7-1 Java Au Naturel by William C. Jones 7-1

7 Arrays

Overview

In this chapter you will learn about arrays in the context of a personnel database system
for a commercial company. An array lets you store a large number of values of the same
type. Arrays make it easy to implement the Vic class for Chapters Two and Three (since
a sequence stores many CDs), the Network classes for Chapter Five (since a Position
object stores many Nodes), and the Queue class for Chapter Six (since a queue stores
many Objects). You will also see an elementary use of disk files for input.

Sections 7.1-7.2 design the Worker class of objects and develop two of the many
small programs that might be in the Personnel Database software suite.

Sections 7.3-7.4 introduce arrays and apply them to another program using Workers
and to the implementation of the Worker class.

Sections 7.5-7.6 discuss the partially-filled array concept and develop many instance
methods for an object that contains a list of Workers. The list varies in size.
Sections 7.7-7.11 develop an elementary sorting method for Workers and describe
implementations of the Vic, Network, and Queue classes used in earlier chapters.
The Sun standard library class ArrayList is featured in Section 7.11.

You only need to study Sections 7.1-7.6 to be able to understand the rest of the book.
The other sections are to give you additional practice working with arrays. Reminder:
The answers to the unstarred exercises are at the end of the chapter.

7.1 Analysis And Design Of The Worker Class

A company offers your consulting firm a contract to develop software to handle all their
personnel matters. You head a software engineering team at your firm that will design
and build the software. The others on your team are all junior programmers, so you will
have to create the basic design and delegate the details to the others. Your talks with the
company executives tell you that the software must, among other things:

Maintain a data file of workers, accepting additions and deletions.

Go through the data file and print various reports, some with the workers in order of
names, some in order of paycheck size, some in order of birth year, etc.

Input hours worked for each worker and print pay checks, with taxes withheld.

When you look over your notes from your first meeting with the company's management,
you realize that this software can be mostly a number of different small to medium main
programs working with a common set of objects, including:

A virtual worker, representing a single employee.

A virtual input device, representing the keyboard or a data file.
A virtual output device, representing the screen or printer.

A virtual file cabinet, storing data for many workers.

7-2 Java Au Naturel by William C. Jones 7-2

Description of the Worker class

You decide to design the Worker class first. You need to be able to perform at least the
following operations with Worker objects. As you develop the main logic of various
programs, you expect to see the need for additional operations.

Create a Worker object from a string of characters received as input from a disk file
or from the keyboard.

Update the hours worked each day, so a Worker can compute its pay for the week.
Access one Worker's data: name, week's pay, birth year, and others.

Compare two Workers to see which comes first alphabetically by name.

Obtain a printable form of a Worker for use in reports.

This leads you to develop documentation for the Worker class as the sketch shown in
Listing 7.1, with more to be added later by your subordinates. The methods in this
documentation are stubbed. That is, the body of each has the minimum necessary to
make it compile -- nothing if a void method, a simple return otherwise (null if it returns an
object). The name t oStri ng is the conventional Java name for the method that
returns the String representation of an object. If the constructor is given null or the empty
String, it signals this by having get Nanme return null.

Listing 7.1 Documentation for the Worker class, first draft

public class Wrker inplenments Conparable //stubbed docunentation

{

[** Create a Wirker froman input String, a single line with
* first nane, |ast nanme, year, and rate in that order.

* |f the String value is bad, the nane is nmade null. */
public Worker (String input) { }
/** Return the first name plus |ast nanme of the Worker.

* But return null if it does not represent a real Wrker. */
public String getName() { return null; }

/[** Return the Worker's birth year. */
public int getBirthYear() { return 0; }

/** Return the Wirker's gross pay for the week. */
publ i c doubl e seeWeksPay() { return 0; }

/** Record the hours worked in the npst recent day. */
public void addHour sWor ked (doubl e hour sWr ked) {}

/** Return O if equal, negative if the executor is before
* ob (executor has an earlier |ast name or else the sane
| ast nane and an earlier first nane), positive otherw se.
Precondition: ((Wrker) ob).getNanme() is non-null. */
public int conpareTo (Cbject ob) { return 0; }

[** Tell whether one Wirker has the sane nane as anot her. */
publ i c bool ean equal s (Wbrker ob) { return fal se; }

/** Return a String value containing nost or all of the
* Wirker's data, suitable for printing in a report. */
public String toString() { return null; }

7-3 Java Au Naturel by William C. Jones 7-3

The condition x. conpar eTo(y) < 0 for objects tests whether x comes before y in
a reasonable ordering, and x. conpareTo(y) >= 0 tests whether x equals or
comes after y. They are analogousto x < y and x >= y for numeric variables.
The presence of this method in the Worker class allows it to i npl enment Conpar abl e
(discussed in Section 6.3). Both conpareTo and equal s have the same name and
meaning as for String objects: x. conpareTo(y) < 0 for Strings of lowercase
characters tests whether x is alphabetically before y.

Reading from a BufferedReader

Information about hundreds or thousands of workers is quite naturally stored in a file on a
hard disk, so this Personnel Database software needs a class that provides methods for
reading from a disk file. We will call this the Buffin class (Buffin is a subclass of the Sun
standard library BufferedReader class). The Buffin class is developed in Section 10.3,
but you do not have to study that material now. All you need for this chapter is how to
use the following two Buffin methods that encapsulate reading data from a text file:

Buffin file = new Buffin ("A'\\soneFile.dat");

The above opens a channel to the data file named soneFi | e. dat on the floppy disk
and creates a special BufferedReader object. The \\ sequence is what you must write
inside quotes to indicate a single backslash character.

String value = file.readLine();

The above requests the next available line from that text file. If you have already read all
the information from the file, or if there is an error reading the next line, the r eadLi ne
method returns the null value as a signal.

If the runtime system cannot open the file for some reason, or if you call new Buffin
with the empty String as the parameter, all input will be obtained from the keyboard. This
feature of the Buffin class lets you write a multipurpose method with a Buffin parameter
that gets data from either a file or the keyboard.

If, after reading some data from a file, you decide you want to start over from the
beginning of the file, just execute file = new Buffin ("A \\soneFile.dat")
again.

Finding the last of three workers

Listing 7.2 (see next page) is a short application program that demonstrates the use of
Worker objects. The main method creates three Worker objects with input from a file
named wor kers. txt. Then it prints out the Worker with the alphabetically last name.
The task of finding the last of three values is sufficiently complex that it deserves a
separate method. We put this method in a separate utilities class named CompOp, for
operations on Comparable objects. The or der ed method of Listing 6.3 would be
another candidate for this CompOp class. The class diagram is in Figure 7.1.

Ordetingf - - - - - - - - - - - - - — - — - — — = — = — = - — - — | Worker
R P it >[IOpfiarPane e (Siring)
main(y |— " " " "7 ST CompOp - ~ lhowhessageDialog) compareTo (Okject)
— tostring
System e (String)| |/@StOne)
exit (int)| [readline || 020 0 |F-——-—=—-=—-—=—=—==-=——-—= o

Figure 7.1 UML class diagram for the Ordering program and lastOne

7-4 Java Au Naturel by William C. Jones 7-4

Listing 7.2 Application program using Workers (compile in two files)

i mport javax.sw ng. JOpti onPane;
public class Odering

[** Ask the user for three Wirkers. Print the one that is
* last in al phabetical order of nanes. */

public static void main (String[] args)
{
j avax. swi ng. JOpt i onPane. showessageDi al og (nul |,
"reading 3 workers, printing the last.");
Buffin infile new Buffin ("workers.txt");
Wor ker first new Worker (infile.readLine());
Wor ker second new Worker (infile.readLine());
Worker third new Worker (infile.readLine());
if (third.getNane() !=null) // if insufficient input
{ javax.sw ng.JOpti onPane. showMessageDi al og (nul I,
"The al phabetically last is "
+ Conpp. | astOne (first, second, third));

}
Systemexit (0);
|
Yo AR AR R R R R R R R R R R R R R

public class ConpOp

{
/** Return the String representation of the |ast/|argest of
* three Conparabl e val ues. */
public static String | astOne (Conparable first,
Conpar abl e second, Conparabl e third)
{ Conparable last = first.conpareTo (second) >= 0
? first : second,;
if (last.conpareTo (third) < 0)
last = third,
return last.toString();
|
}

The | ast One method has three parameters of Comparable type. When called from
Ordering's main method, the method queries the conpar eTo method in the Worker
class twice to decide which of the three is alphabetically last, since the Comparable
objects are instances of the Worker class. Then it prints the result.

Polymorphism in the Ordering class

You may wonder how | ast One can compile correctly when it calls | ast.toStri ng()
for one of the Comparable objects but t oSt ri ng is a Worker method. However, the
Object class has a t oSt ri ng method to produce a textual representation of an object.
The compiler accepts the phrase | ast.toString() because every Comparable
object is in a subclass of Object. So it knows that the runtime system can use Object's

t oSt ri ng method definition unless the object referred to by | ast has its own

t oSt ri ng method to override the one from the Object class.

7-5 Java Au Naturel by William C. Jones 7-5

The expression | ast.toString() inthe | ast One method may call the method in
the Worker class or the method in the String class or in some other class, depending on
the kind of Comparable objects passed as parameters. For instance, if some class
contains the phrase CompQp. |l astOne ("chris", "sant, "pat"),then
last.toString() isthe String equivalent of "sam”, which is just "sam" itself. This is
an example of polymorphism -- a method call that could invoke any of several different
methods at different times during the execution of some program.

Key point The compiler does not look at the object referenced by the variable; it only
looks at the variable. The object does not exist yet (since it is created at runtime).

Suppose you run a program that calls ConpQp. | ast One for three String values. When
the runtime system evaluates | ast.toStri ng() inthat program, it sees that | ast
refers to a String object. So it calls the t oSt ri ng method in the String class. That
produces the characters in the string.

Key point The runtime system does not look at the variable; it only looks at the object
referenced by the variable. The variable does not exist anymore (since it is in the source
file ConpOp. j ava, not necessarily in the compiled file ConpQOp. cl ass).

When the runtime system decides which method to call, it does not look at the type of the
variable, it looks at the type of the object. The Comparable variable | ast inthe source
file is a polymorph -- it will sometimes refer to a Worker object and sometimes to a
String object (or some other kind of object). "Polymorph” comes from the Greek,
meaning a thing that takes on several different forms (a sort of shape-changer).

Caution If a class contains a method with the same signature as a method
in its superclass, then the two methods must have the same return type.
Also, you cannot have one be an instance method and the other be a class
method.

Exercise 7.1 Write an independent method publ i ¢ static void

aver ageDai | yPay (Wborker karl): It prints the given Worker's name and average
daily pay (assuming 5 days in a work week). Throw an Exception if kar| is null.
Exercise 7.2 If some method has a Worker variable named chri s and an int variable
named ti ne, and it mentions chri s. addHour sWor ked (ti ne), how would you
refer to the value of ti ne within the body of the addHour sWor ked method? How
would you refer to the value of chri s within the body of addHour sWr ked?
Exercise 7.3 Revise the | ast One method in Listing 7.2 to return the String form of the
youngest of three Workers.

Exercise 7.4 How would you revise Listing 7.2 to have | ast One print the value of

| ast instead of returning it? Have one statement in the main method that calls that
revised | ast One to have it printed. Do not change the overall effect of the program.
Exercise 7.5* Write an application program to read three Worker values from the
keyboard and then print the average age of those three Workers.

Exercise 7.6* Revise the body of the | ast One method in Listing 7.2 to return a String
value that is (a) the name of that one of the three Workers who has the lowest weekly
pay, followed by (b) the amount of that Worker's pay.

7-6 Java Au Naturel by William C. Jones 7-6

7.2 Analysis And Design Example: Finding The Alphabetically First

Problem A data file named wor ker s. t xt lists thousands of workers. Write a method
to find and return the alphabetically first name of all the workers.

Analysis (clarifying what to do) You verify that the data file follows a standard format for
worker data, so you can retrieve worker information from the data file as a single line to
be processed by a Worker constructor. Then the get Nane method applied to that
worker information produces the worker's hame in the form needed to decide on
alphabetical ordering, except it produces null when there was no Worker value to read.

No, wait! The get Nane method produces names with the first name first, so a
comparison will find the person with the earliest first name. That is probably not what the
client wants. You check back with the client and find that workers are to be ordered by
last name, with the first name only to break ties. So you need to use the conpar eTo
method in the Worker class instead of the get Nane method.

A program should be robust, which means that it should handle unexpected or unusual
situations in a reasonable manner without crashing (at least terminate gracefully). For
this program, the file may be empty, in which case the first Worker object will have no
name. In that case, you could just have the program print an appropriate message.

Logic design (deciding how to do it) An initial plan for solving this problem could be as
shown in the accompanying design block. It uses a sentinel-controlled loop pattern, i.e.,
the loop terminates when an "artificial” input value is received that indicates there are no
more actual input values available. In this case, a Worker with a null name is the sentinel.

STRUCTURED NATURAL LANGUAGE DESIGN for the findEarliestWorker method
1. Create the virtual data file connected to workers.txt.
2. Attempt to read in the first worker value.
3. If that first worker value does not even exist, then...

Produce an appropriate message.
4. Otherwise...

4a. Make answer SoFar equal to that Worker object.

4b. For each remaining worker you read from the data file, do...

If its name is before answer SoFar's, then...
Replace answer SoFar by that Worker object.
4c. Produce the name of the ending value of answer SoFar .

Object design and implementation To make the logic reusable, we put it in an instance
method in a class named PersonnelData. Creating a PersonnelData object does step 1
of the design block, since each such object opens the input file named "workers.dat" for
reading when it is constructed. Each step of this design translates to one or two Java
statements, using classes you have already defined, so no further analysis is needed.
The logic as expressed in Java is shown in Listing 7.3 (see next page).

The lower part of Listing 7.3 is an application program for testing purposes: Tell the user
at the keyboard what program is about to run (line 13), create a PersonnelData object
(line 14), askitto fi ndEarl i est Wor ker, print it (line 15), then terminate the program.

Reminder: Wr ker data = new Wirker (itsFile.readLine()); isthe same as
the following two statements, but it avoids having an extra variable used in only one line:

String input = itsFile.readLine();
Wor ker data = new Worker (input);

7-7 Java Au Naturel by William C. Jones 7-7

Listing 7.3 PersonnelData class of objects, part 1

i mport javax.sw ng. JOpti onPane;

public class Personnel Dat a

{

private Buffin itsFile = new Buffin ("workers.txt");

/** Read a file and return the nane of the Wiorker that is
* al phabetically first. */

public String findEarliestWrker()
{ Worker answer SoFar = new Worker (itsFile.readLine()); //1

i f (answer SoFar. get Name() == null) /12
return "no workers!"; /13
el se /14
{ Wirker data = new Wirker (itsFile.readLine()); /15
whil e (data.getNanme() !'= null) /16
{ if (data.conpareTo (answer SoFar) < 0) 17
answer SoFar = dat a; /18
data = new Wirker (itsFile.readLine()); /19
} /110
return answer SoFar.getName() + " is first of all."; //11
} /112
|

Y || BHHHBHHH B H A H R H R H R H R R R R R R R R R R

cl ass Earli est Wor ker Test er

public static void main (String[] args)

{ JOptionPane. showvessageDi al og (null, "finding the first");
String out = new Personnel Data().findEarliestWrker(); //14
JOpt i onPane. showessageDi al og (null, out); /115
Systemexit (0); /116

|

Similarly, line 14 is the same as the following two statements:

Per sonnel Dat a base = new Personnel Dat a();
String out = base. FindEarliestWrker();

This book generally avoids creating a variable to hold a value that is only used once,
unless the alternative is a statement that is more than one line long. This speeds
execution without making the coding any less clear. Note that lines 14 and 15 could have
been combined into a single two-line statement, but that seemed to be too complex.

Review of Structured Natural Language Design features The SNL principle is that the
entire design of a method should be expressed in ordinary natural language (English or
whatever you are most comfortable in), with three exceptions:

1. Storage locations should be named where it clarifies the logic (e.g., answer SoFar).

2. Use If whatever then... <stuff> Ctherw se... <stuff> wherea
choice is made (sometimes you do not need the O her wi se part). Indent for the
<st uf f > in each case.

3. Use For each whatever do... <stuff> forrepetition (or perhaps use
repeat). Indent for the <st uff>.

7-8 Java Au Naturel by William C. Jones 7-8

Test plans

You will need to test your program. Most people tend not to think seriously about the
tests until they have finished the implementation. That is too late for maximum efficiency
in the development of software.

Atest set is a set of input values used for one run of the program, together with the
expected output values (what you believe should be produced by the program for that
input). You test your program by giving it the input values and then making sure that the
output it produces is what you expected.

A test set for the EarliestWorkerTester program could have the following eight Worker
names. At the right of each name in this list is the value that answer SoFar should
have after the Worker is read. The two lines of output from the program are boldfaced:

finding the first

Ceor ge Meaney answer SoFar is George Meaney
Ut ah Phillips answer SoFar is George Meaney
Joe Hill answer SoFar is Joe Hi Il
Mot her Jones answer SoFar is Joe H Il
Wal ter Reut her answer SoFar is Joe H Il
Mar cus Garvey answer SoFar is Marcus Garvey
Bill Heywood answer SoFar is Marcus Garvey
Samuel Gonpers answer SoFar is Marcus Garvey

Marcus Garvey is first of all.

Atest plan is a large enough number of test sets that you can be confident that almost
all of the bugs are out of the program. Begin to develop your Test plan when you are
finishing the Analysis stage of the development. Do not even start the Design stage until
you have your Test plan at least partially planned. Three reasons why it is important to
consider the Test plan before the Design stage are as follows:

1. Asyou make up a test set, you are reviewing the results of your Analysis stage. You
are likely to find many of the errors that are in your analysis. And it is far more
efficient to remove the errors before you design rather than after.

2. You get a deeper understanding of the specifications, which means that you will find
it easier to design the software.

3. If you have much difficulty making up the test sets, that shows that you do not
understand the specifications well enough, so you could not possibly make up a good
design anyway.

Exercise 7.7 Modify Listing 7.3 to print the alphabetically last name.

Exercise 7.8 Add to Listing 7.3 coding to also print the total amount paid to all Workers
this week.

Exercise 7.9 Add to Listing 7.3 coding to tell whether every worker was born in the same
century.

Exercise 7.10* Modify Listing 7.3 to print the earliest birth year. Do not store the worker
with the earliest birth year, only the year itself.

Exercise 7.11* Modify Listing 7.3 to print both the name and the birth year of the person
with the alphabetically first name.

Exercise 7.12* Draw the UML class diagram for Fi ndEar | i est WWr ker .

Exercise 7.13** Add to Listing 7.3 coding to tell whether the workers are in increasing
order of names as determined by conpareTo. A sequence of less than two values is
considered to be in increasing order in any case.

7-9 Java Au Naturel by William C. Jones 7-9

7.3 An Array Of Counters, An Array Of Strings

Problem A data file named wor kers. t xt lists thousands of workers, all with birth
years in the 1960s. Write a method that prints the number that were born in each one of
the 10 years 1960 through 1969.

Analysis (clarifying what to do) You verify that the data file follows the standard format
for worker data, so you can retrieve worker information from the data file as a single line
to be processed by a Worker constructor. You should print ten lines after reading through
the entire file. The first line should say "1960 had XX workers", the second should say
"1961 had XX workers", etc., where XX is filled in by the non-negative count of workers.

What if some birth years in the data file are wrong? You decide to treat the assertion that
all birth years are in the 1960s as a prediction to be verified rather than as a precondition
to be trusted. That means that your program will be more robust because it will not crash
if the prediction is wrong. This compensates for being less efficient by spending time
checking that the assertion is true.

To handle the exceptional workers, you can print those whose birth years are not in the
1960s as they arise, or print the total number of such exceptions after finishing the file, or
simply say whether such exceptions exist. The robustness-check is left as an exercise.

Logic design (deciding how to do it) You need to have a variable that counts the number
born in 1960, a variable that counts the number born in 1961, a variable that counts the
number born in 1962, etc. Read the data file one worker at a time using r eadLi ne. For
each worker you read, add 1 to the counter for his or her year. An initial plan for solving
this problem is in the accompanying design block. It uses the standard sentinel-
controlled loop pattern you saw for Listing 7.3.

STRUCTURED NATURAL LANGUAGE DESIGN for the countBirthYears method
1. Create the virtual data file connected to workers.txt.
2. Create ten counters, one for each year, all initially zero.
3. For each worker that you read in from the file, do...
3a. Add 1 to the counter corresponding to her or his birth year.
4. Print the list of 10 counters with explanatory comments.

Using an array of counters

You could have 10 int variables named count 0, count 1, count 2, etc. Then you
would use the last digit of the birth year to decide which counter to increment. So you
would increment count 4 if the birth year is 1964, count 7 if the birth year is 1967.
But this makes the logic extremely clumsy.

You can instead use an array of 10 int variables, one for each year. When you execute

int[] count;
count = new int[10];

you create 10 counter variables at once (the [] characters are called brackets).
Inside the program, you may refer to the one for 1960 as count [0] , the one for 1961 as
count [1], the one for 1962 as count[2], etc. The int[] count part declares
count to be an object reference. The count = new i nt[10] part creates an object
having 10 int variables, each initialized to zero, and has count refer to that object. The
array is shown in Figure 7.2 (the initialized values and also after counting seven years).

7-10 Java Au Naturel by William C. Jones 7-10

initial values: caurt[count[3] count[g) count[9]
cort (3—[o0 Jo Jo Jo Jo Jo Jo Jo [o [o]

after processing 1963, 1966, 1965, 1963, 1960, 1965, and 1963:
court[0] court[3] count[5] court[3]

st (S~ 1 Jo Jo s Jo Jo 1 Jo [z [o |

Figure 7.2 An array of 10 counters

Development of the sub-logic

Step 3a of the main logic, finding the right counter to add 1 to, is the step that is most
complex. It can be designed as shown in the accompanying design block.

STRUCTURED NATURAL LANGUAGE DESIGN for step 3a
1. Get the year that the current worker was born.

2. Subtract 1960 from it to get a number ranging from O to 9.
3. Add 1 to the counter indexed by that number.

The implementation of this logic is in Listing 7.4. It uses constants for 1960 and 10 to
make the logic clearer to the reader and to make the logic easier to modify in the future.
This method is to be added to the PersonnelData class shown in Listing 7.3. A suitable
tester application would be like that listing's EarliestWorkerTester's mai n except line 14
would become String out = new Personnel Data().countBirthYears();.

Listing 7.4 A PersonnelData method using an array of counters

public class Personnel Data // continued

{

private Buffin itsFile = new Buffin ("workers.txt");
private static final int TIME_SPAN = 10;
private static final int YEAR = 1960;

/** Read a file and return the string representati on of the
* nunmber of Workers born in each of 1960 to 1969. */

public String countBirthYears()

{ int[] count = newint [TIME SPAN]; // all zeros /11
/I == READ THE WORKER DATA AND UPDATE THE COUNTS
Wor ker data = new Wirker (itsFile.readLine()); /12
whil e (data.getNanme() !'= null) /13
{ int lastDigit = data.getBirthYear() - YEAR /14
count[lastDigit]++; // error check left as exercise//5
data = new Wirker (itsFile.readLine()); /16
} 117
[/ == CONSTRUCT THE STRI NG OF ANSWERS
String s = ""; /18
for (int k =0; k < TIME_SPAN, k++) /19
s += (YEAR + k) + " : " + count[K] + " workers\n"; //10
return s; /111
|

7-11 Java Au Naturel by William C. Jones 7-11

is assigned instead of outside it. It is preferable to not declare a local variable

any more broadly than it has to be. Some would say this wastes time

redeclaring the variable each time through the loop. This assertion is faulty for
two reasons: (a) a commercial-strength runtime system allocates all space for local
variables when the method is called, not during execution of the method, so no time is
actually wasted; (b) if that logic were cogent, you would be compelled to also "save time"
when you code the Worker constructor by making all its local variables into class
variables, since that constructor is called once each time through that same loop. But no
one does that.

(ﬁ Programming Style Listing 7.4 declares | ast Di gi t inside the loop where it

When you create an array, you must specify its length. For instance, count = new

i nt[10] gives that new array named count a length of 10. The length cannot
change later in the program. You get a NegativeArraySizeException if the specified
length is negative. And you get an ArraylndexOutOfBoundsException if you refer to
count [K] when k is negative or greater than 9. ArraylndexOutOfBoundsException is
a subclass of IndexOutOfBoundsException. Another of its subclasses is
StringlndexOutOfBoundsException, thrown e.g. by s. char At (-2).

You can retrieve the length of an array using length, a final instance variable for arrays.
For instance, count .| engt h has the value 10. Note that it has no parentheses, in
contrastto s. | ength() fora String. The ten variables in the count array are called
the array's components, e.g., count [4] is the component whose index is 4 and
count [6] is the component whose index is 6. Java arrays are zero-based: The first
component has index 0. Exercise 7.15 illustrates how to handle cases where it would be
natural to have a non-zero starting index (A’ in that case).

Note: If you want to test-run the program in Listing 7.4 using input from the keyboard,
you only have to make sure that the wor ker s. t xt file does not exist. Then the Buffin
will automatically switch to keyboard input. When you want to stop entering data from the
keyboard, you may use either CTRL/D or CTRL/Z (depending on the operating system
you are using). That causes r eadLi ne() to return a null value.

Using an array of Strings

If you want to print the year in words, you will find it easiest to use an array of words for
numbers. Here is one way to make the array:

String [] unit = new String [10];

unit[0] ="";
unit[1] = "-one";
unit[2] = "-two";
unit[3] = "-three";
unit[4] = "-four";
unit[5] = "-five";
unit[6] = "-six";
unit[7] = "-seven";
unit[8] = "-eight"”;
unit[9] = "-nine";

Then the next-to-last statement of Listing 7.4 could be replaced by the following:

s += "Nineteen sixty" + unit[k] + " : "
+ count[k] + " workers.";

7-12 Java Au Naturel by William C. Jones 7-12

The output would therefore begin something like the following:

Ni net een sixty had 5 workers.
Ni net een sixty-one had 2 workers.
Ni net een sixty-two had 8 workers.

Initializer lists

An initializer list is a simpler way to define the values in the uni t array. It can only be
used at the time the array is declared. The following statement uses an initializer list to
do the same for uni t as what was just shown. The array is created with a length of 10
because 10 values are listed:

String [] unit ={"", "-one", "-two", "-three", "-four",
"-five", "-six", "-seven", "-eight", "-nine"};
When you create a new array object, each component is initialized to zero (or null if an
array of objects, or false if an array of booleans). Some people prefer to explicitly
initialize the values in an array when it makes a difference what the values are. If you
wanted to do that, you could just replace the declaration of count in Listing 7.4 by the
following use of an initializer list:

int [] count = {0,0,0, 0,0,0, 0,0,0, O};

L anguage elements

You may declare an array reference using: Type[] VariableName = new Type[IntExpression |
or: Type[] VariableName = { ExpressionList }

A component of an array is: ArrayReference [IntExpression |

And the capacity of the array is: ArrayReference . length

When an array is created, every component of that array is automatically initialized to zero or null
or false (whichever is appropriate). By contrast, local variables are not automatically initialized.

Exercise 7.14 Improve Listing 7.4 to also guard against a worker with a birth year not in
the 1960s by simply ignoring all such workers.

Exercise 7.15 (harder) Modify Listing 7.4 to count the number of workers whose name
starts with ' A" , the number for ' B' , and so forth down to ' Z' . Ignore workers whose
name does not begin with a capital letter. Hint: i nt i ndex =

somet hi ng. charAt (0) - ' A could replace the assignment to | ast Di gi t, since it
is a number 0 through 25 if the string starts with a capital letter.

Exercise 7.16 (harder) Modify Listing 7.4 to count the number of workers born in every
year 1920 through 1984, ignoring birth years outside that range. How many additional
lines would you have in your program if you did not use an array, using count 20,
count 21, ..., count 84 instead?

Exercise 7.17* Modify the preceding exercise to print the year all in words. Hint: Use
the uni t array plus a similar array for the tens digit.

Exercise 7.18* Improve Listing 7.4 to print one more number, namely, the number of
workers whose birth years are not in the 1960s. Avoid a crash for such workers.
Exercise 7.19* Draw the UML class diagram for the CountBirthYears class.

7-13 Java Au Naturel by William C. Jones 7-13

7.4 Implementing The Worker Class With Arrays

Now that you know what kinds of messages you will be sending to Worker objects, you
can decide what a Worker object needs to know in order to respond to the messages
correctly. It needs to store its first name, last name, hourly pay rate, hours worked in
each of the past five workdays (one workweek), birth year, address, etc. You decide that
the first draft of the Worker class will have just the first five of those values to establish
the basic idea. The junior programmers on your team can add the rest later.

When a worker is hired, the employer will know the name, the birth year, and the hourly
wage rate at which the worker starts. The hours paid in a given week change from week
to week and are not necessarily known at the time you need to construct a Worker object.
It makes sense to just initialize the hours worked to a default value of eight hours in each
workday.

Based on this, most of the methods for the Worker class are fairly obvious. Listing 7.5
(see next page) contains the coding for four of them. The last two methods in Listing 7.5,
whose logic is discussed next, use the constants WEEK and NUM_DAYS.

The addHoursWorked and seeWeeksPay methods

A Worker is to keep track of only the five most recent workdays. When the

addHour sWor ked method adds to a worker's data the fact that he/she worked e.g. 9
hours today, that means you should move the data for the previous four days back one
slot in the array to make room for it. You thereby lose the data for five days ago. That s,
copy itsHoursPai d[3] into itsHoursPaid[4], then copy it sHoursPai d[2]
into it sHour sPai d[3], etc., finally copying the parameter value hour s\Wbr ked into

i t sHour sPai d[0] .

The seeWeeksPay method needs to start by adding up the current five days' hours and
multiplying that by it sHour | yRat e. However, if the worker has worked more than forty
hours in the past week, the client pays time-and-a-half for the overtime hours. For
instance, if the worker has worked 50 hours in the past week, the worker is paid for 55
hours (5 bonus hours for the 10 hours of overtime). This is equivalent to paying the
worker for 1.5 times the total number of hours worked, then subtracting off 20 hours
because the first 40 hours should not be multiplied by 1.5.

Pictorial representation of a Worker object

Figure 7.3 shows how a typical Worker object can be represented. The Worker variable
is an object reference, so its value is shown as an arrow pointing to a rectangle. That
rectangle has no name on it, because objects themselves are not named variables. That
rectangle contains five values, two of which are Strings. Since Strings and arrays are
objects, their values are also shown as arrows pointing to rectangles.

25trin

after execution of =am AMorker o=ing
\Waorker sam, E iteFirsthlame l::} Falph
zam = nesw Warker ("Ralph Kramden 1930 573", p— :
zam setHourswWiorked (100, shastiame O String

zam.zetHoursWorked (9], ftsBirth'year L1930 Kramden
tzHourlyRate (5.7

tsHoursPaid —H—>[S[0 8] 6] 8]

Figure 7.3 UML object diagram for a Worker object

7-14 Java Au Naturel by William C. Jones 7-14

Listing 7.5 The Worker class of objects, part 1

public class Wrker inplenents Conparable

{
public static final double WEEK = 40.0; // regul ar work week
public static final int NUMDAYS = 5; /1 days in 1 work week
(EEETEEEEEEE i rrrr
private String itsFirstName = null;
private String itsLastName = null;
private int itsBirthYear = O;
private double itsHourl yRate = O;
private double [] itsHoursPaid = {8, 8, 8, 8, 8}; // 1 per day
/** Return the first name plus |ast nanme of the Worker.
* But return null if it does not represent a real Wrker. */
public String getName()
{ return (itsLastName == null) ? null
itsFirstName + " " + itsLast Naneg;
|
/** Return a String value containing nost or all of the
* Wirker's data, suitable for printing in a report. */
public String toString()
{ return itsLastNane + ", " + itsFirstName + "; born "
+ itsBirthYear + ". rate =" + itsHourl yRate;
|
/** Record the hours worked in the npst recent day. */
public void addHour sWor ked (doubl e hour sWr ked)
{ for (int k = NUMDAYS - 1; k > 0; k--)
i tsHoursPai d[k] = itsHoursPaid[k - 1];
i t sHour sPai d[0] = hour sWor ked,;
|
/** Return the Wirker's gross pay for the week. */
publ i c doubl e seeWeksPay()
{ double sum= 0.0;
for (int k = 0; k < NUMDAYS; k++)
sum += it sHour sPai d[k] ;
return sum<= WEEK ? itsHourlyRate * sum
itsHourl yRate * (sum* 1.5 - WEEK / 2);
|
}

method named getXXX obtains an attribute of an object without modifying that

or any other object. The value is normally stored in an instance variable (as for

get Name and get Bi rt hYear). Also, setXXX is conventionally a void
method that modifies one or more attributes of the executor object to be equal to the
parameter of setXXX, when the value of the parameter is reasonable.

y Programming Style It is good style to follow this Java nhaming convention: A

7-15 Java Au Naturel by William C. Jones 7-15

The remaining Worker methods

The equal s method for Workers tests whether they have the same first name and the
same last name; work hours and other information does not count. An equals method
should never throw an Exception. So the coding in the upper part of Listing 7.6 verifies
that the parameter is not null and that the executor's last name is not null (which indicates
that it does not represent an actual worker). Then it makes sure that the two names have
the same characters in the same order.

Listing 7.6 The other methods in the Worker class of objects

[/ public class Wrker, continued

publ i c bool ean equal s (Wbrker par)
{ return par !'= null && this.itsLastNanme != null
&% this.itsLast Nane. equal s (par.itsLast Nane)
&% this.itsFirstNanme. equals (par.itsFirstNane);

1y

public int getBirthYear()
{ return itsBirthYear;
|

/** Conpare two workers based on their |ast nanes,
* except based on their first names if the same |ast nane.
* Precondition: ob.getNanme() returns a non-null value. */

public int conpareTo (Cbject ob)
{ Worker that = (Wrker) ob;
int conp = this.itsLastNanme. conpareTo (that.itsLastNane);
return conp !=0 ? conp
this.itsFirstName. conpareTo (that.itsFirstNane);

1y

[** Create a Wirker froman input String, a single line with
* first nane, |ast nanme, year, and rate in that order.
* |f the String value is bad, the nane is nmade null. */

public Wbrker (String par)

{ Stringlnfo si = new Stringlnfo (par);
si.trinfFront (0);
if (si.toString().length() > 0)
{ itsFirstName = si.firstWrd();

si.trinfFront (itsFirstNane.length());
itsLastName = si.firstWrd();

si.trinfFront (itsLastNane.|ength());
itsBirthYear = (int) si.parseDouble (-1);

si.trinfFront (si.firstWrd().length());
itsHourl yRate = si.parseDouble (-1);

if (itsBirthYear < O || itsHourlyRate < 0)
itsLastName = null; // in case of bad input

7-16 Java Au Naturel by William C. Jones 7-16

Your client wants workers listed in order of last name. Workers with the same last name
are to be listed in order of first name. So a reasonable logic for the Worker conpar eTo
method is to apply String's conpar eTo method to it sLast Nanme for the two workers
and use that result. However, if the result of that String comparison is zero, meaning that
they have the same last name, apply String's conpar eTo method to it sFirst Nane
for the two workers and use that result.

The coding for the conpar eTo method is in the middle part of Listing 7.6. A

conpar eTo method should always throw an Exception if ob is not Comparable with
the executor. But equal s should never throw an Exception. Moreover, when

x. equal s(y) istrue, x. conpareTo(y) should be zero. This is in accordance with
the "general contract” for these two methods (i.e., standard practice for any object class's
conpar eTo and equal s methods).

Reminder Private instance variables are private to the class, not to the object. So the
conpar eTo method can refer to t hat 's instance variables it sFi r st Name and

i tsLast Name as well as t hi s's instance variables, because the conpar eTo method
is inside the Worker class.

The constructor with a String parameter first makes sure the String value is acceptable.
If it is null or contains nothing but whitespace, the constructor leaves the names with the
null value as a signal to the caller of the method that there is no more valid input.

If input comes from the keyboard, the user indicates that all the Worker values have been
entered by just pressing the ENTER key. This produces the empty String as a sentinel
value (i.e., a value that stands at the end of the sequence of values to signal termination
of the sequence). If input comes from a disk file, r eadLi ne returns null when it
reaches the end of the file. Either way, this constructor leaves the names null.

If the string input has non-whitespace characters, it is split into four "words" (portions of
non-whitespace characters separated from the other "words" by whitespace) using the
StringInfo methods tri nFront (remove leading blanks) and first Wrd (the part
down to the first blank) defined in Listing 6.4. The constructor uses the four "words" to fill
in all instance variables except the work week (which defaults to 40 hours).

Caution No main method or other logic should call conpar eTo with null
for the executor or for the parameter. If you have a dot after a variable with
the value null, you are asking an object that does not exist to carry out an
action or look at its instance variables. This does not make sense, and the
runtime system tells you so -- it throws a NullPointerException.

Exercise 7.20 Explain why it does not work to have the heading of the for-statement in
the addHour sWbr ked method be for (int k = 1; k < NUM DAYS; k++).
Exercise 7.21 Revise the seeWeksPay method to pay time-and-a-half for any hours
in excess of 8 in a single day, summed over all five days.

Exercise 7.22* Revise the Worker class for six-day workweeks, retaining the hours
worked in the most recent six days.

7-17 Java Au Naturel by William C. Jones 7-17

7.5 Analysis And Design Example: Finding The Average In A
Partially-filled Array

One of the programs that the client needs for the Personnel Database software is to list
all workers who make more than fifty percent above the average. Discussion with the
client clarifies the requirements: The workers are listed in the wor kers. t xt file and
the average is to be computed on the values that seeWeeksPay() returns.

You need to keep an array of all the Workers in RAM in order to solve this problem
efficiently. The number of workers changes with hirings and firings; the client says it is
currently almost 1600. So you decide the program will use an array large enough to
store 5000 Worker objects. That should be more than enough for many years.

Design

The overall design is to first read all the workers into an array big enough to hold them,
filling components 0, 1, 2, 3, etc., leaving the unneeded components at the end of the
array. Then add up the week'’s pay for all workers to calculate the average pay (be
careful not to divide by zero when the data file is empty). Finally, print out a description
of each worker whose pay is greater than 1.5 times the average. If you name the array
i t em and you track the number of workers read in a variable named si ze, then the
useable values are in the range iten{ 0] through itenisize-1] inclusive.

Implementation of the design

The key sublogic here is storing Worker objects into the array. The overall structure of
the loop to read many Workers is similar to the loop in Listing 7.4, namely:

Worker data = new Wirker (itsFile.readLine());
while (data.getNanme() !'= null)
{ [// do whatever is appropriate
data = new Wirker (itsFile.readLine());
}

The appropriate thing to do here is assign data to the next available component of the
array. When the loop begins, si ze is initially zero. We proceed as follows:

On the first iteration, we assign it en{ 0] =dat a, so we increment si ze to 1.

On the second iteration, we assign it en| 1] =dat a, so we change si ze to be 2.
On the third iteration, we assign it enf 2] =dat a, which means we make si ze be 3.
In general, the appropriate thing to do on each iteration is as follows:

iten]size] = data;
Si ze++;

Although 5000 components should be far more than enough for a few years, we cannot
be sure that the situation will not change drastically in a few months. We should refuse to
accept any more Worker values if we do not have room for them. So the while-condition
should be (data.getName() '= null && size < itemlength).

Now that we have put values in the array, the logic is much the same as for the "full
arrays" in Listing 7.5 (array length of NUM_DAYS) and Listing 7.4 (array length of
TIME_SPAN) except that we use si ze in place of NUM_DAYS or TIME_SPAN. To
add up the week's pay for all workers, we go through the components indexed from O to
si ze (i.e., notincluding si ze), adding each one's seeWeksPay() to a running total.
To print out the highly-paid Workers, we go through the components from 0 to si ze,
printing each one for which seeWeksPay() is too large. The coding is in Listing 7.7.

7-18 Java Au Naturel by William C. Jones 7-18

Listing 7.7 A PersonnelData method using an array of Workers

public class Personnel Data // continued

{
private Buffin itsFile = new Buffin ("workers.txt");
public static final int MAX WORKERS = 5000;
/[** Read a file of up to 5000 Workers and di spl ay those who
* make nore than fifty percent above the average pay. */
public void printHi ghlyPaid()
{
/== |1 NI TI ALI ZE VARl ABLES
Worker[] item = new Wbr ker [MAX_ WORKERS] ; /11
int size = 0; // nunber of workers in the array /12
/I == READ THE WORKER DATA AND ADD EACH TO THE ARRAY
Wor ker data = new Worker (itsFile.readLine()); /13
while (data.getNanme() !'= null && size < iteml ength) /14
{ itensize] = data; /15
Si ze++; /16
data = new Wirker (itsFile.readLine()); 117
} /18
/[== CALCULATE THE AVERAGE WEEK' S PAY
doubl e total Pay = O; /19
for (int k = 0; k < size; k++) /110
total Pay += itenk].seeWeksPay(); /111
doubl e average = (size == 0) ? 0.0 : total Pay / size; [/12
/ /== PRINT THOSE MAKI NG MORE THAN 50% OVER THE AVERAGE
doubl e highlyPaid = 1.5 * aver age; /113
String s = ""; /114
for (int k = 0; k < size; k++) /115
{ if (iten]fk].seeWeeksPay() > highl yPai d) /116
s += itenfk].toString() + "\n"; /117
} /118
JOpt i onPane. showMessageDi al og (null, s); /119
|
}

A partially-filled array

The array in Listing 7.7 is a partially-filled array because the number of useable values
changes each time you read the file. One conventionally keeps the useable data in
components 0 through si ze-1 of the array, as shown in Figure 7.4. Of course, the
name of the variable that keeps count of the useable values does not have to be si ze.

Before adding fay: item H|mb SAM 8NN SUE JO8 —-- - —em e |
zize

k=0 1 2 3 4 5 B ¥ &

After adding fay: item H| bob S8M 8NN SUE jOB fEY - - - |

k=0 1 2 3 4 5 B T &

zize

Figure 7.4 A partially-filled array and its size variable

7-19 Java Au Naturel by William C. Jones 7-19

Programming Style The only reason for the hi ghl yPai d local variable in

line 13 of Listing 7.7 is to avoid evaluating 1.5 * average many times over

inside the loop, each time getting the same result. In general, if your logic calls

for evaluating the same expression three or more times, each time getting the
same result, it is more efficient to evaluate it once and store it in a local variable for later
use. In this particular situation, the logic shown "factors out" the expression, moving the
calculation outside the loop.

When you complete a program, you should think it through one more time to make sure
nothing could go wrong. You should realize for Listing 7.7 that the company may grow
past 5000 workers. In that case, your program silently omits the last few. You need to
add a statement somewhere, perhaps the following after the end of the while-loop:

if (data.getNanme() !'= null)
JOpt i onPane. showMessageDi al og (null, "Warning: This "
+ "programis skipping sone workers.");

You will understand loops involving arrays much better if you learn how to describe the
loops in ordinary English. When you have a loop with a heading such as for(k = 0;

k < size; k++) process an array named it em you could referto itenfk] as"the
current item". So the two for-loops in Listing 7.7 could be read as follows:

For each item in the array do...
Add the current item's seeWeeksPay() tot ot al Pay.

For each item in the array do...
If the current item's seeWeeksPay() is larger than hi ghl yPai d then...
Print the String form of the current item.

Generalizing the Worker class

A university may someday come to your company for software that performs many of the
same tasks as the Personnel Database software, but for Students rather than Workers.
A doctor may ask for software that performs many of the same tasks, but for Patients
rather than Workers. A lawyer may... but you get the idea.

The smart thing to do is to have a superclass from which all of Worker, Student, Patient,
Client, etc. can inherit. You can then write much of the software to work with objects of
this superclass rather than Workers. Then it will work with Worker objects, since Worker
objects inherit all the public methods of the superclass. But it will also work with Patient
or Student or Client objects.

You could name the superclass Person. A Person object should have a first name and
last name on which the objects are ordered, and probably the year of birth, but not an
hourly pay rate or other data specific to employees.

It would take very little extra work to use Person objects in place of Worker objects
wherever possible for the Personnel Database software. You will not of course spend
time on Students or Patients or Clients until the need arises. But when another customer
asks for similar software, you should be able to reuse over half of your coding. This is
called modular programming -- you create software for one purpose as a number of
modules (methods and classes). Then when you want to use the software for a different
purpose, you just pull out a few of the inappropriate modules and slot in others.

Exercise 7.23 Modify Listing 7.7 to print every Worker whose name comes
alphabetically before that of the last Worker in the input file.

Exercise 7.24* Modify Listing 7.7 to print all Workers who are older than the average
Worker.

7-20 Java Au Naturel by William C. Jones 7-20

7.6 Implementing The WorkerList Class With Arrays

A partially-filled array of Workers is a list of Workers that can be used and modified in
many useful ways. The spirit of reusability calls upon us to put various tasks that a list of
Workers can perform in separate methods in a suitable class called perhaps WorkerList.
This allows us to easily use those methods in several different programs. When we
finish, the pri nt H ghl yPai d method in Listing 7.7 could be written in just four
statements as follows:

public void printHi ghlyPaid()
{ WorkerList job = new WbrkerList (MAX WORKERS);
job.addFronFile (itsFile);
doubl e cutoff = 1.5 * job. get AveragePay();
JOpt i onPane. showMessageDi al og (nul |,
j ob. t hosePai dOver (cutoff));
} | | =======================

Implementing the WorkerList class

Listing 7.8 (see next page) shows a start on a WorkerList class. The constructor creates
an array of the size specified by the parameter, except that it never makes an array of
less than five components. This guards against the error of supplying a negative
parameter, which would throw a NegativeArraySizeException. The array is named

i tsltem and the number of useable values in the array is it sSi ze. The logic for the
other three methods in Listing 7.8 is virtually the same as in Listing 7.7 (compare them
and see).

Figure 7.5 shows a representation of a WorkerList variable as containing an arrow
pointing to the WorkerList object. That object's it sl t em variable is itself an array
object reference. So it is also shown as containing an arrow pointing to the object itself.

AMviorkerlist
Before adding fay: i _‘/\,
aWDrkerEIa_ist? E::;G@)_ |b':'b SEM 8NN Sue jog --- - - - |
—— k=0 1 2 3 4 5 & T @&
Aviorkerlizt

After adding fay: =
avorkerList O— tsttem G—%| hob sam ann sue joe fay - - - |

teSize B k=0 1 2 3 4 5 B T &

Figure 7.5 A WorkerList object before and after inserting at the end

The figure shows how the WorkerList object looks before and after adding a new Worker
to the end of the list. For simplicity, the Worker values are not shown as arrows to yet
more objects.

A "void method" (i.e., having no return value) can contain the statement r et urn; to
stop execution of the method early. Obviously, this return statement does not say what
value is returned, since there is none. For instance, lines 3 and 4 of the addFronFil e
method in Listing 7.8 can be replaced by the following four equivalent lines:

while (data.getNanme() !'= null)
{ if (itsSize == itsltem]length)
return;

itsltenfitsSize] = data;

7-21 Java Au Naturel by William C. Jones 7-21

Listing 7.8 The WorkerList class of objects; some methods added later

public class Worker Li st

{
private Worker[] itsltem
private int itsSize = 0;
/[** Create an enpty list capable of holding max Workers. */
public WbrkerList (int nax)
{ itsltem= (max > 5) ? new Wirker[max] : new Worker[5]; //1
|
[** Add all Worker values in the non-null file to this |ist,
* except no nore than there is roomfor in the [ist. */
public void addFronFile (Buffin file)
{ Worker data = new Wirker (file.readLine()); /12
while (data.getNanme() !'= null && itsSize < itsltem]l ength)
{ itslten]fitsSize] = data; /14
i tsSizet++, /15
data = new Wrker (file.readLine()); /16
} 117
|
/** Return the average pay for all workers in the |ist.
* Return zero if the list is enpty. */
publ i c doubl e get Aver agePay/()
{ double total Pay = O; /18
for (int k =0; k <itsSize; k++) /19
total Pay += itsltenfk].seeWeksPay(); /110
return itsSize == ? 0.0 : totalPay / itsSize; /111
|
/** Return nanes of workers making nore than the cutoff. */
public String thosePai dOver (doubl e cutoff)
{ String s =""; /112
for (int k =0; k <itsSize; k++) /113
{ if (itslten]k].seeWeksPay() > cutoff) /114
s += itsltenfk].toString() + "\n"; /115
} /116
return s; /117
|
}

Postconditions and internal invariants

The postcondition for an action method is a statement of what has changed as a result
of calling the method, assuming the precondition for that method has been met. For

pri nt ThosePai dOver , the postcondition is that a list of people with a week's pay
higher than the cutoff has appeared on the screen. For addFr onti | e, the
postcondition is that each Worker value in the file, up to but not including the first one that
would cause the WorkerList to have more than its capacity in Worker values, is stored at
the end of the WorkerList in the sequence read. Neither of these two methods has a
precondition other than the automatic precondition that the executor is non-null.

7-22 Java Au Naturel by William C. Jones 7-22

An internal invariant for a class of objects is a condition on the internal (private)
structure of the instances of that class that is (a) true at the time each method is called
and (b) true at the time that each method returns. An internal invariant thus describes a
precondition of each method as well as a postcondition of each method. When you
design a class of objects that stores a number of values, you often have an implicit
internal invariant that you rely on in developing your coding. You should write it down so
as to make it explicit, similar to the following:

Internal invariant for WorkerLists

1. itsltemisan array of Worker valuesand 0 <= itsSize <= itsltem| ength.

2. The values in components itslteniO] through itsltenfitsSi ze-1] arethe
values on the conceptual list of Workers (the list that the user of the class thinks of
when he/she uses it) and in the same order, with i t sl t enf 0] being the first one.
None of those Worker values are null.

3. The values storedin itsltenfitsSize] and higher do not affect anything.

An internal invariant is called "invariant” because it always remains true no matter what
methods are called or in what order. It is called "internal” because the internal logic (the
coding of the methods) keeps the precondition for each method true rather than relying
on the (external) caller of the method to make the precondition true before the method is
called. This particular internal invariant establishes the connection between the abstract
concept of a number of values listed in a particular order and the concrete realization of
that concept in coding.

The contains method

It is quite useful to have a method that searches the list to see if there is a match for a
given value. As the executor goes through the list of Workers one by one, if it ever finds
a match, it returns true. If the search comes to the end of the list without ever finding a
match, the executor returns f al se.

You have seen this Some-A-are-B pattern several times in previous chapters, used to
find out whether a certain condition is true for at least one of the values in a list or
sequence. A reasonable coding is in the upper part of Listing 7.9. Note that the internal
invariant justifies the use of the phrase k = 0; k < itsSi ze.

Listing 7.9 Two more WorkerList methods

[** Tell whether par is a value in this WrkerList. */

publ i c bool ean contai ns (Wrker par) /1 in WorkerLi st
{ for (int k =0; k <itsSize; k++)
{ if (itsltenfk].equals (par))
return true;
}

return fal se;
|

/[** Return a new object, a duplicate of this WrkerList. */

publ i c WbrkerList copy() /1 in WorkerLi st
{ WorkerlList val ueToRet urn;

val ueToReturn = new WorkerList (this.itsltemlength);

val ueToReturn. i tsSize = this.itsSize;

for (int k =0; k <this.itsSize; k++)

val ueToReturn.itsltenfk] = this.itsltenfk];

return val ueToRet ur n;

|

7-23 Java Au Naturel by William C. Jones 7-23

A WorkerList object as a return value

It is perfectly legal to have a method that returns a WorkerList object. For instance, you
may at times want to make a second copy of a given WorkerList object. You first make a
new WorkerList object with an array of the same size as the executor. Then you fill in the
array components with the same values. This logic is in the lower part of Listing 7.9.

It should be clear that you cannot make a true copy of a WorkerList sam by declaring
Wor ker Li st sue = sam That just makes sam and sue refer to one and the same
WorkerList object. You have two WorkerList variables but only one WorkerList object. It
is hopefully just as obvious that you cannot make a copy by executing sue.itsltem =
samitsltem You would have two WorkerList objects but only one array of Workers.
Then any change you make in sue' s workers perforce changes samnis workers.

An array can be a method parameter. For instance, the filled-array-parameter analog of
the t hosePai dOver method in the earlier Listing 7.8 would be the following class
method. Every other example and exercise in this section has a corresponding analog.

public static String thosePai dOver /1 independent
(Worker[] item double cutoff)
{ Strings ="";
for (int k =0; k <itemlength; Kk++)
{ if (itenfk].seeWeksPay() > cutoff)

s += itenfk].toString() + "\n";
}

return s;
1y

In general, if T is any variable type, then T[] is also a variable type. A variable of
such a type is called an array variable. If you declare x as a variable of type T[],
you may define x = new T[what ever] using a hon-negative int expression inside the
brackets. Thereafter, if k is an int expression in the range from 0 through what ever - 1,
then x[k] is a variable of type T.

Exercise 7.25 Write a method publ i ¢ bool ean everyonePai dLessThan

(doubl e cutof f) inWorkerList: The executor tells whether all of its Workers have a
week's pay that is less than a given double value (the parameter).

Exercise 7.26 (harder) Write a method public String al phabetical |l yFirst()
in WorkerList: The executor returns the name of the alphabetically first of its Workers. It
returns null if there are no Workers. In case of a tie, return any of the tied ones.
Exercise 7.27 (harder) Write a method publ i c bool ean i nAscendi ngOrder () in
WorkerList: The executor tells whether all the names of its Workers are in increasing
alphabetical order (each less than or equal to the next), as determined by conpar eTo.
Exercise 7.28 (harder) Write a method publ i ¢ i nt count Sane (Wbrker Li st

gi ven) in WorkerList: The executor tells how many Workers it has in common with the
parameter (equal Workers in the same position). Throw an Exception if gi ven is null.
Exercise 7.29* Write a method publ i ¢ Wor ker ol dest Wor ker () in WorkerList:
The executor returns the Worker object who is oldest (return null if no workers).
Exercise 7.30* Write a method publ i ¢ bool ean equal s (WrkerLi st par) in
WorkerList: The executor tells whether it has the same Workers as the WorkerList
parameter (using the equal s method from the Worker class) in the same order.
Exercise 7.31* Write a method publ i ¢ Wor ker Li st hi ghOnes() in WorkerList:
The executor returns a new WorkerList object containing only its Worker objects whose
pay is above average.

Exercise 7.32* Write a method publ i ¢ void addAll (WbrkerlList given) in
WorkerList: The executor adds all the Worker values from a WorkerList parameter to its
own list, stopping only if its array becomes full. Throw an Exception if gi ven is null.

7-24 Java Au Naturel by William C. Jones 7-24

7.7 A First Look At Sorting: The Insertion Sort

Consider this problem: You need a program that lists in order of birth year the Workers
that are stored in a file. Specifically, you want the Workers to appear on the screen in
ascending order of birth year (each less than or equal to the next), with ties printed in
the same order that they were in the file. A reasonable design for this problem is in the
accompanying design block.

Structured Natural Language Design for printOrderedByYear
1. Create a WorkerList object.
2. Connect to a file "workers.txt" containing strings that each represent one worker.
3. Repeat until you reach the end of the file or the WorkerList is full...

3a. Read one Worker value.

3b. Insert it in the WorkerList before all Workers that have a later birth year.
4. Print all the Workers in the order they occur in the WorkerList.

Once you have this main logic design, you need to see what additional capabilities a
WorkerList object must have. A method to find its current size, a method to insert a new
Worker in order of birth year, and a method to return a string equivalent of the WorkerList
will all be useful. Listing 7.10 contains the fairly obvious coding for the given design.

Listing 7.10 A PersonnelData method using a WorkerList object

public class Personnel Data // continued

{
private Buffin itsFile = new Buffin ("workers.txt");
public static final int MAX WORKERS = 5000;

/** Read a file of up to 5000 Workers and di splay them
* in ascending (increasing) order of birth years. */

public void printCOderedByYear ()
{ WorkerList job = new WbrkerList (MAX WORKERS) ;
Wor ker data = new Worker (itsFile.readLine());
while (data.getNanme() !'= null && job.size() < MAX WORKERS)
{ job.insertByYear (data);
data = new Wirker (itsFile.readLine());
}

Systemout.println (job.toString());
|
Yo AR AR R R R R R R R R R R R R R

cl ass Order edPer sonnel Dat aTest er

public static void main (String[] args)

{ Systemout.println ("Wrkers in order of birth year.");
new Per sonnel Dat a(). pri nt Or der edByYear () ;
Systemexit (0);

|

7-25 Java Au Naturel by William C. Jones 7-25

Coding the new WorkerList methods

The si ze method simply returnsit sSi ze. The toStri ng method can combine the
toString() values of all the Workers together in the order they occur in the WorkerList,
with an end-of-line marker between them. This can be useful for when you want to write

the values in the WorkerList to a file, to be read in later by another program. These two

methods are in the upper part of Listing 7.11.

Listing 7.11 Four more WorkerList methods

[** Tell how many Workers are in this WrkerList. */

public int size() /1 in WorkerLi st
{ return itsSize;
|

/** Return a String value representing the entire WrkerlList.
* It has one Wirker's toString() value on each line. */

public String toString() /1 in WorkerLi st
{ String valueToReturn = "";
for (int k =0; k <itsSize; k++)
val ueToReturn += itsltenfk].toString() + "\n";
return val ueToRet ur n;
|

[** Put the non-null data just before all Wrkers at the end
* of the WrkerList that have a |larger birth year.
* Precondition: The WbrkerList has roomfor the data. */

public void insertByYear (Wrker data) /1 in WorkerLi st
{ int year = data.getBirthYear();
int k = itsSize;
for (; k>0 & itsltenfk - 1].getBirthYear() > year; k--)
itsltenfk] =itsltenfk - 1];
itslten] k] = data;
i tsSize++;
|

[** Put all the Wbrkers in ascending order of birth year. */

public void sort () /1 in WorkerLi st
{ if (itsSize > 1)
{ int save = itsSize;
itsSize = 1;

while (itsSize < save)
i nsertByYear (itsltenfitsSize]);

}
y o1

The i nsertByYear method is more complicated. The obvious place to put a new
piece of data is at index it sSi ze; assign k = itsSi ze toindicate that position is
available for the new data. However, if the Worker value just below index k has a larger
birth year than the new data to be added, that Worker value should be moved up to index
k; then subtract 1 from k to indicate that the index one lower is now an available
position for putting the new data.

7-26 Java Au Naturel by William C. Jones 7-26

Repeat this comparing and subtracting until you see a Worker that does not have a larger
birth year or until you make index O available. Either way, put the new data value at that
now-available index. This logic is in the middle part of Listing 7.11.

Listing 7.11 has one additional method made possible by the existence of the

i nsert ByYear method. If you have some non-empty WorkerList that is not in
increasing order of birth year, and you want to make it so, just call the sort method for
it. That sort method goes through each Worker value in the list, starting from the
second one, and inserts it in increasing birth order among all the Worker values that
come before it in the WorkerList. This logic is called the insertion sort logic. Chapter
Thirteen discussed several other kinds of logic that sort a number of values in order.

The Sun standard library has a class of objects named Collection. It is much the same
as WorkerList, except that it is on a higher level of abstraction. Therefore, it is more
generally reusable than the WorkerList class. You will learn to develop the logic of the
Collection methods in Chapter Fifteen. The exercises in this section introduce some of
the Collection methods (r enove, add, contai nsAl' |, retainAll)inthe more
concrete context of WorkerList objects. A precondition for all of the exercises here is that
all object parameters are non-null.

Exercise 7.33 (harder) Write a method publ i c void insert (Wrker given,

i nt n) in WorkerList: The executor inserts the given Worker at the given index n,
making room by moving all the values at index n and above one component higher, so
they remain in the original order. Take no action if n is out of range or the array is full.
Exercise 7.34 (harder) Write a method publ i c void renove (Worker given) in
WorkerList: The executor deletes from its list a single Worker object (if any) equal to a
given Worker parameter. It moves the last Worker in the list in place of the one removed.
Exercise 7.35 (harder) Write a WorkerList method publ i ¢ bool ean add (Wor ker
par): The executor adds par atthe end of the list, if it is not equal to one already in
the list and there is room. It returns true if it added the Worker and false if it did not.
Exercise 7.36* Write a method publ i ¢ bool ean cont ai nsAll (Wbrker Li st

gi ven) in WorkerList: The executor tells whether every Worker in the given parameter
is also in the executor. Call on the cont ai ns method in Listing 7.9.

Exercise 7.37* Write a method publ i c voi d del eteYear (int given) in
WorkerList: The executor deletes every one of its Workers with the specified birth year.
The order of those Workers that remain is not specified.

Exercise 7.38* Write a method publ i c void retai nAll (WbrkerlList given) in
WorkerList: The executor deletes every one of its Workers that is not in the given
parameter. The order of those Workers that remain is not specified.

Exercise 7.39** Write a method publ i ¢ voi d reverse() in WorkerList: The
executor swaps its Worker values around so they are in the opposite order.

Exercise 7.40** Write a method publ i ¢ bool ean equi val ent (Wbr ker Li st

par) in WorkerList: The executor tells whether it has exactly the same Workers as the
WorkerList parameter (using the equal s method from the Worker class) in some order,
i.e., one list is a rearrangement of the values in the other. Hint: Create a copy of the
executor, then write and repeatedly call a private method that tells whether a specified
Worker value is in the copy and, if so, replaces it in the copy by null.

Exercise 7.41** Write a method that goes through an entire WorkerList, swapping any
two adjacent Workers where the first has a larger birth year than the second. Repeat this
process as many times as there are Workers in the list. Explain why this is guaranteed to
put them in increasing order of birth year. Then explain why this bubble sorting logic
works much more slowly than the insertion sorting logic in Listing 7.11.

Exercise 7.42** Revise your answer to the preceding exercise to stop repeating the
swapping process as soon as one pass through the data does not cause any swaps.
Discuss whether this improved logic is still much slower than the one in Listing 7.11.

7-27 Java Au Naturel by William C. Jones 7-27

7.8 A First Look At Two-Dimensional Arrays: Implementing The
Network Classes

The new language features in this section are not used elsewhere in this book except in
Chapter Twelve. They appear at this point only so that you can get a start on the concept
of multi-dimensional arrays, which you can then carry further later.

Checkers as an example

A checkerboard for a computer game could be modeled by an 8-by-8 rectangular
arrangement of values, some of which represent Checker pieces and some of which
represent empty squares. You may declare an array with two indexes to represent the
checkerboard, so that boar d[0] [0] is the square in the lower-left corner,

boar d[0] [1] is the next square to its right, etc., up to boar d[7] [7] for the upper-right
corner. Figure 7.6 specifies the names all of the 64 variables to make this clear.

board[7][0] | board[7]1] | board[7][2] | board[7][3] | board[7][4] | board[7]5] | board[7]E] | board[7]7]
baard[E][0] | boardB]1] | baard[S][2] | boardB]3] | board[S]4] | board5]S] | baard[S]E] | board[5]7]
board[5][0] | board[S][1] | board[5][2] | board[S][3] | board[5][4] | board[5)5] | board[S]E] | board[5]7]
baard[4]0] | board[4]1] | baard[4][2] | board4][3] | board[4]4] | board[4][5] | baard[4][E] | board[4]7]
hoard[3][0] | board[3]1] | board[3][2] | board[3][3] | board[3][4] | board[3]5] | hoard[3][E] | koard[3]7]
board[2][0] | board[2]1] | board[2][2] | board[2][3] | board[2][4] | board[2][5] | bosrd[2][E] | board[2][7]
board[1][0] | board[1]1] | board[1][2] | board[1][3] | board[1][4] | board[1][5] | hoard[1][E] | koard[1]7]
board[0][0] | board[0][1] | board[0][2] | board[0)[3] | board[0][4] | board[0]5] | bosrd[O][E] | board[O]7]

Figure 7.6 Checkerboard as an 8-by-8 array named board

If you use int values with named constants RED = 1, BLACK =2, and EMPTY = 0, then
you can declare the boar d variable as follows:

int[] [] board; // variable is declared, array not created

Note that it has two pairs of brackets instead of just one, because you want to put two
indexes on the boar d variable, not just one. You can initialize it as an array with 64
components in an 8-by-8 arrangements as follows:

board = newint [8] [8]; [// creates array of 64 conponents

Just as with one-dimensional arrays of numbers, all components are initially zero. You
can put four RED pieces on the board, in the bottom row at columns number 1, 3, 5, and
7, as follows:

for (int k =1; k <8; k +=2)
board[0] [k] = RED,

You can move a piece from square [3][4] to the northeast as follows:

board[4] [5]
boar d[3] [4]

board[3] [4];
EMPTY;

At the end of the game, you can clear off all 64 squares on the board as follows:

for (int row = 0; row < 8; rowt+)

{ for (int col =0; <col < 8; col++)
board[row][col] = EMPTY;

}

7-28 Java Au Naturel by William C. Jones 7-28

Two-dimensional arrays of objects

You can declare a variable that can refer to a rectangular array of components, each
containing a Piece object, and then create the array with all entries null, as follows:

Piece[] [] item = new Piece [NUM ROA5] [NUM COLS];

You can thenreferto i teni x][y] inthe program as long as x has a value of O to
NUM_ROWS and y has a value of 0 to NUM_COLS (including 0 but not including the
upper limit). You can assign a value to such a component as follows:

iten x][y] = sonePieceVal ue;

And you can refer to the value at row number x and column number y in an
expression, for instance:

Piece p = itenix][V];
if (iten{x][y] == null)...

The array it em is considered a one-dimensional array of variables of type Pi ece[],
so item | engt h is the number of rows, which is NUM_ROWS. One of those rows is
i ten k], and the length of thatrow iteni k] .l ength is NUM_COLS.

Implementation of the Network classes

If you did not read at least some of Sections 5.5-5.7, skip the rest of this section; it
discusses an implementation of the Network classes. For this implementation, the
Network class stores the connection information in a two-dimensional array i t sNode.
The row of components whose first index is k is the set of Nodes that the kth Node
connects to; excess components contain null. A reference to each Node in the Network
is stored in the row of components whose first index is 0, followed by a component
containing null.

When a Node is created, it is supplied three parameters: its name, whether it is blue, and
the row of its connecting Nodes as a parameter. This row is itself a one-dimensional
array. When that Node is then asked for a Position object to go through the list of its
connections, it creates one with that row of connecting Nodes.

Position objects have two instance variables: one to remember the one-dimensional
array that lists the Nodes it is to produce one at a time, and one to remember its current
position in the sequence. This should be sufficient information that you could develop the
Position and Node classes yourself; it is a major programming project. The Network
class in Listing 7.12 (see next page) generates a random number of Nodes with random
connections; you could replace that constructor by one that reads connection information
from a disk file to handle real-world data.

For the randomizing constructor in Listing 7.12, if the number of Nodes in the Network is
e.g. 12, the Network constructor creates a 13-by-13 array for storing the connection
information. It creates 12 Nodes to go in the first row, named Node#1, Node#2, etc.
Finally, it goes through each potential connection of Node k to Node conn and makes
the connection 3/11 of the time, so each Node connects to 3 others on average.

L anguage elements
Y ou may declare an array reference using the following, :
Type[][] VariableName = new Type [IntExpression] [IntExpression]
Y ou may have more than two pairs of brackets, as long as you have the same number of brackets
on the left of such a declaration as you have on the right.

7-29 Java Au Naturel by William C. Jones 7-29

Listing 7.12 The Network class of objects

public cl ass Network

{
/** Internal invariant: The sequence of avail abl e Nodes is

* itsNode[O][k] for O <= k < itsNunNodes. The sequence of

* Nodes that itsNode[O][k] connects to is itsNode[k+1][]]

* for 0 <= <n for sone n <= itsNunNodes. The null val ue

*

cones after the |ast value of each such sequence. */

private Node [][] itsNode;
private int itsNumNodes;
private java.util.Randomrandy = new java.util.Randon();

public Position nodes()
{ return new Position (itsNode[O0]);
|

[** Create a random Network with 6 to 15 Nodes, about hal f

* blue, and with 3 connections per Node on average. No Node
* connects to itself. This is the only nmethod you need to

* replace if you want to obtain Network data froma file. */

publ i c Network()
{ itsNumNodes = 6 + randy. nextlnt (10);

i tsNode = new Node [itsNumNodes + 1][itsNunmNodes + 1];

for (int k = 1; k <= itsNunNodes; Kk++)

itsNode[O][k - 1] = new Node ("Node#" + Kk,
randy. nextInt(2) == 1, itsNode[Kk]);

deci deWhi chConnect i onsNodesHave() ;

|

private void deci deWi chConnecti onsNodesHave()
{ for (int k =1; k <= itsNunNodes; k++)
{ int j =0;
for (int conn = 1; conn <= itsNunNodes; conn++)
{ if (randy.nextlnt (itsNunNodes - 1) < 3 && conn != k)
{ itsNode[Kk][j] = itsNode[O][conn - 1];
j ++;

Exercise 7.43 Write statements to have the checker piece at board[x][y] jump the
piece to its northwest, but only if the square beyond that piece exists and is empty. Do
not forget to remove the piece you jump.

Exercise 7.44 (harder) Write statements to fill in the top three rows of the boar d with
twelve BLACK checker pieces, four per row, alternating as in the initial position of a
checkerboard. One piece goesin board[7] [0] .

Exercise 7.45 (harder) Write an independent method for the checkerboard: publ i c
static int nunmEnptySquares (int[][] board) returnsthe number of empty
squares. Throw an Exception if board is null.

Exercise 7.46* Write an independent method public static int num\ulls
(Qoject[][] par): Return the number of null values in the given rectangular array,
not counting components with either index being 0. Throw an Exception if par is null.
Exercise 7.47* How would you revise the Network constructor to have each Node k
connect instead to the next three Nodes k+1, k+2, and k+3 (whenever they exist)?

7-30 Java Au Naturel by William C. Jones 7-30

7.9 Implementing A Vic Simulator With Arrays

You have now seen enough of Java that you can understand how the Vic class can be
implemented using arrays. It will be quite similar to the simulator in Sections 5.4 and 5.5
using Strings (it is very helpful though not necessary to compare the development here
with that development). The key difference is that the instance variable it sSequence
is an array of Strings, each component representing one CD, declared as follows:

private String[] itsSequence;

That allows you to store the full name of a CD if you wish, rather than faking it with a
single letter. The other instance variables remain i t sPos (a position in the sequence,
numbering from 1 up for convenience) and it sl D (a positive int by which the Vic object
is identified). So get Posi ti on has the one statement specified in Section 5.5:

public String getPosition() /1l in Vic
{ returnitsPos + "," + itslD
} | | =======================

The backUp method is the same logic as earlier, except that an attempt to backUp when
it is illegal calls a fail method to explain the problem and then terminate the program:

public void backUp() /1l in Vic
{ if (itsPos == 1)
fail ("backUp fromslot ");

i tsPos--;
trace ("backUp to slot ");
} | | =======================
private void fail (String nessage) /1l in Vic

{ Systemout.println ("Vic# " + itsID + " crashed on
+ message + itsPos);
Systemexit (0);
} | | =======================

Working with an array of Strings

The seesSl ot method checks that i t sSequence has a slot at the current position,
which requires that i t sPos not be greater than the maximum allowed. Since

i t sSequence is an array rather than a String, we must compare with the final | engt h
variable of the array rather than calling the | engt h() method of a String:

publ i c bool ean seesSl ot () /1l in Vic
{ return itsPos < itsSequence. | ength;
} | | =======================

The seesCD method should now be understandable. We have the class variable
NONE = " 0" with which we can compare the value in component i t sPos:

publ i c bool ean seesCIX) /1l in Vic
{ if (! seesSlot())
fail ("can't see a CD where there is no slot, at ");
return ! itsSequence [itsPos].equals (NONE);

7-31 Java Au Naturel by William C. Jones 7-31

The private trace method is a little more complex, because we have to build the String
value for the sequence of CDs so we can print the current status. We can start with the
first CD itsSequence[1] and add each additional CD string to that, with blanks
separating them. The method can be coded as follows:

private void trace (String action) /1l in Vic
{ String seq = itsSequence [1];

for (int k 2; k < itsSequence.length; k++)
seq += " " + itsSequence [K];
Systemout.println ("Vic# " + itsID+ ": " + action
+ itsPos + "; sequence= " + seq);
} | | =======================

Implementing the stack

We have one stack in the entire Vic class, so t heSt ack should be a class variable.
The stack is also an array of String values, but unlike a sequence, its size is not fixed.
That is, t heSt ack is a partially-filled array but i t sSequence is completely filled. So
we need to track the current number of items t heSt ackSi ze in t heSt ack. We also
need to make t heSt ack large enough for any foreseeable demands. The following
class variables should suffice, having the stack be empty to start with:

private static String[] theStack = new String[1000];
private static int theStackSi ze = 0;

For the t akeCD method, you first have to make sure thata CD is ati t sPos. If so, you
copy it into t heSt ack after all the other CDs currently in t heSt ack, thereby increasing
the number of items in the stack. Finally, you put NONE where the CD was in

i t sSequence:

public void takeCD() /1l in Vic
{ if (seesCX))
{ theStack [theStackSize] = itsSequence [itsPos];

t heSt ackSi ze++;
i tsSequence [itsPos] = NONE
}
trace ("takeCD at slot ");
} | | =======================

The say and reset methods have exactly the same coding as in Section 5.4, using
the same t heTabl eau class variable to hold the array of String values that describes the
various sequences and t heNunVi cs class variable to tell how many Vic objects have
been created so far. That leaves only the Vic constructor as a (hard) exercise.

Exercise 7.48 Write Vic's stackHasCD method in the context described in this
section.

Exercise 7.49 Write Vic's put CD method in the context described in this section.
Exercise 7.50* Write Vic's noveOn method in the context described in this section.
Exercise 7.51** Write the Vic constructor in the context described in this section, using
CD names such as "al", "b1", "c1" for CDs in the first sequence, "a2", "b2", "c2" for CDs
in the second sequence, etc.

7-32 Java Au Naturel by William C. Jones 7-32

7.10 Command-Line Arguments

The (String[] args) partofthe heading of the main method allows it to receive
information from the j ava command that started the program. Each word on the
command line after j ava ProgranX is assigned to an array component, in the order it
appears on the line: args[0], args[1], etc.

For instance, suppose that the statement Debug. set Trace(true) is to produce
tracing printouts in your program. You could start your main method with this line:

Debug. set Trace (args.length > 0 &% args[O0].equals ("trace"));

Now to run the program to produce tracing printouts, you enter j ava ProgranmX trace.
That will make ar gs an array of length 1 with ar gs[0] having the value "trace".
trace isthe command-line argument. When you do not want tracing printouts, just
enter the usual j ava Pr ogr anmX. That will make ar gs an array of length zero. Note
that the crash-guard before the && operator verifies the existence of the component of
index zero before referring to it.

Using the command line to add numbers

If the command line has four words after the basic command, then ar gs. | ength is 4,
ar gs[0] is the first word, ar gs[1] is the second word, ar gs[2] is the third word,
and ar gs[3] is the fourth word. Words are divided at blanks. Even numerals count as
words. For instance, if you have the following Add class, you can enter something like
java Add 4.2 -2.16 13.7 5.1 and have it respond with the correct total of
20.839999999999996 (due to rounding off in base 2):

public class Add
{ public static void main (String[] args)
{ double total = Doubl e.parsebDouble (args[0]);
for (int k =1; k < args.length; k++)
total += Doubl e. parseDoubl e (args[k]);
Systemout.println ("The total is " + total);

}

Note that this program is not robust; it throws an Exception if there are no command-line
arguments or if any of them is not a numeral. The latter problem can be avoided by using
StringInfo objects; the former problem is an exercise.

You could instead call this mai n method from a different class. For instance, executing
the following two statements in another class prints "The total is 13.5":

String[] values = {"4.25", "7.5", "1.75"};
Add. mai n (val ues);

Exercise 7.52* Revise the main method for the Add class to give the answer zero when
the user does not put anything after j ava Add (currently the program crashes).
Exercise 7.53* Revise the Ordering class in the earlier Listing 7.2 to let the user supply
the file name in the command line. Only use wor ker s. t xt when the file name is not
supplied.

7-33 Java Au Naturel by William C. Jones 7-33

7.11 Implementing Queue As A Subclass Of ArrayList (*Enrichment)

The Sun standard library offers a quite useful class of objects named ArrayList (it
supercedes the Vector class that was in Java Version 1.0). Each instance of ArrayList
represents a sequence of Object values, called the elements of the ArrayList, and is in
many respects similar to a partially-filled array. The basic methods available for an
ArraylList (from the j ava. ut i | package) are the following:

new Arrayli st () creates an ArrayList object capable of holding however many
objects you want to have. Initially it contain no objects at all (its size is zero).
someArrayli st. si ze() tells how many elements are stored in this ArrayList. It
is analogous to itsSi ze for a partially-filled array Obj ect[] itsltem
someArraylLi st. get (i ndexl nt) returns the Object value stored at i ndexI nt .
This is analogous to using i tslteni ndexl nt] inan expression. ArrayLists are
zero-based, i.e., the first value in the array is at index 0.

someArraylLi st. set (i ndexl nt, sone(bject) replaces the element at

i ndexl nt by some(bj ect. So this is analogous to the assignment
itsltenfindexlnt] = some(hject.

An example of coding using an ArrayList object named al is the following. It replaces
each element that equals a given t ar get value by null:

for (int k =0; k < al.size(); k++)
{ if (al.get (k).equals (target))

al .set (k, null);
}

Changing the length of an ArrayList

If the preceding were coding involving an array, you would replace the three phrases
involving al by al .l ength, al[k].equal s(target),and al[k] = null,
respectively. So this ArrayList class would not be much use if it were not for the other
methods it offers. Those methods have an ArrayList object grow and shrink in length,
which of course is beyond the power of an ordinary array. For instance, al . add(k, ob)
inserts ob into the list at index k, and al . renove(3) shrinks the list of elements by
deleting the one at index 3 (i.e., the fourth element in the list). Listing 7.13 (see next
page) describes the most useful ArrayList methods.

As an example, the following for-loop would remove every other data value in an
ArrayList named ori gi n and insert it in ascending order in an ArrayList named

ot her, by calling on the i nsert | nOrder method below it. It assumes that each data
value is Comparable with the others, so the class cast (Conpar abl e) can be used.
You should compare this logic with the logic in the lower part of Listing 7.11:

for (int index = 0; index < origin.size(); index++)
i nsertl nOrder (other, (Conparable) origin.renove (index));

public static void insertlnOder (ArraylList other,
Conpar abl e dat a)
{ int k = other.size();
while (k > 0 & data.conpareTo (other.get (k - 1) < 0)
k--;
ot her.add (k, data);

7-34 Java Au Naturel by William C. Jones 7-34

Listing 7.13 Key methods in the ArrayList class, stubbed form

public class ArraylLi st /1 stubbed docunentation
{
[** Create an enpty list of elenents. */
public ArraylLi st () { }

/** Return the nunber of elenents in this list. */
public int size() { return 0; }

[** Return the elenment at this index. Throw
* | ndexCQut OF BoundsException unless 0 <= index < size(). */
public Object get (int index) { return null; }

/** Replace the elenment at this index by ob. Throw
* | ndexCQut OF BoundsException unless 0 <= index < size(). */
public void set (int index, Object ob) { }

/[** Put ob as the |last element in this list. Return true. */
publ i c bool ean add (Obj ect ob) { return true; }

[** Delete the elenment at this index and return it.

* Shrink the list by 1 elenent. Throw

* | ndexCQut OF BoundsException unless 0 <= index < size(). */
public Object renmove (int index) { return null; }

/[** Insert ob at this index. Expand the list by 1. Throw
* | ndexCQut OF BoundsException unless 0 <= index <= size(). */
public void add (int index, Object ob) { }

Implementing a Queue with an ArrayList

The RepairShop software in Chapter Six uses a Queue class that includes three
operations:

aQueue. enqueue (ob) adds the object value ob to aQueue, where ob can be
any kind of object.

aQueue. dequeue() returns the next available object on a first-in-first-out basis.
aQueue. i sEmpt y() tells whether aQueue is empty.

The values stored in the Queue are of Object type. Since Object is a superclass of every
class in Java, you can put any kind of object you like in a Queue. A Queue is a kind of
object that you will see many uses for in later Computer Science courses. Its dequeue
method removes the element that has been in the Queue for the longest period of time.
For this reason, a Queue is known as a First-In-First-Out data structure (FIFO).

The standard specification for a Queue includes a peekFr ont method to allow people
to see what they would get if they called the dequeue method, yet without modifying
the Queue object. This method is not used by the RepairShop software, but it is standard
to have it in the Queue class so that other applications that use Queues will have all they
need.

7-35 Java Au Naturel by William C. Jones 7-35

Listing 7.14 has a straightforward implementation of the Queue class as a subclass of
ArrayList. Note that dequeue and peekFront throw an IndexOutOfBoundsException
when the Queue is empty, since that is what the corresponding ArrayList methods do.

Listing 7.14 The Queue class of objects

public class Queue extends java.util.ArraylLi st

{
public Queue()
{ super(); // just to remnd you of the default constructor

1y

/[** Tell whether the queue has no nore el enents. */

publ i c bool ean i sEmpty()
{ return size() == 0;
}oll

/** Renpbve the value that has been in the queue the | ongest
* time. Throw an Exception if the queue is enpty. */

public Object dequeue()
{ return renove (0);
|

/** Return what dequeue woul d gi ve, without nodifying
* the queue. Throw an Exception if the queue is enpty. */

public Object peekFront()
{ return get (0);
|

/** Add the given value to the queue. */

public void enqueue (Object ob)
{ add (ob);
|

Exercise 7.54 Rewrite the methods in Listing 7.14 so that Queue does not extend the
ArrayList class. Instead, it has an ArrayList instance variable. This is the use of
composition rather than inheritance.

Exercise 7.55 Write an action method named r epl aceNul | sBy for a subclass of
ArrayList: The executor replaces each null value in it by a given Object parameter.
Exercise 7.56 (harder) Write a query method named i ndexO for a subclass of
ArrayList: The executor returns the index number of the earliest occurrence of an Object
parameter, using the equal s method to find it. It returns -1 if the parameter is not
found.

7-36 Java Au Naturel by William C. Jones 7-36

7.12 More On System, String, And StringBuffer (*Sun Library)

Syst em out is a PrintStream object that is already open and prepared to receive output
data. Itis normally the terminal window. Use System out.print (soneString) to
print a String value without starting a new line immediately after it. For instance, if
Systemout.print("a") executes atonetimeand System out.println("b")
executes a while later, the output would be a single line containing "ab". Thus the
following statements print all the lowercase letters on one line of output:

for (int k ='a; k<'z"; k+t)
Systemout.print ((char) k);
Systemout.println ('z');

The print and println methods are heavily overloaded to allow a boolean, char,
int, double or other numeric value for the parameter, as well as any Object (for which the
object's t oSt ri ng method is used to decide what appears). So if sam is a Worker
object, then System out. printl n(samn actually prints samtoString().

Redirecting output to a disk file
You may redirect Syst em out 's output to a disk file. For instance,
java What ever > results.txt

sends Syst em out 's output to the file named results.txt instead of to the terminal
window. You can still send information to the terminal window using
Systemerr.println(whatever) and System err. print (what ever);
System err is the standard error channel for reporting problems.

The System.arraycopy method

The statement System arraycopy (source, k, target, n, 200); copies
200 values from the array of Objects named sour ce to the array of Objects named
target. source[K] iscopiedintotarget[n],thensource[k + 1] is copied into
target[n + 1], etc., until the required number of values have been copied. It throws
an IndexOutOfBoundsException if data would be accessed outside of an array's bounds,
and it throws an ArrayStoreException if it is illegal to make the assignments.

Additional String methods

The String class has many more methods than those discussed in Chapter Six (equal s,
| engt h, subst ri ng, conpar eTo, and char At). If s and t are two String values,
then the following methods can be useful:

s.concat(t) isthesameas s + t.

s. equal sl gnoreCase(t) is the same as equal s except that a lowercase letter is
considered equal to the corresponding capital letter. Thus

"abc". equal sl gnoreCase("AbC") istrue.

s. conpar eTol gnor eCase(t) isthe same as conpar eTo except that a
lowercase letter is considered equal to the corresponding capital letter. Thus
"BOB". conpar eTol gnor eCase("abe") is a positive int.

s.indexO (t) returns the index where the first copy of t begins in s; it returns
-1if no substring of s isequalto t. Thus "aababa".indexCf ("ba") is 2.
s.indexO (t, n) isthe same as the above except that it only finds those
substrings at index n or higher. Thus "aababa". i ndexOf ("ba", 3) is 4.

7-37 Java Au Naturel by William C. Jones 7-37

s.endsWth(t) tellswhether s. equal s(someString + t). Thus
"appl e".endsWth("ple") istrue.

s.startsWth(t) tellswhether s. equal s(t + sonmeString). Thus
"cathy".startsWth("cat") istrue.

If s is a String value, then:

s.trim() isthe result of removing all whitespace from either end.

s.toLower Case() is the result of replacing each capital letter by the
corresponding lowercase letter. Thus " AlbC'. t oLower Case() is "albc".

s. t oUpper Case() is the result of replacing each lowercase letter by the
corresponding capital letter.

s. i ndexOf (sonmeChar) returns the first index at which the given character occurs
in the string. Ifitis notin s, the method returns -1.

s. i ndexOf (sonmeChar, sonelnt) isthe same as the above except that it
returns -1 if no character at or after the given index equals the given char value.

s. repl ace(sonmeChar, anot her Char) returns the result of replacing every
occurrence of the first parameter by the second parameter. Thus

"appl e".replace('p', 'x') returns "axxle".

s.toChar Array() produces the corresponding array of characters with the same
number of components as s has characters. If you store itin char[] chArray
and make some modifications in it, then...

new String(chArray) converts it back to the corresponding String object.

The four versions of i ndexO have four corresponding versions of | ast | ndexOf
which returns the last index at which the char or substring occurs (or -1 if none).

StringBuffer objects (from java.lang)

You can create a StringBuffer object from a given String value when you want to make
substantial changes in the characters of the string. A String object is immutable, so
substantial changes require continually creating new String objects. With a StringBuffer
object, you make the changes you want and then put the information back into a String
object. The essential StringBuffer methods are the following:

new StringBuffer(someString) makes a modifiable copy of the given String

value.
someStri ngBuffer.|ength() returnsthe number of characters in it (analogous
toitsSize).

someSt ri ngBuf f er. char At (sonmel nt) returns the character at that index (zero-
based as usual).

someStri ngBuf fer. set Char At (sonel nt, someChar) puts the given
character at the given index in place of whatever char value is currently there.
someStringBuffer.toString() returns a copy of the information as a String
object.

For instance, coding to reverse the order of the characters in a StringBuffer named buf
could be as follows:

int len = buf.length();

for (int k =0; k <len/ 2; k++)

{ ~char saved = buf.charAt (k);
buf . set Char At (k, buf.charAt (len - 1 - k));
buf . set CharAt (len - 1 - k, saved);

7-38 Java Au Naturel by William C. Jones 7-38

Additional methods that change the lengths of StringBuffers are as follows:

someStringBuffer.delete(startint, endlnt) deletescharacters atindex
startlnt through endl nt-1 and also returns the result. It requires that

0 <= startlnt <= endint <= someStringBuffer.length().
someStringBuffer.insert(startint, sonmeString) putssoneString
starting at position st art | nt (moving other characters up), and also returns the
result, for 0 <= startlnt <= sonmeStringBuffer.length().

someSt ri ngBuf f er. append(sonmeString) putssonmeStri ng atthe end of the
executor. It also returns the result. This is overloaded to accept any numeric value.
someStringBuffer.replace(startint, endlint, soneString) hasthe
same effect as someStri ngBuffer. del ete(startint, endint).insert
(startlnt, soneString).

String buffers are more efficient when you use string concatenation heavily. For
instance, the WorkerList t oSt ri ng method in Listing 7.11 would be better as follows:

public String toString() /1 in WorkerLi st
{ StringBuffer buf = new StringBuffer ("");
for (int k =0; k <itsSize; k++)
buf . append (itsltenfk].toString()).append ("\n");
return buf.toString();

7.13 Review Of Chapter Seven

Listing 7.4, Listing 7.5, and Listing 7.8 illustrate almost all Java language features
introduced in this chapter.

About the Java language:

>

>

Type[] t declares t to be the name of an array variable, an object variable
that can refer to an array of values of the specified Type.

The only operations you can perform on an array variable are to put brackets []
after it or . | engt h after it. The only operation you can perform on a non-array
object variable is to put a dot after it, followed by a variable or method belonging to its
class. If you do any of these things when the object or array variable is null, it throws
a NullPointerException.

t = new Type[38] creates the array itself, so its 38 components can be filled in
with values. Any non-negative int value can be used instead of 38 for the size. The
array components are numbered from O up through 37 if t's length is 38. Any use of
t[0] or t[1l] oringeneral t[Kk] referstoa Type variable. Any non-negative int
value less than the length of the array can be used in place of k for the index.

The declaration new soneType[n] where n is negative throws a
NegativeArraySizeException. The use of sonmeArray[k] when k is negative or
not less than the length of the array throws an ArraylndexOutOfBoundsException.
t .1 engt h is the number of components the array t has available.

Type[1 t = {...} with anumber of values listed inside those braces creates
the array and initializes it to have the values listed. This is an initializer list.

The return; statement (with no return value) exits a void method immediately.
Type[][] t declares t to be the name of a two-dimensional array. Then

t = new Type[n][n declarestto have n * m components doubly-indexed,
where the first index can be 0. . (n-1) and the second canbe 0..(m1).
t.length is n and t[k].length is m

7-39 Java Au Naturel by William C. Jones 7-39

Other vocabulary to remember:

>

Stubbed documentation for a class is a list of the method headings with comments
describing their functions and not much else. It can be compilable if you add bodies
suchas {return 0;}.

A program should be robust, which means that it should handle unexpected or
unusual situations in a reasonable manner without crashing.

A test set is a set of input values used for one run of a program, together with the
expected outputs. A Test plan is a large enough number of test sets that you can be
confident that almost all of the bugs are out of the program when all tests go right.

A partially-filled array has useable values only in part of the array, conventionally at
0...size-1 (though many programmers use a name different from si ze).

For modular programming, you create software for one purpose as a number of
moderately independent modules (methods and classes). Then when you want to
use the software for a different purpose, you just pull out a few of the inappropriate
modules and slot in others.

The postcondition for an action method is a statement of what has changed as a
result of calling the method, assuming the precondition for that method has been met.
An internal invariant for a class of objects is a description of the state of all objects
which the coding in the class maintains as true when each method is called and true
when each method is exited. In other words, it is both precondition and postcondition.
It describes the connection between the abstract concept for which the class of
objects is a concrete realization in software.

A command-line argument is a String value on the command line after j ava

Ol assNane. These values are passed intothe String[] args parameter of the
main method. args. | engt h tells how many values are passed in. args[0] is
the first String value, ar gs[1] is the second String value, etc.

Answers to Selected Exercises

7.1

7.2

7.3

7.4

7.7

7.8

7.9

public static void averageDailyPay (Worker karl)

{ JOptionPane.showMessageDialog (null, "The worker's name is " + karl.getName()
+", and the average daily pay is " + (karl.seeWeeksPay() / 5));

}

The word "hoursWorked" within the method refers to the value of time.
The word "this" within the method refers to the value of chris.
public static String youngest (Worker first, Worker second, Worker third)
{ Worker last = first.getBirthYear() >= second.getBirthYear() ? first: second;
if (last.getBirthYear() < third.getBirthYear())
last = third;
return last.toString();
}
Replace the last line of lastOne by:
JOptionPane.showMessageDialog (null, "The alphabetically last is " + last.toString());
Replace the first part of the heading of lastOne by:
public static void findLastOne
Replace the body of the if-statement in the main method by:
CompOp.printLastOne (first, second, third);
Replace the less-than operator < by the greater-than operator > .
Also change "first" to "last" everywhere, to have it make sense.
Insert after "else {": double total = answerSoFar.seeWeeksPay();
Insert before the innermost if-statement: total += data.seeWeeksPay();
Insert before the semicolon at the end of the second return statement:
+ "\nThe total amount paid is " + total;
Insert after "else {": int century = answerSoFar.getBirthYear() / 100;
String result = "the same century.";
Insert before the innermost if-statement:
if (data.getBirthYear() / 100 != century)
result = "different centuries.";
Insert before the semicolon at the end of the second return statement:
+ "\nThe workers were born in " + result

7-40

7.14

7.15

7.16

7.20

7.21

7.23

7.25

7.26

7.27

7.28

Java Au Naturel by William C. Jones 7-40

Replace the statement count[lastDigit]++; by:
if (lastDigit >= 0 && lastDigit < TIME_SPAN)
count[lastDigit]++;
Rename TIME_SPAN as NUM_LETTERS throughout, with a value of 26 instead of 10.
Replace lines 4 and 5 in the body of the while-statement by:
int index = data.getName().charAt (0) - 'A’;
if (index >= 0 && index < NUM_LETTERS)
countfindex]++;
Replace the for-statement by:
for (intk =0; k<NUM_LETTERS; k++)
s += (char) (A" + k) + " had " + count[k] + " workers";
Change the initial YEAR from 1960 to 1920 and the initial TIME_SPAN from 10 to 65.
Replace the statement count[lastDigit]++; by:
if (lastDigit >= 0 && lastDigit < TIME_SPAN)
count[lastDigit]++;
If you were to do this program without arrays, then:
(a) The line that creates the array and initializes it to zero (line 1) would be replaced by
65 initializations to zero.
(b) The count[lastDigit]++ line (line 5) would have to be replaced by 130 lines such as:
else if (lastDigit == 24)
count24++;
(c) And the 3 lines that create the string would be replaced by 65 lines, so the net added is 255 lines.
Say the number in component 0 is 11. Then reversing the direction of the for-loop would
copy the 11 into component 1, then copy the 11 into component 2, then copy the 11 into
component 3, then again into component 4. You would lose three needed values.
Replace the for statement and the return statement by the following:
for (intk =0; k< NUM_DAYS; k++)
sum += (itsHoursPaid[k] <= 8) ? itsHoursPaid[k] : (itsHoursPaid[k] * 1.5 - 4);
return sum * itsHourlyRate;
Replace the statements beginning with "double totalPay" (lines 9-18) by the following:
if (size > 0) // crash-guard
{ W orker lastWorker = item[size - 1];
for (intk =0; k <size - 1; k++)
{ if (item[k].compareTo (lastWorker) < 0)
JOptionPane.showMessageDialog (null, item[k].toString());
}

public boolean everyonePaidLessThan (double cutoff)
{ for (intk = 0; k <itsSize; k++)
{ if (itsltem[k].seeWeeksPay() >= cutoff)
return false;
}

return true; // including when there are no workers

}
public String alphabeticallyFirst()
{ if (itsSize == 0)
return null;
W orker early = itsltem[0];
for (intk = 1; k <itsSize; k++)
{ if (itsltem[k].compareTo (early) < 0)
early = itsltem([K];

return early.getName();

public boolean inAscendingOrder()
{ for (intk = 0; k <itsSize - 1; k++) // note itsSize - 1
{ if (itsltem[k].compareTo (itsltem[k + 1]) > 0)
return false;
}

return true; // including when there are no workers

public int countSame (WorkerList given)
{ int upperLimit = this.itsSize > given.itsSize ? given.itsSize : this.itsSize;
int count = 0;
for (int k = 0; k < upperLimit; k++)
{ if (this.itsltem[k].equals (given.itsltem[k])) // we have found a match
count++;
}

return count;

7-41

7.33

7.34

7.35

7.43

7.44

7.45

7.48

7.49

7.54

7.55

7.56

Java Au Naturel by William C. Jones 7-41

public void insert (Worker given, int n)
{ if (n<0 || n>itsSize || itsSize >= itsltem.length)
return;
for (int k = itsSize; k >n; k--)
itsitem[k] = itsltem[k - 1]; // similar to addHoursWorked
itsltem[n] = given;
itsSize++;

public void remove (Worker given)
{ intk =0;
while (k < itsSize && ! itsltem[k].equals (given))
k++;
if (k < itsSize) // we have found a match
{ itsitem[k] = itsltem([itsSize - 1]; // replace it by the top one
itsSize--;
}

}
public boolean add (Worker par)
{ if (itsSize == itsltem.length)
return false;
for (intk = 0; k <itsSize; k++)
if (itsltem[k].equals (par))
return false;
itsltem([itsSize] = par;
itsSize++;
return true;

}
if (x>=2 &&y <=5 && board[x - 2]y + 2] == EMPTY)
{ board[x - 2][y + 2] = board[X][y];

board[x][y] = EMPTY;

board[x - 1][y + 1] = EMPTY;

for (inty=0;y<8;y+=2)

{ board[5][y] = BLACK;
board[6][y + 1] = BLACK;
board[7][y] = BLACK;

public static int numEmptySquares (int[][] board)
{ int count = 0;
for (intx=0; x<8; x++)
for (inty=0; y<8; y++)
{ if (board[x][y] == EMPTY)
count++;
}

return count;

public static boolean stackHasCD()
{ return theStackSize > 0;

}
public void putCD()
{ if (! seesCD() && theStackSize > 0) // the second operand could be stackHasCD()
{ itsSequence [itsPos] = theStack [theStackSize - 1];
theStackSize--;
}

trace ("putCD at slot *);

public class Queue

{ private ArrayList itsList = new ArrayList();
/I all methods are the same as in Listing 7.13 except put "itsList." in front of each call
/I of a method from the ArrayList class, e.g., return itsList.remove (0).

}
public void replaceNullsBy (Object ob)
{ for (intk = 0; k <size(); k++)
{ if (get (k) == null)
set (k, ob);
}

}
public int indexOf (Object ob)
{ for (intk = 0; k < size(); k++)
{ if (get (k).equals (ob))
return k;
}

return -1;

