fraction class (though the details of how the methods calculate will differ).

You decide to make all three classes subclasses of one superclass. You can begin by
developing what is common to all three of the Fraction, Complex, and VeryLong
subclasses, then add to the individual subclasses whatever extra operations they need.

In designing object classes, you consider what the objects can do (instance methods)
and what they know (instance variables). You start with what they can do for you. After
you have that figured out, you decide what the objects have to know in order to do it.
That is, analysis and design starts by developing the object operations involved. You
later use those operations to decide on the object attributes.

Analysis
You need to develop documentation describing the operations you want to have in this
superclass. Part of getting the specifications clear is deciding how these methods are to

be called by other methods. That is easily expressed as a method heading.

Your talks with the mathematicians reveal four kinds of operations that they want their
Numeric objects to have:

11-2 Java Au Naturel by William C. Jones 11-2

1. They want to be able to add, subtract, and multiply two Numerics to get a new
Numeric result.

2. They want to be able to test two Numerics to see which is larger or if they are equal.
3. They want to be able to convert from a standard String form (e.g., "2/3" for a fraction)
to the object and back again, and also convert any Numeric to a decimal number

equivalent or approximation.

4. They want several other operations, such as finding the largest or smallest of two
Numerics, finding the square of a Numeric, adding numbers obtained from an input
source to a running total, etc.

This discussion leads to the sketch in Listing 11.1. The bodies of the methods are the
minimum needed for compiling, since they are irrelevant at this point; the sketch is design
documentation, not implementation. The toStri ng and equal s methods override
those standard methods from the Object class (the standard methods require that the
parameter be of type Object). The val ueOf method for Fractions returns the Fraction
object corresponding to e.g. the String value "3/7"; the val ueOf method for Complexes
returns the Complex object corresponding to e.g. the String value "7.0 + 4.3i".

Listing 11.1 Documentation for the Numeric class

public class Nuneric /| stubbed docunentation

{
/[** Convert to the appropriate subclass. Return null if par is
* null or ™" Thr ow Nunmber For mat Exception if wong form */
public Numeric valueOf (String par) { return null; }

[** Convert to string form */
public String toString() { return null; }

/** Convert to a real -nunber equivalent. */
publ i ¢ doubl e doubl eVal ue() { return 0; }

[** Tell whether the executor equals the paraneter. */
publ i c bool ean equal s (Obj ect ob) { return true; }

/** Like String's conpareTo: positive nmeans ob is "larger". */
public int conpareTo (Cbject ob) { return 0; }

[** Return a new Nunmeric that is the sum of both.
* Return null if they are the same subtype but the answer
is not conmputable. Throw an Exception if par is null or
t he executor and par are different subtypes. */
public Numeric add (Numeric par) { return null; }

/[** Same as add, except return executor mnus par. */
public Numeric subtract (Numeric par) { return null; }

/[** Same as add, except return executor tines par. */
public Numeric nmultiply (Numeric par) { return null; }

/** Return the square of the executor. */
public Numeric square() { return null; }

/** Read Nuneric values fromthe BufferedReader source and add

* themto the executor, until null is seen or until a val ue
* cannot be added to the executor. Return the total. */
public Numeric addvore (BufferedReader source){ return null; }

11-3 Java Au Naturel by William C. Jones 11-3

Test data

You begin by writing a small test program that uses one of these special kinds of
numbers. This helps you fix in your mind what you are trying to accomplish and how the
methods will be used. It also gives you a way of later testing the correctness of the
coding you develop. A simple example is to have the user enter a number of Fraction
values; the program responds with the total of the values entered and the smallest of the
values entered. Your expectation is that, if the program is executed using e.g.

java AddFractions 2/3 -9/10 3/4

then the output from the program will be a dialog box saying

total = 31/60; snmallest = -9/10

A good design of such a program is as follows: First check that at least one value was
entered on the command line. If so, assign the first value entered to a Numeric variable
t ot al and also to a Numeric variable smal | est SoFar . To apply the val ueCOf
method to the first String ar gs[0] , you have to supply an executor (an object reference
before the dot in ".valueOf") to show that it is the val ueOf method from the Fraction
class instead of some other val ue method. Each subclass of Numeric will define a
ZERO value for this purpose. You then have a loop that goes through the rest of the
entries and (a) adds each one to t ot al ; (b) replaces snal | est SoFar by the most
recently seen value if that one is smaller.

Listing 11.2 contains a reasonable coding. Since the val ueO method can throw an
Exception if a String value is not in the right format, you need a try/catch statement to
intercept any Exception thrown inside the try-block and give an appropriate message.

Listing 11.2 Application program to test Fraction operations

i mport j avax.sw ng. JOpti onPane;

/[** Add up all Fraction values given on the command | i ne.
* Print the total and the small est one entered. */

public class AddFracti ons

{

public static void main (String[] args)
{ String response = "No val ues entered."; /11
if (args !'= null && args.length > 0) /12
try /13
{ MNuneric total = Fraction.ZERO val ue& (args[0]); //4
Nureric smal | est SoFar = total; /15
for (int k =1; k < args.length; k++) /16
{ MNuneric data = total.valueOf (args[k]); 117
total = total.add (data); /18
if (small estSoFar. conpareTo (data) > 0) /19
snmal | est SoFar = dat a; /110
} /111
response = "total =" + total.toString() /112
+ "; smallest =" + smallestSoFar.toString();
}catch (Runti meException e) /114
{ response = "Sone entry was not fractional."; /115
} /116
JOpt i onPane. showMessageDi al og (null, response); /117
Systemexit (0); /118

|

114 Java Au Naturel by William C. Jones 114

Exercise 11.1* Write the heading of a di vi de method to divide a Numeric executor by
a whole-number value and the heading of a bef or e method that tells whether a
Numeric executor is less than another Numeric value.

11.2 Abstract Classes And Interfaces

At first you think you might declare Numeric as an interface, since it makes no sense to
give most of these methods bodies in the Numeric class. But then you realize that some
of the methods can have definitions that make sense for all three subclasses. An
interface has only method headings, with no method bodies allowed. So you need
something in between an interface (where all methods must be overridden) and a
"concrete" superclass (all methods defined, so overriding is always optional). The
recommended Java solution in this case is an abstract class.

You can put abstract inan instance method heading if you replace the method's
body by a semicolon. This makes the class it is in an abstract class. You must also put
abstract inthe class heading to signal this. Any concrete class that extends the
abstract class must have coding for each of the abstract methods. Reminder: A method
call is polymorphic if at runtime the call could execute any of several different method
definitions (i.e., codings).

You cannot have an abstract class method, because class methods cannot be
overridden. You may have a constructor in an abstract class if you wish, but you cannot
call it except by using super in a subclass. A reasonable abstract Numeric class is
shown in Listing 11.3 (see next page), leaving eight methods to override in each
subclass.

You might at some point want to read some Fractions in from the keyboard or from a disk
file and add them to a Fraction object that already has a value. The command

y = Xx.addMor e(soneBuf f er edReader Gbj ect) would do this, using the addMor e
method from the Numeric class and a Fraction variable x. Since the executor is a
Fraction object and addMbr e is an instance method, the runtime system uses the

val ue and add methods from the Fraction class. Reminder on disk files:

new Buff eredReader (new Fil eReader (sonmeString)) opens the file that
has the given name and produces a reference to it.

someBuf f er edReader . r eadLi ne() produces the next line in the file (with the

\' n removed), except it produces the null String when it reaches the end of the file.

Both of these uses of BufferedReader can throw an IOException. IOException and
BufferedReader are both in the j ava.i o package.

Interfaces

The phrase i npl ement s Conpar abl e in the heading for the Numeric class means
that any Numeric object, or any object from a subclass of Numeric, can be used in any
situation that requires a Comparable object. This is because the Numeric class contains
the standard conpar eTo method. The conpareTo, add, subtract, and

mul ti ply methods throw a ClassCastException or NullPointerException if the
parameter is not a non-null object of the same subclass as the executor.

You may declare a variable or parameter to be of Comparable type, but you cannot use
the phrase new Conpar abl e() to create Comparable objects. Comparable is the
name of an interface, not a class. When you put the word i nt er f ace in a heading
instead of cl ass, it means that all you can have inside the definition of the interface are
(a) instance method headings with a semicolon in place of the method body, and (b) final
class variables. The former means that an interface has form without substance.

11-5 Java Au Naturel by William C. Jones 11-5

Listing 11.3 The abstract Numeric class

i mport java.i o. Buf f er edReader;

public abstract class Numeric inplenments Conparabl e

{

public abstract Nuneric valueX (String par);
public abstract String toString();

public abstract doubl e doubl eVal ue();

public abstract bool ean equal s (oject ob);
public abstract int conpareTo (Object ob);
public abstract Nuneric add (Nuneric par);
public abstract Nuneric subtract (Nuneric par);
public abstract Nuneric multiply (Nuneric par);

/** Return the larger of the two Nuneric val ues. Throw an
* Exception if they are not both non-null values of the
* same Nuneric type.*/

public static Numeric max (Numeric data, Numeric other)
{ return (data.conpareTo (other) > 0) ? data : other;
|

/** Return the square of the executor. */

public Numeric square()
{ return this.multiply (this);
|

/** Read Nuneric values fromthe BufferedReader and add t hem
* to the executor, until null is seen or until a val ue
* cannot be added to the executor. Return the total. */

public Numeric addvore (BufferedReader source)

{ MNuneric total = this;
try
{ Nuneric data = this.valueO (source.readLine());
while (data !'= null &% total !'= null)

{ total = total.add (data);
data = this.valueO' (source.readLine());

}catch (Exception e)
{ /1 no need for any statenents here; just return total
}
return total;
|

}

You must compile a file containing an interface definition before you can use it. The
Comparable interface in the standard library has a single method heading (and is already
compiled for you). The complete compilable file Conpar abl e. j ava is as follows:

package j ava. | ang;
public interface Conparable
{ public int conpareTo ((bject ob);

}

11-6 Java Au Naturel by William C. Jones 11-6

The two primary reasons why you might have a class implement an interface instead of
extend another class are as follows:

1. You will not or cannot give the logic (the body) of any of the methods in a superclass;
you want each subclass to define all methods in the superclass. So you use an
interface instead of a superclass.

2. You want your class to inherit from more than one class. This is not allowed in Java,
because it can create confusion. A class may extend only one concrete or abstract
class. But it may implement many interfaces. A general class heading is as follows:

class X extends P inplements Q R S

The reason an interface cannot contain a method heading for a class method is that, if
soneMet hod is a class method, the method definition to be used for

sam soneMet hod() is determined at compile-time from the class of the variable sam
not at run-time from the class of the object.

The phrase X implements Y is used only when Y is an interface; X should have every
method heading that Y has, but with a method body for each one. That is, Y declares the
methods and X defines them (unless X is an "abstract” class).

Early and late binding

When you call Numeric's addMor e method in Listing 11.3 with a Fraction executor, most
statements in that addMor e method refers to a Fraction object. For instance, since

t hi s is a Fraction object, the first statement makes t ot al refer to a Fraction object.
Similarly, the runtime system uses the val ueO method from the Fraction class, which
returns a reference to a Fraction object to be stored in dat a. If, however, you called the
addMor e method with a Complex executor, then most statements in that method would
refer to a Complex object.

Each of the method calls in the method definitions of Listing 11.3 is polymorphic except
perhaps sour ce. r eadLi ne() . Forinstance, the squar e method calls the mul ti pl y
method of the Fraction class if the executor is a Fraction object, but it calls the mul ti pl y
method of the Complex class if the executor is a Complex object.

The runtime system decides which method is called for during execution of the program,
depending on the class of the executor. This is called late binding (since it binds a
method call to a method definition). When a class has no subclasses, the compiler can
do the binding; that is early binding. Late binding is somewhat slower and more
complex, but it gives you greater flexibility. And tests have shown that it is no slower than
an efficiently implemented logic using if-statements or the equivalent. Late binding is
possible only with instance methods, not class methods. That is why the val ueO
method is an instance method, even though it does not really use its executor.

L anguage elements
The heading of a compilable unit can be: public abstract class ClassName
or: public interface InterfaceName

Y ou may replace "public" by "public abstract” in a method heading if (a) it isin an abstract class,
(b) it is a non-final instance method, and (c) you replace the body of the method by a semicolon.
If your class extends an abstract class and you want to construct objects of your class, your class
must have non-abstract methods that override each abstract method in the abstract class.

All methods in an interface must be non-final instance methods with a semicolon in place of the
body. They are by default "public abstract” methods. Field variables must be final class variables.
Y ou may add the phrase "implements X" to your class heading if X is an interface and if each
method heading in the interface appearsin your class. Usethe form "implements X, Y, Z" to have
your classimplement severa interfaces.

11-7 Java Au Naturel by William C. Jones 11-7

Exercise 11.2 Write a class method named mi n3 that could be added to the Numeric
class: It finds the smallest of three Numeric parameters.

Exercise 11.3 (harder) Write a method publ i ¢ Nuneric smal | est

(Buf f eredReader source) for Numeric: it finds the smallest of a list of Numeric
values read in from sour ce, analogous to addMor e.

Exercise 11.4** Write a method publ i ¢ bool ean equal Pai r (BufferedReader
sour ce) for Numeric: It reads in a list of Numeric values from a given BufferedReader
source and then tells whether or not any two consecutive numbers were equal. Explain
how the runtime system knows which method definition to use.

Reminder: Answers to unstarred exercises are at the end of the chapter.

11.3 More Examples Of Abstract Classes And Polymorphism

You may put the word fi nal ina method heading, which means no subclass can
override that method. This allows the compiler to apply early binding to calls of that
method, which makes the program run a bit faster. For instance, you would probably
want to make the Fraction methods mentioned in the previous section final to speed
execution, since you do not see why anyone would want to extend the Fraction class.

Also, you may put the word fi nal ina class heading, which means that the class
cannot have subclasses. For instance, the developers of the standard String class made
itafinal class. Sowhen Chapter Six created a Stringinfo class of objects that would
do what Strings do, only more, it could not make Stringlnfo a subclass of String. Instead,
the Stringinfo class had a String object as its only instance variable. That way, whenever
you ask a Stringlnfo object to do something, it does it with its String instance variable. In
other words, the StringInfo class uses composition rather than inheritance.

Abstract games

The BasicGame class in Listing 4.3 describes how to play a trivial game in which the user
guesses the secret word, which is always "duck”. Its true purpose is to serve as a parent
class for interesting games such as Mastermind and Checkers. It would make more
sense to make BasicGame an abstract class, thereby forcing programmers to override
some of its methods. The seven methods in the BasicGame class are as follows:

public void playManyGanes() /1 calls playOneGane

public void playOneGne() /1 calls the 5 bel ow

public void askUsersFirst Choice()

publ i c bool ean shoul dConti nue()

public void showUpdat edSt at us()

public void askUser sNext Choi ce()

public void showrinal Status() // just says the player won

Of these seven methods, a subclass should not override the first two, since their logic is
what is common to all games. A subclass may choose to override showFi nal St at us
from the BasicGame class (as did Nim in Listing 4.8) or may leave it as inherited (as did
GuessNumber in Listing 4.6 and Mastermind in Listing 4.9). Every subclass of
BasicGame should override the other four methods.

You can enforce these three rules as follows: Declare the first two methods as fi nal

(a method declared as fi nal cannot be overridden in a subclass). Leave the

showFi nal St at us method as a normal "concrete” method, so overriding is optional.
Declare the other four as abstract, which means that they must be overridden. That
gives the compilable class shown in Listing 11.4 (see next page). If this definition
replaces the BasicGame class in Chapter Four, then the three different game subclasses
in Listings 4.6, 4.8, and 4.9 will all compile and run correctly as is.

11-8 Java Au Naturel by William C. Jones 11-8

Listing 11.4 The BasicGame class as an abstract class

public abstract class Basi cGane

public final void playManyGanes()
{ playOneGne();
whi | e (javax. swi ng. JOpti onPane. showConfirnDi al og (nul I,
"agai n?") == javax.sw ng. JOpti onPane. YES_OPTI ON)
pl ayOneGane() ;

1y

public final void playOneGane()
{ askUsersFirst Choice();
whi | e (shoul dCont i nue())
{ showUpdat edSt at us() ;
askUser sNext Choi ce() ;

showFi nal St at us() ;
Y o/

public abstract void askUsersFirstChoice();
public abstract bool ean shoul dConti nue();
public abstract void showUpdat edSt at us();
public abstract void askUser sNext Choice();

public void showFi nal St at us()
{ javax.sw ng.JOptionPane. showMessageDi al og (nul I,
"That was right. \nCongratulations.");

1y

}

Abstract Buttons

Sun's Swing classes include several different kinds of graphical components called
buttons: JButton (the basic kind of button), JToggleButton (click it to change its state
from "selected" to "deselected" or back again), and JMenultem (one of several buttons on
a menu). All have different appearances, but they have some behaviors in common,
such as soneBut t on. set Text (soneSt ri ng) to change what the button says on it
and soneBut t on. set Mhenoni c(sonmeChar) to say what character can be used as
the "hot key".

The AbstractButton class in the Swing library contains the methods that are common to
all of these kinds of buttons, including set Text and set Mhenoni c. The advantage is
that each of these common methods only has to be defined once, in the AbstractButton
class, but a common method can be called for any of the three kinds of buttons.

Abstract Animals

A particular application may require you to keep track of fish and other inhabitants of the
ocean. You might have a Shark class, a Tuna class, a Porpoise class, and many others.
Any behaviors that are common to several classes of animals should be specified in a
superclass and inherited by its subclasses. For instance, all animals eat. So you could
have an Animal superclass that declares a method for eating. Animal should be an
abstract class, since any concrete animal you create will be of a specific animal subclass.
You could define the Animal class as follows:

public abstract class Animal
{ public abstract void eat (Cbject ob);

}

11-9 Java Au Naturel by William C. Jones 11-9

There are two kinds of animals, those that move around in the ocean and those that do
not. It makes sense to abstract the behavior of swimming for a subclass of Animals. So
you could have an abstract subclass of the Animal class as follows:

public abstract class Swi nrer extends Ani nal
{ public abstract void sw n{);

}

Note that the Swimmer class does not have to code the eat method, since Swimmer is
abstract. But any concrete class (i.e., a class that you want to create an instance of) that
extends Swimmer must implement both eat and swi m For instance, a prototype for
the Shark class could be as follows:

public class Shark extends Sw mrer
{ public void sw m()
{ Systemout.println ("shark is sw nmm ng");

}
public void eat (Cbject ob)
{ Systemout.println ("shark eats " + ob.toString());

}
public String toString()
{ return "shark";
}
}

Question What difference would it make if an abstract class X were simply declared as a
regular class X with empty method bodies? Answer Only one difference: The compiler
will not warn you if you create an object of type X or if you extend X with a class that
forgets to implement one of the methods that should be overridden.

Question What difference would it make if an interface Y were simply declared as an
abstract class Y with all of its methods marked as abstract? Answer Only one
difference: You cannot write a class that inherits from Y and also from another class.

The instanceof operator

A class that overrides the equal s method from the Object class must have its
parameter be of Object type. If the parameter is of the same class as the executor, you
test something such as the names or other instance variables to see if they are equal. If
the parameter is not of the same class as the executor, then of course it is not equal to
the executor. Do not throw an Exception in that case; just return f al se. The problem
is, how do you ask an object whether it is of the right class without throwing a
ClassCastException?

You will need the instanceof operator for this purpose: If x is an object variable and Y
is a class, then x i nstanceof Y istruewhen x isnotnulland x is an object of
class Y or of a subclass of Y; if Y is an interface, x must be of a class that implements Y.

The Time class in Listing 4.5 has two int instance variables it sHour and itsM n to
specify the time of day. It should have an equal s method that overrides the Object
method. The equal s method for Time could be defined as follows:

public bool ean equal s (Obj ect ob) /1 in the Time class
{ if (! (ob instanceof Tine))
return fal se;
Time given = (Tine) ob;
return this.itsHour == given.itsHour
& this.itsMn == given.itsMn;

11-10 Java Au Naturel by William C. Jones 11-10

The i nstanceof testguards against having the third line of this method throw a
ClassCastException method; calling the equal s method should never throw an
Exception. Similarly, the Worker class in Listing 7.6 has an equal s method whose
parameter is a Worker. It would be good to have another equal s method that
overrides the standard Object method. The following logic calls on the existing Worker
equal s method to do most of the work (overloading the equal s method name):

public bool ean equal s (Obj ect ob) /1 in the Wirker class
{ return ob instanceof Wrker && this.equals ((Wrker) ob);
} | | =======================

If a class of objects implements the Comparable interface, its objects may be passed to a
Comparable parameter of some method. That method might use the equal s method
as well as the conpar eTo method, which is one good reason for having an equal s
method that overrides the Object method whenever you have a conpar eTo method.
Note that both Time and Worker would naturally implement Comparable.

Another good reason to have an equal s method with an Object parameter is that you
might have an array of Animals or Numerics, where the objects in the array could be of
several different subclasses. Then you could call the equal s method with any one of
those objects as the executor, knowing the runtime system will select the right definition
of this polymorphic equal s call according to the actual class of the executor.

Caution If you get the compiler message "class X must be declared as
abstract”, it may not be true. You might simply have forgotten to implement
one of the abstract methods in an abstract superclass of X, or you might
have forgotten to implement one of the methods required by an interface
that X implements.

Technical Note You may be wondering why the operator i nst anceof does not
capitalize the 'O’ of "of". The Java convention is to do so for identifiers, i.e., names of
variables, methods, and classes. But i nst anceof is none of those; it is a keyword.

L anguage elements

If you put "final" in a method heading, you cannot override it in a subclass.

If you put "final" in a class heading, you cannot make a subclass of it.

If Y isaclass, xinstanceof Y meansx isan objectinclassY orinasubclassof Y (so x !=null).
The equal s method in the Object class has an Object parameter. Any method you write that
overridesthat equal s method should never to throw an Exception, so the first statement in
such amethod is usually if (! (ob instanceof Whatever)) return false;.

Exercise 11.5 Write an equal s method for a Person class; have it override the Object
equal s method. Two Persons are equal if they have the same values of the instance
variables it sLast Nane (a String) and it sBirthYear (anint).

Exercise 11.6 Write a prototype for the Tuna subclass of the Swimmer class. However,
Tunas only eat things that swim, so make sure the eat method states that the Tuna is
still hungry if the object it is given to eat is not a Swimmer.

Exercise 11.7* Modify the answer to the preceding exercise so that, if a Tuna is given a
Shark to eat, then the Shark eats the Tuna instead.

Exercise 11.8* Override Object's equal s method for the Worker class without calling on
the other equal s method. Just test directly whether two Worker objects have the same
last name and the same first name (i t sFi r st Name and it sLast Nane are Strings).
Exercise 11.9** Improve the Animal class and its subclasses to add an instance method
get Wi ght () for all Animals and a corresponding instance variable set by a parameter
of an Animal constructor. Also add an Animal instance variable it sFuel Reserves
that is to be updated by the weight of whatever the Animal eats. Then modify the Shark's
eat method to call on the appropriate methods.

11-11 Java Au Naturel by William C. Jones 11-11

11.4 Double, Integer, And Other Wrapper Classes

Quite a few of the programs the mathematicians need involve whole numbers that are
extremely large, up to 40 to 50 digits (somewhat over one septillion of septillions). The
problem is that the Java language does not provide for whole numbers that big. The only
primitive numeric types in Java are byte, short, int, long, double, and float.

The six primitive number types

A byte of storage is 8 on-off switches, or 8 high/low voltages, or 8 binary digits (1's and
0's). So a byte can store any of 256 different values (since the eighth power of 2 is 256).

You may define a variable as byte x, which means that x stores a number in the range
from -128 to 127. Note that there are exactly 256 different values in that range, so it is
stored in one byte of space in RAM.

You may define a variable as short x, which means that x stores a number in the range
from -32,768 to 32,767. Note that there are exactly 65,536 different values in that range,
which is the second power of 256. So it is stored in two bytes of space in RAM. This is
16 bits, since one byte is 8 bits.

You may define a variable as int x, which means that x stores a number in the range of
plus or minus just over 2 billion. The reason is the fourth power of 256 is just over 4
billion. So an int value takes up four bytes of space in RAM, which is 32 bits.

You may define a variable as long x, which means that x stores a number in the range of
plus or minus just over 8 billion billion. The reason is that the eighth power of 256 is just
over 16 billion billion (a number with 19 digits). So a long value takes up eight bytes of
space in RAM. This is 64 bits, since one byte is 8 bits. You can indicate that an integer
value in your program is of the long type with a trailing capital L, as in 47L or 1000000L.

bryte short |nt |Dng

Figure 11.1 Difference in sizes of whole-number values

You may define a variable as double x, a value with 64 bits, which takes up eight bytes
of storage. It has only about 15 decimal digits of accuracy; the rest of the storage is used
for the minus sign (if there is one) and to note the power of sixteen it is multiplied by
(scientific notation, but with a base of 16 rather than 10).

You may define a variable as float x, a value with 32 bits, which takes up four bytes of
storage. It is a decimal number with about 7 decimal digits of accuracy, since it is stored
in scientific notation with a base of 16.

You may write a double value in computerized scientific notation within a Java class,
e.g., 3.724E20 is 3.724 times 10-to-the-twentieth-power, and 5.6E-15 is 5.6 times 10-to-
the-negative-fifteenth-power. The t oSt ri ng() method of the Double class produces
this scientific notation unless the number is at least 0.001 and less than 10 million.

11-12 Java Au Naturel by William C. Jones 11-12

Wrapper classes for primitives

The Sun standard library offers eight special wrapper classes, one for each of the eight
primitive types. Their names are Double, Integer, Float, Long, Short, Byte, Character,
and Boolean. These classes give you an easy way to convert one of the primitive types
of values to an object and back again. They are all in the j ava. | ang package, which

means that they are automatically imported into every class; you do not have to have an
explicit import directive.

One use of these classes is for polymorphic processing of several different kinds of
objects. Since each of these eight wrapper classes inherits from the Object class, you
can apply the equal s method and the t oSt ri ng method to any of their objects.
Each of these wrapper classes overrides these two methods to provide the obvious
meaning to them. For instance, you might have an array of Objects which can be any of
the eight kinds of values. You might then search for an Object equal to a target Object
with this logic:

for (int k =0; k <itemlength & itenfk] !'= null; k++)
{ if (itenfk].equals (target))

Systemout.println (itenfk].toString());
}

Numeric wrappers

The Double class has the class method par seDoubl e for converting a String value to
double value. It can throw a NumberFormatException if the numeral in the string of
characters is badly formed. Similarly, the Integer class has the par sel nt class method
and the Long class has the par seLong class method. All of these can throw a
NumberFormatException. The par seDoubl e method allows spaces before or after the
numeral, but parsel nt does not.

Each of the six numeric wrapper classes has a constructor with a parameter of the
corresponding primitive type and a constructor that has a String parameter. So you can
create a new object of one of these wrapper types using e.g. new Doubl e(4.7) or
new | nt eger ("45"). The latter is equivalent to new | nt eger

(I nteger.parselnt("45")).

All six of the numeric wrapper classes are subclasses of the abstract Number class in
the j ava. | ang package. This chapter would have used Number rather than Numeric
except that the Number class does not have many of the methods that the clients
wanted; Number only has six parameterless instance methods for converting to each of
the six primitive types: doubl eVal ue, i nt Val ue, | ongVal ue, byt eVal ue,

short Val ue, and f | oat Val ue. Each of the six numeric wrapper classes overrides
those six methods to convert the object to any of the six numeric primitive types.

All wrapper classes except Boolean implement the Comparable interface. That is, they
have the standard conpar eTo method required to be Comparable. And they each have
final class variables MAX_VALUE and MIN_VALUE with the appropriate meaning.

It is occasionally useful to "break up" an 8-byte long value stored in e.g. a long variable
sam into two 4-byte int values. If you define | ong n = 1L + | nt eger. MAX VALUE,
then (int)(sam/ n) gives the first 4 bytes of sanis value and (i nt)(sam % n)
gives the last 4 bytes of sanis value. Read the Sun documentation about

Doubl e. doubl eToLongBi t s(doubl e) and Doubl e. | ongBi t sToDoubl e(1 ong)
to see how to "re-interpret” an 8-byte double value as a long value and vice versa.

11-13 Java Au Naturel by William C. Jones 11-13

Integer methods for different number bases

The binary form of a number is a sequence of 1's and 0's. Its value is the sum of
several numbers: 1 if the last digit is 1, 2 if the next-to-last digit is 1, 4 if the third-to-last
digit is 1, 8 if the fourth-to-last digit is 1, etc. That s, a 1 at any place has twice the value
of a 1 at the place to its right. For instance, "1111" represents 1*8 + 1*4 + 1*2 + 1
which is 15 in base 10.

The octal form of a number is a sequence of digits in the range 0 to 7 inclusive. Its
value is the sum of several numbers: n if the last digit is n, 8*n if the next-to-last digit is n,
64*n if the third-to-last digit is n, 512*n if the fourth-to-last digit is n, etc. That is, a digit at
any place indicates 8 times the value of the same digit at the place to its right. For
instance, "2537" represents 2*512 + 5*64 + 3*8 + 7 which is 1375 in base 10.

The hexadecimal form of a number is a sequence of digits in the range 0 to F inclusive
(we run out of ordinary digits after 9, so we use A=10, B=11, C=12, D=13, E=14, and
F=15). Its value is the sum of several numbers: n if the last digit is n, 16*n if the next-to-
last digit is n, 256*n if the third-to-last digit is n, 4096*n if the fourth-to-last digit is n, etc.
That is, a digit at any place indicates 16 times the value of the same digit at the place to
its right. For instance, "B4E" can be thought of as (11)(4)(14), which represents
11*16*16 + 4*16 + 14, whichis 2816 + 64 + 14, which is 2894 in base 10.

Integer.toString (n, 2) gives the binary form of the int value n. If you replace
the 2 by 8, 16, or 10, you get the octal, hexadecimal, or decimal form of the int value n,
respectively. Conversely, | nt eger. parselnt (soneString, 2) returnsthe int
value corresponding to the string of binary digits (and similarly for 8, 16, and 10). Some
examples of the use of the overloaded t oSt ri ng method are as follows:

Integer.toString (43, 2) is "101011", i.e., 32 + 8 + 2 + 1.
Integer.toString (43, 8) is "53", i.e., 5 * 8 + 3.
Integer.toString (43, 16) is "2B", i.e., 2 * 16 + 11.

Useful Boolean and Character methods

The phrase new Bool ean(soneStri ng) gives the Boolean object Bool ean. TRUE
if soneSt ri ng is the word TRUE (in any combination of upper- and lowercase),
otherwise it gives Bool ean. FALSE. And new Bool ean(soneBool ean) gives the
wrapper object for the primitive value.

If x is a Boolean object, then x. bool eanVal ue() gives the boolean primitive value
true or f al se as appropriate. Boolean does not implement the Comparable interface,
but it does have instance methods equal s and toStri ng that override the
corresponding methods in the Object class.

The only constructor for the Character class has a char parameter, as in new
Character('B). If x and y are Character objects, then x. conpareTo(y),
x.equal s(y),and x.toString() all have the standard meanings.

x. char Val ue() is the char equivalent of x.

L anguage elements

Y ou may declare variables of type byte, short, or float. The primary reason to do so isto save
space. Most people do not use these types except for an array of thousands of values. This book
does not use these three types outside of this section.

Exercise 11.10 Convert each of these numbers to binary, octal, and hexadecimal: 5,
11, 260.
Exercise 11.11 Convert each of these hexadecimal numbers to decimal: F, 5D, ACE.

11-14 Java Au Naturel by William C. Jones 11-14

11.5 Implementing The Fraction Class

A Fraction object is a virtual fraction representing e.g. 2/3. Since you already know the
eight operations you want (described in the upper part of Listing 11.3), you can move on
to deciding about the instance variables. You will also find it useful to have a final class
variable representing ZERO.

The concrete form of a Fraction

After mulling the situation over for a while, you decide that the best concrete form of a
Fraction object is two int instance variables representing the numerator and the
denominator of the fraction, reduced to lowest terms. The logic for addition, multiplication,
and other operations can be worked out from there. Figure 11.2 shows a representation
of a Fraction object. It is a good idea to write down the internal invariant separately (the
condition that each Fraction method will make sure is true about its instance variables
when the method exits):

Internal invariant for Fractions A Fraction has two int instance variables i t sUpper and
itsLower. itsLower is positive and the two values have no integer divisor over 1 in
common. This pair of int values represents the quotient i t sUpper/it sLower.

After execution of :Fraction represents
ratio = nese Fraction (2,3) itsUpper bwvo-thircz
ratio

O it=Lower

Figure 11.2 A Fraction variable and its object
The Fraction constructor

You will need a constructor that creates a Fraction object from two given int values that
will be the numerator and the denominator. You could just set the two instance variables
of the Fraction to those two values, except for three problems your logic must manage:

1. If the denominator is zero, there is no such number. A reasonable response is to just
create the fraction 0/1.

2. If the denominator is negative, then multiply both the upper and lower parts of the
fraction by -1 before proceeding, since the denominator is supposed to be positive.

3. You have to reduce the fraction to lowest terms.

You may have several other methods that require reducing a fraction to lowest terms. So
that reducing logic should be in a private method. The command

thi s. reduceToLowest Ter ns() in the constructor has the object being constructed
execute the r educeToLowest Ter ms method. Thatis, t hi s refers to the object being
constructed within constructor methods and to the executor within ordinary methods. The
coding for this constructor is in the upper part of Listing 11.5 (see next page).

The valueOf method

For the val ueO method, you return null if the String value is null or the empty string.
Otherwise you apply the | nt eger. par sel nt method to the parts before and after the
slash to geti t sUpper andit sLower parts. This may throw a NumberFormatException.
You may then call the Fraction constructor to check for zeros, negatives, or values that
should be reduced. The coding for this method is in the lower part of Listing 11.5.

11-15 Java Au Naturel by William C. Jones 11-15

Listing 11.5 The Fraction class, partial listing

public class Fraction extends Nuneric

{
/** A constant representing ZERO */
public static final Fraction ZERO = new Fraction (0, 1);
LEEEEEEEEEEE e rrrrrrrry
private int itsUpper; // the nunerator of the fraction
private int itsLower; // the denom nator of the fraction
/** Construct a Fraction fromthe given two integers. */
public Fraction (int nunerator, int denom nator)
{ if (nunerator == 0 || denom nator == 0)
{ itsUpper = O;
itsLower = 1;
el se if (denom nator < 0)
{ itsUpper = - nunerator;
itsLower = - denom nat or;
thi s. reduceTolLowest Ter ns() ;
}
el se
{ itsUpper = nunerator;
itsLower = denomi nator;
t hi s. reduceTolLowest Ter ns() ;
}
Y 1
[** The paraneter should be two ints separated by '/', e.g.
* "2/3". Return null if par is null or "". Oherw se
* throw a Nunmber For mat Exception if the wong form */
public Numeric valueOf (String par)
{ if (par == null || par.length() == 0)
return null;
int k = 0;
while (k < par.length() - 1 & par.charAt (k) !'="/")
k++;
return new Fraction
(I nteger. parselnt (par.substring (0, k)),
I nt eger. parselnt (par.substring (k + 1)));
Y 1
}

The toString and equals methods

The toStri ng method simply returns the two int values with a slash between them, so
that just takes one statement to implement. The equal s method is more difficult. It
has an Object as the given parameter, not a Fraction. This is required to have it override
the equal s method in the Object class. So you cannot referto par.itsUpper inthe
body of equal s. Such an expression requires that par be a Fraction variable.

11-16 Java Au Naturel by William C. Jones 11-16

No outside class should call Fraction's equal s method unless the parameter does in
fact refer to a Fraction object. You can test for this using the i nst anceof operator
defined earlier: ob i nstanceof Fraction is true if ob refersto a Fraction object
at runtime, otherwise it is f al se. Once you know that ob in fact refers to a Fraction
object, you may refer to the it sUpper instance variable of that Fraction object with the
phrase ((Fraction) ob).itsUpper. This coding is in the upper part of Listing 11.6.

Listing 11.6 Three more methods in the Fraction class

/[** Express the Fraction as a String, e.g., "2/3". */

public String toString()
{ return this.itsUpper + "/" + this.itsLower;
|

[** Tell whether the two Fraction objects are equal. */

publ i c bool ean equal s (Obj ect ob)

{ return ob instanceof Fraction
&% ((Fraction) ob).itsUpper == this.itsUpper
&% ((Fraction) ob).itsLower == this.itsLower;

1y

/** Return the sum of the executor and par. */

public Numeric add (Numeric par)
{ Fraction that = (Fraction) par; [l for sinplicity
return new Fraction (this.itsUpper * that.itsLower
+ this.itsLower * that.itsUpper,
this.itsLower * that.itsLower);

1y

A method that overrides the basic Object class's equal s method is never to throw a
NullPointerException or ClassCastException, so you need to use the i nst anceof
operator to guard against these Exceptions.

The (Fraction) partofthat phraseis acast, justas (int) is. Itsays thatob can
be treated as a reference to a Fraction object. However, if you use a phrase such as
(Fraction) ob more than once or twice in some coding, it is clearer and more
efficient if you assign the value to a Fraction variable and use that Fraction variable
instead. This is illustrated in the add method discussed next.

The add method

The addition of one Fraction to another gives a new Fraction as a result. You should
remember that you add two fractions by "cross-multiplying": The new it sUpper value
is the first's it sUpper times the second's it sLower, added to the first's i t sLower
times the second's it sUpper. And the new itsLower value is the first's itsLower
times the second's it sLower. Once you make this calculation, you can create a new
Fraction object out of the two results and return it. This coding is in the lower part of
Listing 11.6.

11-17 Java Au Naturel by William C. Jones 11-17

The reduceToLowestTerms method

The reduceToLowest Ter ns method should divide both it sUpper and itsLower
by the same whole number wherever possible. You could proceed in this manner:

If bothi t sUpper and it sLower are divisible by 2, divide out the 2 and repeat.
If both i t sUpper and it sLower are divisible by 3, divide out the 3 and repeat.
If both i t sUpper and it sLower are divisible by 5, divide out the 5 and repeat.
If both i t sUpper andit sLower are divisible by 7, divide out the 7 and repeat, etc.

el A

After the first step, you have divided out 2 until one of the two numbers is odd. So it is
sufficient to try only odd divisors thereafter. A little more thought shows that you do not
have to try any divisor that is more than the smaller of it sUpper and itsLower.To
calculate the smaller of it sUpper and it sLower, you have to use the absolute value
of itsUpper, because it could be a negative number.

Dividing out a whole number is done in two places in the main logic of

reduceToLowest Ter s, so a separate private method is desirable. This method
simply divides both parts of a Fraction by the parameter until it will not go evenly into one
of them. Listing 11.7 has this r educeToLowest Ter ns method, as well as the obvious
logic for the doubl eVal ue method. The other three methods of the Fraction class are
left as exercises. Figure 11.3 gives the UML class diagram for the whole Fraction class.

Listing 11.7 Additional methods in the Fraction class

/** Reduce the fraction to |l owest terns. Precondition: the
* denom nator is positive and the nunerator is non-zero. */

private Fraction reduceToLowest Ter ns()
{ divideQut (2);
int limt = Math.mn (Math.abs (itsUpper), itsLower);
for (int divider = 3; divider <= limt; divider += 2)
di vi deQut (di vider);
return this;
|

[** "Cancel " out divider as much as possible. Precondition:
* jtsUpper, itsLower, and divider are all non-zero. */

private void divideQut (int divider)
{ while (itsUpper %divider == 0 & itsLower % divider == 0)
{ itsUpper /= divider;
itsLower /= divider;
}

1y

/[** Return the approxi mate val ue as a doubl e val ue. */

publ i ¢ doubl e doubl eVal ue()
{ return itsUpper * 1.0 / itsLower;

|

/1 these three are stubbed and | eft as exercises

public int conpar eTo (Cbject ob) { return 0; }
public Numeric subtract (Numeric par) { return null; }

public Nurmeric nmultiply (Numeric par) { return null; }

11-18 Java Au Naturel by William C. Jones 11-18

Fraction Mumeric. | ——— Comparable
ZERO _ compareTo (Ohject):int
ZERD > Matt et)

it sguarel)
ey (Irlt.ll'lﬂ. _ absl) acdehore;) - - ‘>ElufferedReader
valueOf (String) © Mumeric min i,
toString 1 String = readLiner)
double'aluel 1 double
equalzs (Ohject) : boolean -

___________________ =

compareTo (Ohject) : int > g
add (MUmeric) | Mumetric - - ‘> Integer length ()
subtract (Mumeric) : Mumeric substring()
multiply (Mumeric) ; Mumeric par=elrt(] charAt()

Figure 11.3 UML class diagram for the Fraction and Numeric classes

Exercise 11.12 Explain why you cannot replace {itsUpper = 0; itsLower = 1;}
by return ZERQ, in the logic for the Fraction constructor.

Exercise 11.13 In Listing 11.6, the equal s method tests ob i nst anceof Fraction
but the add method does not. Explain why it is not necessary.

Exercise 11.14 Write the Fraction method publ i ¢ Numeri c subtract (Numeric
par), giving the difference of two Fractions (analogous to the add method).

Exercise 11.15 The String class has a method i ndexOf (soneChar) that returns the
index where the first instance of someChar is found in the String. It returns -1 if
someChar is not there. Use it appropriately to rewrite the val ueO method of the
Fraction class.

Exercise 11.16 Write the Fraction method publ i c i nt conpareTo (Object ob).
Exercise 11.17 Write a Fraction method publ i ¢ Nurneric divide (Numeric

par), the result of dividing the executor by par. Return null if par represents zero.
Exercise 11.18* Write the Fraction method publ i ¢ Numeric multiply (Numeric
par), giving the product of two Fractions (analogous to the add method).

Exercise 11.19* How would you revise the add method to return Fracti on. ZERO
when a ClassCastException arises?

11.6 Implementing The Complex Class

Another category of software that the mathematicians need involves the use of complex
numbers. These are numbers that have a real part and an imaginary part, such as
3 - 4i. The i stands for the square root of negative 1.

The Complex class extends the Numeric class and defines objects that represent
complex numbers. Since you already know what operations you want, you can move on
to deciding about the instance variables. Clearly, each Complex object should have a
real part and an imaginary part. The following is a rather obvious internal invariant.

Internal invariant for Complexes A Complex object has two double instance variables
i tsReal andit sl mag. It represents the complex number itsReal + itslmag * i.

You need a constructor to create a Complex object from two given nhumbers for the real
and imaginary parts in that order. And you need methods that let you add, subtract,
multiply and compare Complex nhumbers, and to convert to and from Complex numbers.
The Complex class in Listing 11.8 is a start (see next page). It has the constructor and
four of the Numeric methods; the other four are left for exercises.

11-19 Java Au Naturel by William C. Jones 11-19

Listing 11.8 The Complex class, partial listing

public class Conpl ex extends Nuneric

{

}

public static final Conplex ZERO = new Conpl ex (0, 0);
[EEEEEEEEEEr iy

private final double itsReal;

private final double itslmg;

public Conpl ex (double real Part, double imagPart)
{ itsReal = real Part;

itslmg = i magPart;
|

public String toString ()

{ String operator = itslmmg <0 2 " " @ " +";
return itsReal + operator + itslmag + "i";
|

publ i ¢ doubl e doubl eVal ue()
{ return itsReal;
|

public int conpareTo (Cbject ob)
{ double diff =this.itsReal - ((Conplex) ob).itsReal;
if (diff == 0)
return O;
el se
return (diff >0 2?2 1 : -1;

1y

public Numeric add (Numeric par)

{ Conplex that = (Conpl ex) par;
return new Conplex (this.itsReal + that.itsReal,
this.itslmag + that.itslnag);

|

/[l the following are |eft as exercises

public Numeric valueOf (String par) {return ZERQ }
publ i c bool ean equal s (Obj ect ob) {return true;}
public Numeric subtract (Numeric par) {return ZERQ }
public Nurmeric nmultiply (Numeric par) {return ZERQ }

The ToSt ri ng method has to print a plus sign between the two numerals if the second
number is not negative. But a negative number as a minus sign as part of its string form.

The doubl eVal ue method returns the real part (non-imaginary part) of the complex
number. For the imaginary part of x, a person could compute this expression:

X.subtract (new Conpl ex (x.doubl evalue(), 0)

The conpar eTo method in Listing 11.8 compares Complex numbers on the basis of
their real parts. The one with the greater real part is considered larger. The (Conpl ex)

11-20 Java Au Naturel by William C. Jones 11-20

cast is required, because otherwise the phrase ob. it sReal is not acceptable to the
compiler -- Object objects in general do not have an it sReal instance variable.

The add method saves the trouble of making two casts by storing the cast value in a
local variable of the Complex type and using it in the calculations. Both conpar eTo
and add will throw a ClassCastException or a NullPointerException if the parameter is
not a non-null Complex object.

You might be wondering how the group of mathematicians handle cases where they just
want to use ordinary decimal numbers mixed in with the Fractions and the Complex
class. The answer is, you need to develop a subclass of Numeric for decimal numbers
as well. Until you get around to it, you can just use Complex objects with the imaginary
part equal to zero. Figure 11.4 shows a representation of a Complex object.

After execution of :Comple represents
enerdy = nesy Complex 2,3) . 243
Energy t=Real

l::} it=lmag

Figure 11.4 A Complex variable and its object

Exercise 11.20 Write the equal s method of the Complex class, testing whether the
two Complex values have the same real and imaginary parts.

Exercise 11.21 Write the mul ti pl y method of the Complex class.

Exercise 11.22 Revise the Complex conpar eTo method so that it accepts any
Numeric object as the parameter and gives a reasonable answer.

Exercise 11.23 Revise the Complex ToStri ng method to not print “+0i” and also to
not print a zero real part when the imaginary part is nonzero.

Exercise 11.24* Write the subtract method of the Complex class.

Exercise 11.25* Write the val ueXf method for the Complex class. Assume the input
is of the same form that t oSt ri ng produces, but possibly with extra whitespace.

11.7 Implementing The VeryLong Class Using Arrays

You have to define a VeryLong object class for extremely large whole numbers, up to 40
or 50 digits. Since you already know what they can do (the methods in Numeric), you
have to decide what they know (the private instance variables that store the value).

You could use three long values to store up to 54 digits, which is quite enough for your
needs. However, problems arise when you try to perform multiplication. It is better to
use an array of six int values, one for each group of nine digits of the number being

stored. You can multiply two int values and temporarily store the exact result in a long
variable; you have no easy way to store the exact result of multiplying two long values.

The internal invariant

You might decide to call the intarrayitsltem itslten] 0] could contain the first
(leftmost) nine digits of the VeryLong number, and the rest could go on from there. You
would find it easiest to not allow negative VeryLong numbers. You need to check with
your clients to make sure that this is acceptable to them.

Internal invariant for VerylLongs A VeryLong object is stored as six int values in
itsltenfO]...itslten]5]. Each must be non-negative and have no more than 9
digits. The whole-number value that the object representsis itsltenf 0] * 10 +
itsltenf1] * 10% + ... + itslten{4] * 10° +itslten{5].

11-21 Java Au Naturel by William C. Jones 11-21

This concrete description tells you all you need to know to be able to write methods that
add, multiply, etc. with VeryLong numbers: The internal invariant will be true when your
method begins execution; your job is to make sure it is true when the method finishes.
A partial listing of the VeryLong class of numbers is in Listing 11.9.

For this class, it turns out to be more efficient to have two different forms of one billion, an
int value and a long value (you want to minimize unnecessary casts). The ‘L' appended
to a string of digits indicates it is a long value; otherwise it is an int value. The 'L'is
required if you have more than 10 digits; it is optional in Listing 11.9.

Listing 11.9 The VerylLong class, partial listing

public class VeryLong extends Nuneric
{
public static final VeryLong ZERO = new VerylLong (0, 0, 0);
private static final int BILLI ON = 1000000000;
private static final |ong LONGBILL = 1000000000L;
private static final int MAX = 6;
[EEEEEEEEEEr i
private final int[] itsltem= newint[MAX]; [/ all zeros

public VeryLong (long left, long md, long right)

{ this.itsltenfO] = (int) (left / LONGBILL);
this.itslten]1] (int) (left % LONGBILL);
this.itsltenf2] (int) (md / LONGBILL);
this.itsltenf3] (int) (md % LONGBILL);
this.itslten]4] (int) (right / LONGBILL);
this.itslten]5] (int) (right % LONGBILL);

|

public String toString ()

{ String s ="" +itslten]0];
for (int k =1; k < MAX = Kk++4)
S +="," + ((BILLION + itsltenfk]) + "").substring(1);
return s;
|

public Numeric add (Numeric par)
{ VerylLong that = (VerylLong) par;
VeryLong result = new VerylLong();
for (int k = 0; k < MAX; k++)
result.itsltenfk] = this.itsltenfk] + that.itsltenik];
for (int Kk = MX- 1; k >0; k--)
{ if (result.itslten]k] >= BILLIQON)
{ result.itslten]fk] -= BILLION
result.itsltenfk - 1] ++;

}
}
return result.itsltenf0] >= BILLION ? null : result;
|
private VerylLong() /1 only used by other VerylLong net hods
{
|

11-22 Java Au Naturel by William C. Jones 11-22

The constructor and the toString method

How will people supply a numeric form of a very long number to be made into a VeryLong
object? A reasonable way is to have them break the number up into three 18-digit parts,
left to right, and supply those as three long values. So new VerylLong (OL, 217L,
333333333222222222L) would give the number 217,333,333,333,222,222,222. The
constructor only needs to split each of the three long values into two 9-digit parts and
store them in the appropriate six components of the array.

What if one of the three parameters is negative or has nineteen digits? Just as with
Fractions, you should create the equivalent of ZERO when one of the parameters is
unacceptable this way. This adjustment is left as an exercise.

The toStri ng method should put the commas in the written form of the number.
Without them, the numeral would be too hard to read. Grouping digits by threes would
give up to 18 groups, which is probably not helpful. So the client agrees that groups of
nine digits is better. If the it sltem array contains e.g. {0, 0, 0, 37, 12345, 1234567},
you have to supply the missing zeros to make it 37,000012345,001234567.

A simple trick adds the right number of leading zeros: Add a billion to the up-to-9-digit
number, convert it to a string of characters, then throw away the initial 1. You do not
need to do this for the first part, i t sl t enf 0] , but you do for the rest of the components.
These methods are in the top part of Listing 11.9.

The add method

To add two VeryLong numbers, you first create a VeryLong object in which to store the
resul t. You then add up corresponding components in the two things being added to
get the same component of the resul t. But what if one of the sums goes over nine
digits? You carry the 1. That is, you subtract a billion from that component of the
result and add 1 to its next component. But if the leftmost component goes over nine
digits, the sum is too big to store, so you are to return null according to the specifications.
The accompanying design block expresses this algorithm in Structured English.

DESIGN for the add method in the VeryLong class
1. Name the two values to be added t his and t hat.
2. Create a VeryLong object to store the result of the addition. Callit resul t .
3. For each of the six possible indexes do the following...
Add the current components of t hi s and t hat to get the corresponding
component of resul t.
4. For each components of result except one, starting from the rightmost digits of
the number and working towards the left, do the following...
If the current component has more than nine digits then...
a. Subtract a billion to reduce it to nine or fewer digits.
b. Add 1 to the component to its left.
5. If the leftmost component of result has more than nine digits then...
Return null, since the answer cannot be expressed using six components.
Otherwise...

Return the resul t.

The rest of the VeryLong methods are left as exercises, except that the rmul ti ply
method is sufficiently complicated that it is a major programming project. Note that no
public method in the Numeric class or any of its subclasses allows an outside class to
change the value of a Numeric object once it is created: Objects from Numeric and its
subclasses are immutable. This is similar to the String class, in that no method in the
String class allows you to change a String object once you create it.

11-23 Java Au Naturel by William C. Jones 11-23

You could have a subclass of VeryLong that allows negative numbers, as follows:

public class SignedNunber extends Verylong
{ private bool ean isNegative;
public SignedNunber (long left, long md, |ong right)
{ super (Math.abs (left), md, right);
i SNegative = left < O;
}

//... lots nore is required here in the sane vein

Exercise 11.26 Modify the VeryLong constructor to create the equivalent of ZERO when
any one of the parameters is negative or has more than eighteen digits.

Exercise 11.27 (harder) Write the doubl eVal ue method for the VeryLong class.
Exercise 11.28 (harder) Write the equal s method for the VeryLong class.

Exercise 11.29 (harder) Write a simplified val ueO method for the VeryLong class,
for which you have a precondition that the parameter is a string of 1 to 54 digits.
Exercise 11.30* Write the full val ueO method for the VeryLong class. Allow the
input to contain commas among the digits. Use the preceding exercise to get started.
Exercise 11.31* Write a Real subclass of Numeric for ordinary numbers with one double
instance variable. This lets the clients mix in ordinary numbers with the special ones.
Exercise 11.32* Write the subtract method for the VeryLong class.

Exercise 11.33* The Complex instance variables are final but the Fraction instance
variables are not, even though both are immutable classes. Explain why.

Exercise 11.34** Write the conpar eTo method for the VerylLong class.

Exercise 11.35** The VeryLong t oSt ri ng method produces leading zeros when the
leftmost one or more components of it sltem are zero. Revise it to fix this problem.

11.8 Implementing The NumericArray Class With Null-Terminated
Arrays

These mathematicians often deal with numbers in big bunches. They may read in a
bunch of numbers from a file, then calculate the average of the whole bunch, find the
smallest and the largest, insert a value in order, etc. For this, you decide to store a lot of
Numeric objects in an array of Numeric values. Call it the NumericArray class.

Once you define an array, you cannot change its size. So you need to make it big
enough for the largest number of values you expect. But then the array is generally only
partially filled. So you have to have some way of noting the end of the array. One way is
to keep track of the size. Another way is to put the null value in all the components after
the end of the actual Numeric values in the array, as shown in Figure 11.5.

iterm[0] iterm[3] item[:a] iterm[S]
tem (=143 (72 | - | -zd | 15 [54 | run | nun| nn | oo |

Figure 11.5 picture of a null-terminated array with six Complex values

For instance, if the array has size 1000 and currently contains only 73 values, then those
73 values will be stored in components 0 through 72 and the null value will be stored in
each of components 73...1000. We do not allow a full array. A precondition for these
null-terminated arrays is that they contain at least one instance of null.

Precondition for NumericArrays For the array parameter i t em there is some integer n
suchthat 0 <= n < itemlength anditenik] isnotnullwhen k < n and

i tenf k] is null otherwise. The non-null values are the values on the conceptual list in
order, with the first at index O.

11-24 Java Au Naturel by William C. Jones 11-24

The find method

To illustrate how to work with such a null-terminated array, consider the problem of
searching through the array to find whether a particular non-null value is there. You
process each value of an int variable k from 0 on up, until itenf k] isnull. Ateach
array value before that point, you compare it with the target value. If they are equal, you
return true. If you reach the point where it enf k] ==nul I , you know the target value
is not in the array, so you return f al se. This logic is in the upper part of Listing 11.10.

Listing 11.10 The NumericArray class

public class NunericArray

{

[** Tell whether target is a non-null value in the array. */

public static boolean find (Object[] item Object target)
{ for (int k =0; itenfk] !'=null; k++)
{ if (itenfk].equals (target))
return true;
}

return fal se;
|

/** Return the sumof the values in the array; return null
* if the sumis not conputable. Precondition:
* Al non-null values are of the sanme Nuneric type. */

public static Numeric sum (Nuneric[]| iten)
{ if (itenf O] == null)

return null;
Nuneric total = itenO];
for (int k =1; itenfk] !'=null &k total !'= null; k++)

total = total.add (itenfk]);
return total;
|

/** Print each non-null value on the screen. */

public static void display (Object[] item
{ for (int k =0; itenfk] !'=null; k++)
Systemout.println (itenfk].toString());

|

/[** Return the array of values read fromthe source, to a

* maximumof [imt values. Precondition: limt >= 0 and
* data is the sane Nuneric subtype as all input val ues. */

public static Numeric[] getlnput (Nuneric data, int limt,
j ava.i o. Buf f er edReader sour ce)
throws java.io.| OException
{ MNuneric[] item= new Nuneric [limt + 1]; // all nulls
for (int k =0; k <limt; k++)
{ itenfk] = data.valueO (source.readLine());
if (itenfk] == null)
return item
}
return item
|

11-25 Java Au Naturel by William C. Jones 11-25

What if the calling method passed in a target value of null? The condition

iten] k] . equal s(target) returnsfal se when you test whether a non-null value
equals a null value. So each time through the loop in the fi nd method, the if-condition
is false. Eventually fi nd returns fal se.

This fi nd method has been written with Object in place of Numeric. The reason is that
only the equal s method is used in the logic, and every Object has an equal s
method. Making the parameter the Object type allows the method to be used in more
situations.

The fi nd method goes in the NumericArray class because that is where you need it.
But as a general principle, you should make your methods apply more generally when
nothing is lost by it. You are allowed to assign a Nurneri c[] array value to an

oj ect[] array variable, though not vice versa. The runtime system chooses the right
equal s method for each Object (another use of polymorphism).

The sum and display methods

Listing 11.10 contains some other useful class methods for the NumericArray class. The
sum method finds the sum of all the non-null values in the array. It throws a
ClassCastException if they are not all of the same Numeric type. It uses a logic you have
seen before: Initialize the t ot al to the first value in the array. Then add the second
value to it, then the third value to that, etc. The total . add(itenfk]) expressionis
polymorphic: The runtime system chooses the add method in the subclass of Numeric
that t ot al belongs to. That requires that each item be of the same Numeric subtype.

Further thought indicates you need to allow for the possibility that the result of adding two
values may be null, which occurs when the sum is not computable. The accompanying
design block records the logic in detail. Remember, a primary purpose of the design in
Structured English is to verify that all possibilities have been handled properly before you
attempt to translate the logic to Java.

DESIGN for the sum method in the NumericArray class

1. If the given list contains no values at all, i.e., the first component is null, then...
Return null.

2. Create a Numeric object to store the result of the addition. Call it t ot al .

Initialize it to be the first value in the list (at index 0).

3. For each additional value in the list do the following...
Add the next value in the listto t ot al (but stop if the result becomes null).

4. Returnthe total as the answer.

The di spl ay method prints every value in the array. Since the only method called in
the body of the di spl ay method is the t oStri ng method, which every Object has,
the di spl ay method is written more generally to handle any array of Objects
whatsoever, even from different classes. The runtime system chooses the right
toStri ng method for each Object (another use of polymorphism).

The getinput method

The get | nput method returns a new array containing all the values read in. It requires
a Numeric data value to do its job, even though it totally ignores the value supplied. It
would normally be the ZERO of a subclass of Numeric. The only purpose of that data
value is to act as the executor of the val ueXf method, so that the runtime system
knows which of the subclass methods to use at that point (another use of polymorphism).

11-26 Java Au Naturel by William C. Jones 11-26

For the get | nput method, every non-null value that is read in must be stored in the
array. Whatifthe |1i mt isten and the source contains ten or more Numeric values?
That tenth value has to be put into the array as well. Since the array has to have a null
value after all the useable Numeric values, it has to have at least eleven components.
That is why the array size is made larger than the given limit.

A program using a NumericArray

Every method in the NumericArray class is a class method. This is because the object
you are working with, an array of Numeric values, is a parameter rather than an executor.
So this is a utilities class analogous to the Math class.

Listing 11.11 illustrates how simple programs can be that involve arrays of Fractions, with
just the methods in Listing 11.10. The program reads in up to 100 Fraction values from a
file named "numeric.dat". Then it prints all of the values as fractions reduced to lowest
terms. Finally, it prints out the sum of the values as a fraction reduced to lowest terms.
Figure 11.6 is the UML diagram for this AddFractions class.

Listing 11.11 An application program using Fractions and NumericArrays

i mport java.io.| OExcepti on;
i mport java.i o. Buf f er edReader;
i nport java.io. Fi | eReader;

public class AddFrontFile

{
/** Read in up to 100 Fraction values froma file,
* then display themall on the screen with their sum */
public static void main (String[] args) throws | OException
{ MNuneric [] values = NunericArray. getl nput
(Fraction. ZERO, 100, new BufferedReader
(new Fi | eReader ("nuneric.dat")));
Nuneri cArray. di spl ay (val ues);
Systemout.println ("Their sumis "
+ Nuneri cArray.sum (val ues));
Y 1
}
AddFractions -~~~ """ """ """ " ~-~-~"--------- o e MumericArrary
---------------------- Mumeric
main (string[|- -~~~ "~~~ "~ T - - -~ -% Fracticun_[> £ — - qgetinput (Mumeric,
Y e System | [ZERD int, BufferedReader)
- - HBufferedReader| [out display (Object] I)
new (Readetl | - - - - - o o o o e e e o - o sum (Mumericl])

Figure 11.6 UML class diagram for the AddFractions class

An alternative for storing a large number of Numeric values is to use a NumericList object
having two instance variables, a partially-filled array of Numerics i tsltem and an int
i tsSi ze that tells how many components at the front of the array have useable
Numeric values. Then the di spl ay method of the earlier Listing 11.10 would be
expressed as follows:

11-27 Java Au Naturel by William C. Jones 11-27

private Nuneric[] itsltem

private int itsSize;

public void display() /1 for NumericlLi st

{ for (int k =0; k <itsSize; k++)
Systemout.println (itsltenk]);

Exercise 11.36 Write a NumericArray method to find the sum of the doubl eVal ue
values of the objects in the array, even when the objects are of various subclasses of
Numeric.

Exercise 11.37 Write a NumericArray method publ i c static int size
(Nurreric[] iten) tofind the number of non-null values in the null-terminated array.
Exercise 11.38 Write a NumericArray method publ i ¢ static bool ean al | Snal |
(Nurmeric[] item Nuneric par) to tell whether every value in the array is
smaller than par. Precondition: All values are comparable to the non-null par.
Exercise 11.39 (harder) Write a NumericArray method public static int

i ndexSmal | est (Numeric[] itemn) tofind the index where the smallest value is
stored. Precondition: The array has at least one value, and all values are comparable to
each other.

Exercise 11.40 (harder) Write a NumericArray method public static void
delete (Numeric[] item int n) todelete the value atindex n and keep the
rest of the values in the same order they were originally in. No effect if there is no value
at index n.

Exercise 11.41 (harder) Write a NumericArray method public static Numeric[]
get Compl exes (Nuneric[] iten) toreturn a new null-terminated array containing
just the values in the given array that are Complex objects.

Exercise 11.42* Rewrite the NumericArray get | nput method efficiently to have the
condition of the for-statementbe k < limt && data != null.

Exercise 11.43* Write a NumericArray method public static double
fractional (Nuneric[] item to find the fraction of values that are Fraction
objects (e.g., return 0.25 if a quarter are Fractions). Return zero if there are no values in
the array.

Exercise 11.44* Write a NumericArray method publ i ¢ static Nuneric maxi num
(Nurreric[] iten) tofind the largest value in the array. Crash-guard against all
NullPointerExceptions. Return null if the array contains zero values. Precondition: Any
two values in the array are comparable to each other.

Exercise 11.45* Write a NumericArray method with the heading publ i ¢ static
void insert (Numeric[] item Nuneric given) toinsertthe given value in
the array and keep it in ascending order. Precondition: The values in the array when the
method is called are already in ascending order, the array has enough room, and any two
values are comparable to each other. Restriction: Go to the end of the array and work
backwards.

Exercise 11.46* Revise the get | nput method in Listing 11.10 to catch any Exception
and return the array as it stands at that time.

Exercise 11.47* Revise the entire Listing 11.10 so that it has one instance variable of
type Nuneric[]. Remove the item parameter of the first three methods, since it will
be in the executor. Only the get | nput method should be a class method,; it should
return a NumericArray object.

Exercise 11.48** Write a NumericArray method publ i c static Numeric[]
reverse (Numeric[] iten) toreturn a null-terminated array containing the same
values but in the opposite order.

Exercise 11.49** Write a NumericArray method publ i ¢ static bool ean

i SNul led (Object[] item thattells whether the parameter is in fact a null-
terminated array. This method has no preconditions at all. Hint: The first statement
shouldtest itenfitem |l ength-1] !'= null.

11-28 Java Au Naturel by William C. Jones 11-28

11.9 Too Many Problems, Not Enough Solutions (*Enrichment)

Problem: Tell whether a given positive integer is odd.
Solution: The following boolean class method answers the question:

public static boolean isQdd (int num
{ return num%2 == 1;
} | | ======================

Problem: Tell whether a given positive integer is a prime.
Solution: The following boolean class method answers the question:

public static boolean isPrinme (int num
{ for (int k =2; k <=num/ 2; k++)
{ if (num%k == 0)
return fal se;
}

return num > 1;
} | | ======================

In general, a decision problem is of the form "Tell whether a given positive integer has a
certain property.” A solution to a decision problem is a boolean class method with one
integer parameter, that returns t r ue for parameters that have the property and f al se
for those that do not. The two methods above are therefore solutions to the stated
decision problems. Another example is the following:

Problem: Tell whether a given positive integer is the sum of two odd primes. For
instance, 6 = 3+3, 8 = 5+3, 10 = 5+5, 12 = 7+5, so those happen to all be
the sum of two odd primes.

Solution: The following boolean method answers the question:

public static bool ean i sGol dbach (int num

{ for (int k =3; k <=num/ 2; k += 2)

{ if (isPrime (k) & isPrime (num- Kk))
return true;

return false;
} | | ======================

Counting without limit

It would be nice if every decision problem had a solution. Of course, that cannot be true
if there are more decision problems than there are solutions to decision problems. Let us
see how many there are of each.

Every Java function is written as a sequence of characters. Each such character can be
stored in one byte of storage, which is 8 bits. The (extremely long) sequence of bits you
get this way can be interpreted as a single number base 2. Call that the Java integer of
the function. So every solution to a decision problem has a Java integer, and different
solutions have different Java integers. Therefore, we may conclude:

Deduction 1: The number of solutions to decision problems is no more than the number
of positive integers.

11-29 Java Au Naturel by William C. Jones 11-29

For any given decision problem testing for a certain property, you can visualize a
corresponding base 2 number as follows:

1. Write a decimal pomt (correction, make that a binary point).

2. Write 1 for the 1° d|g|t after the binary point if 1 has the property; write O if it does not.

3. Write 1 for the 2" d|g|t after the binary point if 2 has the property; write O if it does
not.

4. Write 1 for the 3" d|g|t after the binary point if 3 has the property; write O if it does not.

5. Write 1 for the 4™ digit after the binary point if 4 has the property; write O if it does not,
etc.

In general, the n" digit of the number is 1 if the property is true for n and is O if the
property is false for n. Call this the property number of the decision problem. For
instance, the decision problem solved by i sGdd has 0.101010101... as its property
number (which is 2/3; check this by adding up 1/2 + 1/8 + 1/32 + 1/128 ad infinitum).

So every number between 0 and 1, written in base 2, is the property number of some
decision problem, and different numbers between 0 and 1 have dlfferent decision
problems (since if the numbers differ in even one place, say the 17", then for the two
corresponding decision problems, 17 has one property but not the other). Therefore, we
may conclude:

Deduction 2: The number of decision problems is no less than the number of real
numbers between 0 and 1.

Put those two deductions together with the mathematical fact that the number of real
numbers between 0 and 1 is far greater than the number of positive integers to get:

Deduction 3: Almost all decision problems have no solution in Java.

This is a result from the Theory of Computability, which you will learn more about in
advanced courses in computer science. You will learn the reasoning behind the fact that,
for any attempt to match up the positive integers one-to-one with the real numbers
between 0 and 1, you will leave over 99% of the real numbers without a match. So over
99% of all decision problems have no Java method that solves them. In a sense, over
99% of all sets of yes-no questions about positive integers have no answers.

Exercise 11.50* (Essay Question) Which has more, the set of odd numbers or the set
of primes? Why?

11-30 Java Au Naturel by William C. Jones 11-30

11.10 Threads: Producers And Consumers (*Enrichment)

Situation #1: A portion of a program displays a continually changing scene on the
monitor, but as soon as the user clicks a button or moves the mouse or presses a key,
the scene disappears and the program reacts to the user's action. An example of this is
a screensaver.

Situation #2: A portion of a program is waiting for part of a web page to download. It
cannot continue with what it is doing until the download completes. So it checks every
tenth of a second or so and, when it sees that the download is still going on, it lets
another portion of the program do something useful for the next tenth of a second.

Situation #3: A process performs a long series of calculations to eventually produce a
result which it deposits in a variable. A second process is waiting for that result. When it
appears, the second process uses it as the starting point for its own long series of
calculations. Meanwhile, the first process is working on producing a second result. Each
time the second process (the consumer) needs a new result, it waits for it to appear and
then uses it. Each time the first process (the producer) computes a new result, it checks
that the previous result has been taken and, when it has, deposits the new result.

In all of these situations, it would be extremely useful to have two or more independent
computer chips, each executing its own method and interacting with the other chips as
needed. That is much simpler than trying to keep track of where you are in each of
several processes and switching back and forth between them.

Concurrent execution

Java provides an equivalent of this called Threads. Each of several threads of execution
run their own methods "simultaneously”. What really happens (unless your program
actually has more than one computer chip available for its use) is that the one chip
switches back and forth between several different threads of execution, doing each one
for such a short period of time that it may appear to the human observer that all are
executing simultaneously. We say they run concurrently rather than simultaneously.

Each thread is given a small period of time, called a quantum, during which it executes
part of what it is supposed to do. If the quantum expires before the thread finishes what it
is doing, the thread's action is suspended and another thread is given a quantum. When
the thread receives another quantum, it takes up what it was doing at the point where it
left off. This continues in round-robin fashion among all operating threads.

The graphical user interface is one thread of execution. If that thread is executing a
screensaver kind of method, repeatedly making changes in the screen display, it is not
available to listen for a button click or other action by the user. So the user would be
clicking with no effect. The screensaver action might continue forever.

If, however, the main thread of execution performs statements that create a new Thread
object process to execute the screensaver method, the main thread can then go back
to listening for some event to happen. When it detects a button click, it can then react by
sending a message to the process object to stop what it is doing.

The Runnable interface

The Runnable interface specifies a method with the heading public void run().
When a class i npl ement s Runnabl e, its run method can control a single thread of
execution. If you have a Thread variable named process that is to execute the run
method in a ScreenSaver class, you can create a new thread of execution and have it
start execution with this coding:

11-31 Java Au Naturel by William C. Jones 11-31

Runnabl e acti on = new ScreenSaver () ;
Thread process = new Thread (action);
process.start();

The Thread constructor creates a new thread of execution that will use the run method
of the parameter. When you call the st art method for a Thread object, the object
initializes the concurrent thread of execution and then calls the run method specified. If
you later wish to stop execution of that thread, execute the following statement:

process.interrupt();

This statement notifies the process thread that some other thread wants it to terminate,
but it does not force the termination. That is up to the process thread. It can find out
whether it has received an interrupt request by testing the following condition:

Thread. i nterrupted()

Listing 11.12 contains an example of the use of these language features. It omits the
messy details of how the screen display changes during execution of the screensaver,
since that is not relevant to the overall concurrency logic. The acti onPer f or med
method would be in some class that can refer to the st art Button andthe process.
The Thread class and Runnable interface are in the j ava. | ang package, so they can
be used in a class without having import directives.

Listing 11.12 The ScreenSaver class and the method that uses it

[/l reaction to a click of either startButton or stopButton

Thread process;
Button startButton, stopButton;

public void actionPerformed (ActionEvent e)
{ if (e.getSource() == startButton)
{ process = new Thread (new ScreenSaver());
process.start();

}
el se
process.interrupt();
yo1

public class ScreenSaver inplenments Runnabl e

public void run()
{ while (! Thread.interrupted())
changeTheScener ySomne() ;

1y

private void changeTheScenerySone()
{ [// nmake a small change in the display on the nonitor
|

11-32 Java Au Naturel by William C. Jones 11-32

The producer-consumer situation

If you have two Runnable objects called perhaps producer and consumer, you may
create a Thread object for each and start both their r un methods executing
concurrently as follows:

Thread pro
Thread con
pro.start();
con.start();

new Thread (producer);
new Thread (consumner);

The start method for Thread objects sets up the concurrent process and then
executes the run method of the given Runnable object (pr oducer or consumer in
this case). Think of the objects being produced as pies. The producer is continually
producing pies and depositing them in the place where the consumer can find them,
pausing only if the consumer gets behind in eating them. And the consumer is continuing
consuming pies, pausing only if the producer gets behind in baking them.

The Producer and Consumer classes could be designed as shown in Listing 11.13. The

messy details of the actual eating and baking are left unstated. The coding uses the
conventional for (;;) notation to create an infinite loop.

Listing 11.13 The Producer and Consumer classes

public class Producer inplenments Runnabl e

{
public void run()
{ for (;;)
{ Object dessert = produce();
whi | e (Resour ce. hasUneat enPi e())
{ 1} /1 wait until unoccupied
Resource. set Pi e (dessert); // mark it occupied

}
y o1

publ i c Object produce()
{ /] extensive action required to produce a pie
|

}
| | #HBHHHBHHHBHHH B H B H B H B H R H R R R R R R R R

public class Consuner inplenments Runnabl e

{
public void run()
{ for (;;)
{ while (! Resource. hasUneat enPie())
{ 1} /1 wait until occupied
consume (Resource.getPie()); /!l mark it unoccupi ed

}
y o1

public void consunme (Object dessert)
{ /] extensive action required to consune a pie
|

11-33 Java Au Naturel by William C. Jones 11-33

These two classes presume the existence of the Resource class which serves as a pie
depository. The Resource class has three class methods:

set Pi e(nj ect) deposits the given pie. Only one can be there at a time.
get Pi e() returns the pie currently on deposit; it returns null if there is no pie.
hasUneat enPi e() tells whether a pie is currently on deposit.

The Resource class could be implemented with the following two private class variables.
Then the set Pi e method could set ready to true and assign its parameter value
to pi e, and the hasUneat enPi e method could simply return the value of r eady:

private static bool ean ready = fal se;
private static Object pie = null;

Sleeping threads

The producer and consumer use a busywait to wait for something to happen, i.e., they
execute statements that do nothing useful while waiting. This ties up the processor
unnecessarily. A substantially better method is to have a thread of execution execute the
following statement to free up the processor for n milliseconds:

Thread. sl eep (n);

This method call can throw an InterruptedException that must be acknowledged (i.e., it is
not a RuntimeException). So the method call should normally be used only within a
try/catch statement. You could replace the no-action pair of braces in the body of the
Consumer's whi | e statement by the following statement, if you define the ThreadOp
utility class shown in Listing 11.14:

if (ThreadOp. pause (50)) // true only when interrupted
return;

Listing 11.14 The ThreadOp class

public class ThreadOp

{
public static bool ean pause (int mllis)
{ try
{ Thread.sleep (mllis);
return Thread.interrupted();
}catch (InterruptedException e)
{ return true;
}
|
}

That statement relinquishes the processor for 50 milliseconds (0.050 seconds), then
checks to see whether an interrupt signal was sent. If so, the r et urn statement stops
the execution of the run method. Otherwise the method checks to see if a new pie is
available (Resour ce. hasUneat enPi e()). If so, it gets one more pie, eats it, and then
returns to its waiting state. Note that it does not allow itself to be interrupted in the middle
of eating a pie; that would waste the effort spent in partially processing its data, to say
nothing of wasting a chunk of a perfectly good pie. The interrupt request does not force
termination, it only suggests it.

11-34 Java Au Naturel by William C. Jones 11-34

The producer requires a more complex response to a request to stop. It would be a
shame to waste the pie it is waiting to place in the depository. On the other hand,
perhaps the consumer has also been interrupted and will therefore never get around to
retrieving the pie currently on deposit. So let's say the producer waits for 200 more
milliseconds to see if that pie is taken and, if so, deposits its new pie before it terminates.
Thus the no-action pair of braces in the body of the Producer's whi | e statement could
reasonably be replaced by the following statement:

if (ThreadOp. pause (50)) // true only when interrupted
{ ThreadQp. pause (200);
if (! Resource.hasUneatenPie())
Resource. set Pie (dessert);
return;

}

Note that the producer does not pay attention to whether another interrupt is sent during
that 200 millisecond pause, since it plans to terminate in any case. Note also that, if
either object wished to ignore any interrupt request, but still use the sl eep method, it
could simply replace the no-action pair of braces in the body of its whi | e statement by
the following. This discards the returned boolean value:

Thr eadQp. pause (50);
Synchronization

If the Resource class method get Pi e is coded as follows, the logic could fail to produce
the desired result:

public static Qbject getPie()
{ ready = fal se;
return pie;

The problem is that a consumer may execute get Pi e when a chocolate meringue pie is
on deposit and a producer is waiting to deposit a coconut creme pie. The consumer
executes ready = fal se ingetPi e. Then before it can execute r et urn pi e, the
producer may test Resour ce. hasUneat enPi e(), which now returns f al se, so the
producer executes set Pi e, thereby depositing the coconut creme pie before the
chocolate meringue pie has been taken. That means that the consumer gets coconut
creme, which is far inferior to chocolate meringue. The chocolate meringue is totally
wasted.

A solution is to reverse the order of operations in the get Pi e method, so the consumer
first takes the pi e out of the depository and then sets the boolean ready to fal se:

public static Qhject getPie()
{ Object valueToReturn = pie;
ready = fal se;
return val ueToRet urn;

This solution works if there is only one consumer. However, if there were several
consumers, then as soon as a pie became available, two of them could try executing
get Pi e at the same time, which could produce a food fight.

11-35 Java Au Naturel by William C. Jones 11-35

Java provides a solution for this messy problem. A class method that has the word
synchroni zed inits heading can only be executed by one thread at a time. That is,
when a Consumer object begins execution of the method, it is given a lock on the
method. When another Consumer object tries to execute that same method, it is locked
out; it must wait until the first Consumer object completes the method. Now, with some
revisions of the coding given in this section, the program can manage several producers
and several consumers properly.

Technical notes

The recommended order of the words in a method heading is shown by the following
legal method heading. All those that come before voi d are optional. nati ve means
that the method is written in another language than Java and thus its body is to be found
elsewhere than at this point:

public static final synchronized native void test()

Java has three rarely-used declaration modifiers: A field variable can be declared as
vol ati | e, which forces frequent synchronization, or as t r ansi ent , which affects
whether it is saved when an object is written to permanent storage, or as stri ct f p,
which puts strictures on floating-point computations.

Exercise 11.51* Write the Resource method public static void setPie
(Ohj ect ob) to avoid synchronization problems when there is only one producer.

11.11 More On Math And Character (*Sun Library)

This section briefly describes all Math methods other than those discussed in Chapter Six
(sgrt(x),abs(x),log(x),exp(x),mn(x,y), mx(x,y), powx,Yy),and
randon()) plus some additional methods from the Character wrapper class.

Math rounding methods

Math has five methods that round off a value in some way. x denotes a double value:

cei |l (x) returns a double that is the next higher whole-number value, except it
returns x itself if x is a whole number. So ceil (4.2) is5.0, ceil (-4.2) is
-4.0, and ceil (32.0) is 32.0.

fl oor (x) returns a double that is the next lower whole-number value, except it
returns x itself if x is a whole number. So fl oor (4.2) is4.0, fl oor(-4.2)
is -5.0,and fl oor (32.0) is 32.0.

rint(x) returns a double that is the closest whole-number value, except it returns
an even number in case of atie. So rint(4.2) is4.0, rint(4.7) is5.0,
rint(4.5) is4.0,and rint(5.5) is6.0.

round(x) returns the long value equivalent of ri nt (x). Itreturns
Long.MAX_VALUE or Long.MIN_VALUE if it would be otherwise out of range.
round(soneFl oat) for a float parameter returns the int equivalent of
rint(soneFl oat). Itreturns Integer.MAX_VALUE or Integer.MIN_VALUE if it
would otherwise be out of range.

11-36 Java Au Naturel by William C. Jones 11-36

Math trigonometric methods

The nine trigonometric methods all take double arguments and produce a double result.
The angles are measured in radians, so x = 3. 14159 is about 180 degrees. For
instance, cos(Math. Pl / 6.0) isthe cosine of 30 degrees, which is 0.5.

cos(x) returns the cosine of x.

si n(x) returns the sine of x.

tan(x) returns the tangent of x.

acos(x) returns the angle whose cosine is x, ranging from 0.0 through PI.

asi n(x) returns the angle whose sine is X, ranging from -PI/2 through P1/2.

at an(x) returns the angle whose tangent is x, ranging from -PI/2 through P1/2.
at an2(x, y) returns the angle whose tangent is y/ x, ranging from -PI/2 through
Pl1/2.

t oDegr ees(x) returns the angle in degrees equivalent to x radians, which is equal
tox * 180.0 / Math.Pl.

t oRadi ans(x) returns the angle in radians equivalent to x degrees, for instance,
cos(toRadi ans(30)) is the cosine of 30 degrees.

The one remaining Math method is | EEEr emai nder (X, Yy), which returns the
remainder of x divided by y as specified by the IEEE 754 standard.

Character methods

The following class methods, which have char values for parameters and return a
boolean value, can be quite handy. Unicode values outside the range 0 to 255 are not
considered here:

Character.isDigit(soneChar) tellswhetheritis'0'through'9'
Char acter. i sLower Case(soneChar) tells whether it is 'a’ through 'z'.
Char act er. i sUpper Case(soneChar) tells whether it is 'A’ through 'Z'.
Char act er. i s\Wi t eSpace(soneChar) tells whether ¢ has Unicode 9-13 or
28-32.
Character.isLetter(soneChar) tellswhetheritis a letter, either lowercase or
uppercase.
Character.isLetterODigit(soneChar) tellswhetheritis either a letter or a
digit.

The following methods have a char parameter and return a char value:
Char act er.t oLower Case(sonmeChar) returns the lowercase equivalent of a
capital letter, and returns the unchanged parameter otherwise.

Char act er. t oUpper Case(soneChar) returns the capital letter equivalent of a
lowercase letter, and returns the unchanged parameter otherwise.

11-37 Java Au Naturel by William C. Jones 11-37

11.12 Review Of Chapter Eleven

About the Java language:

>

>

A method may be declared as final, which means it cannot be overridden. The
phrase final class means that the class cannot have any subclasses.

Declaring a class as abstract means (a) you may replace the body of any non-final
instance method by a semicolon if you declare that method as abstract; (b) every
non-abstract class that extends it must implement all of the abstract methods. An
abstract class may have instance and class variables, constructors, and instance and
class methods. Class methods in an abstract class cannot be abstract.

The heading publ i ¢ interface X means X cannot contain anything but non-
final instance method headings (with a semicolon in place of the body) and final class
variables. A non-abstract object class with the heading cl ass Y i npl enents X
must define all methods in that interface. A class may implement many interfaces
(usei npl emrent X, U, Z) but may subclass only one class.

The compiler binds a method call to a particular method definition when it can,
namely, for a class method or for a final instance method. This is early binding,
which reduces execution time compare with late binding (done at runtime).

The four primitive integer types are long (8 bytes), int (4 bytes), short (2 bytes), and
byte (1 byte). One byte of storage is 8 bits, so there are 256 different possible
values for one byte. The two primitive decimal number types are double (8 bytes, 15
decimal digits) and float (4 bytes, 7 decimal digits). The remaining two primitive
types are boolean and char.

The operator instanceof can be used between an object variable and a class name,;
it yields a boolean value. x i nstanceof Y istruewhen x isnot null andis an
object of class Y or of a subclass of Y or (if Y is an interface) of a class that
implements Y. The ! operator takes precedence over the i nst anceof operator,
so a phrase of the form ! X i nst anceof Y is never correct; use parentheses.

About the six Number subclasses:

>

VVVYVYVVYY Y

Y

The six Number wrapper classes Double, Float, Integer, Long, Short, and Byte are
in java. | ang and are Comparable. The twelve methods given below for the Long
class apply to the other five Number wrapper classes with the obvious changes:
Long. par seLong(sonmeStri ng) returns a long value or throws a
NumberFormatException.

new Long(sonmeStri ng) creates alLong object parsed from the String. It throws a
NumberFormatException if the string is badly-formed.

new Long(primtive) createsalLong objectfrom a given long value.
sonmeLongObj ect . | ongVal ue() returns the long equivalent.

sonmeLongObj ect . doubl eVal ue() returns the double equivalent

sonmelLongObj ect . i nt Val ue() returns the int equivalent.

sonmreLongObj ect . f| oat Val ue() returns the float equivalent.

sonmeLongObj ect . short Val ue() returns the short equivalent.

sonmeLongObj ect . byt eVal ue() returns the byte equivalent.

sonmelLongObj ect.t oSt ri ng() overrides the Object method; it returns the String
equivalent.

sonmeLongObj ect . equal s(soneCbj ect) tells whether the corresponding
primitive values are equal.

sonmelLongObj ect . conpar eTo(soneCbj ect) returns an int with the usual
meaning: positive if the executor is larger, negative if it is smaller.
Integer.toString(n, 16) gives the hexadecimal (base 16) form of the int value
n. Use 2 or 8 in place of 16 for binary (base 2) or octal (base 8).

I nt eger. parsel nt (soneString, 16) produces the int equivalent of the
hexadecimal digits in soneSt ri ng. Use 2 or 8 for binary or octal, respectively.

11-

38 Java Au Naturel by William C. Jones 11-38

About the java.lang.Character class:

>
>
>
>

>

new Char act er (soneChar) gives the object equivalent of the primitive value of
the parameter.

sonmeChar act er . char Val ue() converts back from object to primitive value.
sonmeChar acter.toString() returnsthe String equivalent of the char value.
sonmeChar act er . equal s(sonmeQbj ect) overrides the Object equal s; it tells
whether some(bj ect represents the same char value.

sonmeChar act er . conpar eTo(some(hj ect) returns an int with the usual
meaning: positive if the executor is larger, negative if it is smaller.

About the java.lang.Boolean class:

>

>

new Bool ean(primtive) gives the object equivalent of the primitive boolean
value given as a parameter.

new Bool ean(soneString) yields Bool ean. TRUE if the parameter is "true”,
ignoring case, otherwise it yields Bool ean. FALSE.

sonmeBool eanbj ect . bool eanVal ue() returns the primitive form of the Boolean
object.

sonmeBool eanObj ect . toStri ng() returns "true" or "false" as appropriate.
sonmeBool ean(bj ect . equal s(soneCbj ect) overrides the Object equal s; it
tells whether sonmeQbj ect represents the same true or false value.

Answers to Selected Exercises

11.2

11.3

11.5

public static Numeric min3 (Numeric one, Numeric two, Numeric three) // in Numeric
{ if (one.compareTo (two) < 0)
return one.compareTo (three) <0 ? one : three;
else
return two.compareTo (three) <0 ? two : three;

An alternative coding for the body of this method in 2 lines is:
Numeric smaller = (one.compareTo (two) <0) ? one : two;
return smaller.compareTo (three) <0 ? smaller : three;
public Numeric smallest (BufferedReader source)
{ ty
{ Numeric valueToReturn = valueOf (source.readLine());
if (valueToReturn == null)
return null;
Numeric data = valueOf (source.readLine());
while (data != null)
{ if (data.compareTo (valueToReturn) < 0)
valueToReturn = data;
data = valueOf (source.readLine());

return valueToReturn;
}catch (Exception e)
{ return null;

}

public boolean equals (Object ob)
{ if (! (ob instanceof Person))
return false;
Person given = (Person) ob;
return this.itsBirthYear == given.itsBirthYear
&& this.itsLastName.equals (given.itsLastName);

11-39

11.6

11.10

11.11

11.12

11.13

11.14
11.15

11.16

11.17

11.20

11.21

11.22

11.23

11.26

11.27

Java Au Naturel by William C. Jones

public class Tuna extends Swimmer
{ public void swim()
{ System.out.printin ("tuna is swimming");

}
public void eat (Object ob)
{ if (ob instanceof Swimmer)
System.out.println ("tuna eats " + ob.toString());
else
System.out.printin (“tuna is still hungry");

}
public String toString()
{ return "tuna”;

}

}
5=4+1, 11=8+2+1,260=256+4. So:
In binary; 101, 1011, 100000100.
In octal: 5, 13, 404 (the last since 256 = 4 * 8 * 8).
In hexadecimal: 5, B, 104 (the last since 256 = 16 * 16).
Fis 15. 5D is 5*16 + 13 = 93.
ACE is 10 * 256 + 12 * 16 + 14 = 2560 + 192 + 14 = 2766.
ZERO is defined using the constructor. That definition will be applied by the
constructor when the program begins. How can the constructor return a value that
does not yet exist? Besides, a constructor does not have a return type.
The specification for the equals method is that it not throw an Exception. But the
Numeric add, subtract, and multiply methods are to throw an Exception if the
parameter is not of the right type.
For subtract, simply replace the plus sign in the add method by the minus sign.
public Numeric valueOf (String par)
{ if (par == null)
return null;
int k = par.indexOf ('");
return (k ==-1) ? null : new Fraction (Integer.parselnt (par.substring (0, k)),
Integer.parselnt (par.substring (k + 1)));

public int compareTo (Object ob)
/I You can return the numerator of the result of subtracting this minus ob:
{ return this.itsUpper * ((Fraction) ob).itsLower

- this.itsLower * ((Fraction) ob).itsUpper;

public Numeric divide (Numeric par)
{ Fraction that = (Fraction) par;
return (that.itsUpper == 0) ? null
. new Fraction (this.itsUpper * that.itsLower, this.itsLower * that.itsUpper);

public boolean equals (Object ob)
{ return ob instanceof Complex && ((Complex) ob).itsReal == this.itsReal
&& ((Complex) ob).itsimag == this.itsimag;

public Numeric multiply (Numeric par)
{ Complex that = (Complex) par;
return new Complex (this.itsReal * that.itsReal - this.itsimag * that.itsimag,
this.itsReal * that.itslmag + this.itsimag * that.itsReal);

Change the (Complex) cast to a (Numeric) cast. The compiler accepts it because

Numeric declares doubleValue. The runtime system will then choose the right subclass's

doubleValue method.
Insert the following before the return statement in the toString method:
if (itslimag * itsReal == 0)
return (itslmag == 0) ? itsReal +“" : itslmag + “i";
else
You could insert the following as the first statements:
long max = LONGBILL * LONGBILL - 1;
if (left < 0 | left > max || mid < O || mid > max || right < O || right > max)

{ left = OL;
mid = OL;
right = OL;

}
public double doubleValue()
{ double total = itsltem[0];
for (intk = 1; k< MAX; k++)
total = total * BILLION + itsltem[k];
return total;

11-39

11-40

11.28

11.29

11.36

11.37

11.38

11.39

11.40

11.41

Java Au Naturel by William C. Jones 11-40

public boolean equals (Object ob)
{ if (! (ob instanceof VeryLong))
return false;
VeryLong that = (VeryLong) ob;
for (intk = 0; k< MAX; k++)
{ if (this.itsltem[K] != that.itsltem[K])
return false;
}

return true;

public Numeric valueOf (String par) // for VeryLong, in a simplified form for a first approximation
{ VeryLong valueToReturn = new VeryLong(); // initially all zeros
intk =MAX - 1;
for (; par.length() >9; k--)
{ int firstDigit = par.length() - 9;
valueToReturn.itsltem[k] = Integer.parselnt (par.substring (firstDigit));
par = par.substring (O, firstDigit);

itsitem[k] = Integer.parselnt (par);
return valueToReturn;

public static double sumValues (Numeric[] item)
{ double valueToReturn = 0;
for (intk = 0; item[K] != null; k++)
valueToReturn += item([k].doubleValue();
return valueToReturn;

public static int size (Object [] item) // better if Object, not Numeric
{ intk =0;
while (item[K] != null)
k++;
return k;

public static boolean allSmall (Numeric[] item, Numeric par)
{ for (intk = 0; item[K] != null; k++)
{ if (item[k].compareTo (par) >= 0)
return false;
}

return true;

public static int indexSmallest (Numeric[] item)
{ int valueToReturn = 0;
for (intk = 1; item[K] != null; k++)
{ if (item[k].compareTo (item[valueToReturn]) < 0)
valueToReturn = k;
}

return valueToReturn;

public static void delete (Object[] item, int n) // best if Object, not Numeric
{ if (n >= 0 && n < item.length) // no need to verify it is non-null
{ for (; item[n] != null; n++)
item[n] = item[n + 1];

public static Numeric[] getComplexes (Numeric[] item)
{ Numeric[] valueToReturn = new Numeric [item.length]; // all initially null
int next = 0;
for (int k = 0; item[K] != null; k++)
{ if (item[k] instanceof Complex)
{ valueToReturn[next] = item[K];
next++;
}
}

return valueToReturn;

