
 Java Au Naturel by William C. Jones 5-1 5-1

5 Class Methods and Class Variables

Overview

This chapter shows you how to define and use methods and variables that do not need
executors, such as the Vic.say method introduced in Chapter Two and the
JOptionPane.showInputDialog method from the Sun standard library:

• Sections 5.1-5.3 describe and illustrate class methods, class variables, and final

variables.
• Sections 5.4 and 5.5 develop a full implementation of a Vic simulator, which

completes the top-down development of Vic software (first see how to use the
methods, then learn how to define them). It uses two new String methods,
substring and length. If you want to move on quickly to the material in later
chapters, you may postpone or skip everything in Chapter Five after Section 5.4.

• Sections 5.6-5.8 describe software for working with Networks. The Network software
illustrates the use of for-statements, class methods, class variables, and final
variables. It does not involve any new language features.

• Section 5.9 explains and illustrates the use of recursion. This just means that you
may have a method call itself as long as you avoid execution that never stops. The
first half of the section is independent of Networks.

5.1 Defining Class Methods

A method to find an integer average of several integer values would be quite useful. If
the sum of a group of 5 numbers is 49, the average is best approximated as 10, but if
their sum is 46, the average is best approximated as 9. You cannot calculate this
average as sum / count, because you would get 9 in either case; division of int values
drops the fractional part. You could simply add half of the count before you divide and
then have the method return that result:

 return (sum + count / 2) / count;

This works for positive numbers. But if you try this when the sum is negative, it gives the
wrong answer: -49 + 5 / 2 is -47 and -47 / 5 is -9; -46 + 5 / 2 is -44 and
-44 / 5 is -8. Some more thought leads you to the correct answer, as follows:

 public int average (int sum, int count)
 { if (sum >= 0)
 return (sum + count / 2) / count;
 else
 return (sum - count / 2) / count;
 } //=======================

The average method now computes the correct value: average(-49, 5) returns
the number -10 and average(-46,5) returns the number -9. However, something
feels wrong here. This is an instance method, but there is no instance to act as the
executor. The method deals with numbers only, no objects at all. You would have to
create an object of the class to which the method belongs before you could use the
average method, and then the object would be irrelevant to the calculation.

 Java Au Naturel by William C. Jones 5-2 5-2

Class methods

Java provides a mechanism to handle such situations: The word static in the method
heading means that it is a class method, i.e., you may call it with the name of the class in
place of the executor. In such a method you cannot use this, either explicitly or by
default, since there is of course no executor that this refers to. So the above method
should have its heading begin public static int average.

Several different calculations come up from time to time involving numbers alone, so it is
useful to have an entire class containing such utility methods. We will call it MathOp. So
x = MathOp.average(49,5) stores 10 in x. Listing 5.1 describes the MathOp class,
with the average method and another useful method for raising a number to a power of
2: MathOp.powerOf2(5) returns the number 32 and MathOp.powerOf2(10)
returns the number 1024. Note that powerOf2 illustrates a for-statement that does not
have any initializer part (because expo is already initialized). It multiplies power by 2
once for each time through the loop.

Listing 5.1 The MathOp utilities class

public class MathOp
{
 /** Return the value of 2 to the power expo. */

 public static int powerOf2 (int expo)
 { int power = 1;
 for (; expo > 0; expo--)
 power = power * 2;
 return power;
 } //======================

 /** Return sum divided by count rounded to the nearest int. */

 public static int average (int sum, int count)
 { if (sum >= 0)
 return (sum + count / 2) / count;
 else
 return (sum - count / 2) / count;
 } //======================
}

Both of these MathOp methods could cause the program to fail in some situations.
These defects are corrected in the exercises. Can you see what those situations are
without peeking ahead to the exercises?

Utilities classes

We call a class with no instance methods or instance variables or main method a utilities
class. MathOp is an example, and you will see more later. Since all of its methods are
class methods, there is no point in creating objects of MathOp type. Some people call
such a class a non-instantiable class. You could think of "MathOp" as being an
"operative", a person who carries out certain math-related tasks for you. It does not have
to be constructed because it has no state (i.e., instance variables that store information).

It is of course possible for outside classes to create MathOp objects (though pointless).
Since MathOp does not define a constructor explicitly, outside classes can use
new MathOp() for the default constructor supplied by the compiler. You can prevent
this by adding a MathOp constructor and declaring it private, as in the following:

 Java Au Naturel by William C. Jones 5-3 5-3

 private MathOp()
 { super();
 } //=======================

Now the default constructor does not exist, since the compiler supplies it only when no
other constructor is defined. And the actual constructor is not visible to outside classes,
since it is private. Some people feel it is a good idea to do this. Reminder: Marking a
constructor or other method as private means your coding inside its class can
mention it, but no outside class can mention it.

Four categories of methods

The phrase that precedes the return type (or void) in a method's heading tells which of
several categories it is in (X denotes the class in which the method is defined):

• public: Callable from any class with an executor of class X.
• private: Callable only within class X with an executor of class X.
• public static: Callable from any class with X in place of the executor.
• private static: Callable only within class X with X in place of the executor.

If you call the method from within class X, you may omit the executor or class name
before the dot -- it defaults to the executor of the method it is in or to the class it is in,
respectively. A class method can be called with an executor if you wish, a variable that
can refer to an object of the class, but there is no advantage in doing this.

Independent class methods

The average and powerOf2 methods in Listing 5.1 could be put in any classes at all
and they would work the same. They are independent class methods. Independent
class methods could also be called utility methods. The Vic.say and Vic.reset
introduced in Chapter Two are also class methods. They are defined in the Vic class. A
key difference between them and the MathOp.average and MathOp.powerOf2
methods is that the Vic methods can only be in the Vic class. This is because the Vic
class methods access private parts of the Vic class that you cannot otherwise get to. So
those two Vic class methods are not independent class methods.

Language elements
A declaration of a method can have the word static before its return type.
Such a method can be called using the class name in place of an executor.

Exercise 5.1 The average method causes the program to fail if count is zero, since
division by zero does not make sense. Modify the method to return zero in such cases.
Exercise 5.2 The powerOf2 method returns 1 whenever expo is negative, which is
okay. But it produces the wrong answer if expo is more than 30, because the largest
possible int value is 231 - 1. Modify the method to return 230 in such cases.
Exercise 5.3 (harder) Write a method public static int power (int base,
int expo) for MathOp: It returns base to the expo power. Return -1 in all cases in
which the power cannot be computed using int values. But return zero if either parameter
is negative. Hint: The largest int value is 2,147,483,647.
Exercise 5.4* Write a method public static int gcd (int one, int two) for
MathOp: It returns the greatest common positive divisor of its two int parameters. Hint:
If either is negative, multiply it by -1; then repeatedly replace the larger by the remainder
from dividing the larger by the smaller until one goes evenly into the other, in which case
that one will be the greatest common divisor. What do you do if either is zero?
Exercise 5.5* Under what circumstances can a call of a class method be polymorphic?
Exercise 5.6** Write a MathOp class method that finds the factorial of a given int value
(e.g., 6! is 6 * 5 * 4 * 3 * 2 * 1). Watch out for negatives.

 Java Au Naturel by William C. Jones 5-4 5-4

5.2 Declaring Class Variables; Encapsulation

You could put the following variable declaration in the Person class of Listing 4.4,
outside of every method definition. This declaration means that the variable named
theNumPersons is initially zero (i.e., when the program starts), though it is expected to
change as the program executes:

 public static int theNumPersons = 0;

A local variable is declared inside a method definition. You can only use it inside that one
method definition. Since theNumPersons is not a local variable, you can use it
everywhere. The word static means that, if you mention it outside of the Person
class, you may refer to it as Person.theNumPersons, i.e., with the name of the class.
So it is called a class variable, analogous to a class method. That way, (a) the compiler
knows where to look for its declaration, and (b) you can declare a different variable
named theNumPersons in any other class if you want. Note that this is the same
access rule Java has for class methods.

A field variable is any variable declared outside any method definition. If it is declared
with the word static, it is a class variable (e.g., theNumPersons just described). The
class itself contains the only copy of class variables such as theNumPersons.

If a field variable is not declared using the static keyword, it is an instance variable
(e.g., itsFirstName for the Person class). Each instance (object) of a class contains
its own separate copy of the instance variables. For example, if sam and sue are
Person variables referring to Person objects, then sam.itsFirstName is a completely
different variable from sue.itsFirstname but sam.theNumPersons and
sue.theNumPersons are the same variable.

In general, use an instance variable to store information about an individual object, but
use a class variable to store information about the class as a whole (information that is
not specific to an individual instance).

You could add the statement theNumPersons++; to the constructor public
Person(). Then theNumPersons keeps track of the number of completely new Person
objects that have been created so far. Any outside class can find out from the Person
class how many it has made by looking at the value of Person.theNumPersons.

Unfortunately, no outside class can trust that Person.theNumPersons truly does tell
the number of Persons that have been made. After all, any other outside class could
underhandedly change the value of Person.theNumPersons, perhaps doubling it to
fool the other classes.

Problem: This way of making information available makes the information worthless.
Solution: Encapsulation, also known as information-hiding.

Encapsulation

Encapsulation basically requires that a class not let outside classes change its variables.
So field variables should generally be declared as private. That way nothing outside of
the class that owns the variable can sneak in and change the state of the variable without
the owner class knowing about it. We will add to the Person class the following
declaration of theNumPersons instead of the one given earlier:

 private static int theNumPersons = 0;

 Java Au Naturel by William C. Jones 5-5 5-5

You can still make available to outside classes the value of the variable theNumPersons
by having the following class method in the Person class:

 public static int getNumPersons()
 { return theNumPersons;
 } //=======================

Any outside class can then use Person.getNumPersons() to get the value of
theNumPersons. But no outside class can change its value. In general, any method or
field variable that does not need an executor should be declared as a class method.

Failure to encapsulate was the most pernicious cause of bugs in programs in the early
decades of programming. With encapsulation, any outside classes that modify these
field variables must go through the class's methods to do so, if then. This makes bugs
less likely. Listing 5.2 (see next page) contains the complete Person class as revised
from Listing 4.4.

In the Nim class of Listing 4.8, each game object should have its own individual value of
itsNumLeft and itsMaxToTake, but they can all share the same random number
generator. So it could be declared outside of every method as follows:

 private static java.util.Random randy
 = new java.util.Random();

Initial values of class variables

A class variable exists independently of any instance of the class. You should almost
always give it an initial value where it is declared. If the initial value is not given there, the
compiler gives it a default initial value: zero for a numeric variable, null for an object
variable, and false for a boolean variable.

Initializations of class variables at runtime are done when the class is first loaded, before
any instances of the class are created, and in the order they are listed in the class
definition. So the initialization of one class variable should not refer to the value of a
class variable declared later in the class definition.

Programming Style It is good style to explicitly state in your classes the initial
value of a class variable when your logic requires it to have one, rather than
relying on the default value. Note that Listing 5.2 does this. That way a reader
of the class does not have to stop and think what the default value is.

Typical structure of an information facility

Listing 5.2 illustrates a very common way of equipping a class to provide certain
information about itself. In this case, the information to be provided is the number of
Person objects created so far in the program. Listing 5.2 has three relevant parts:

(a) A class query method so that others can access the information, e.g., the method call

Person.getNumPersons(). This kind of method usually just returns the value of a
class variable (theNumPersons in this case).

(b) The declaration of the class variable with its initial value specified.
(c) Statements to update the value of the class variable in each method that modifies the

information to be provided (only the constructor in Listing 5.2).

 Java Au Naturel by William C. Jones 5-6 5-6

Listing 5.2 The Person class of objects

public class Person extends Object
{
 private static int theNumPersons = 0; // initialize num
 private String itsFirstName;
 private String itsLastName;
 private int itsBirthYear;

 public Person (String first, String last, int year)
 { super();
 theNumPersons++; // update num
 itsFirstName = first;
 itsLastName = last; // initialize last name
 itsBirthYear = year;
 } //=======================

 /** Tell how many different Persons exist. */

 public static int getNumPersons() // access num
 { return theNumPersons;
 } //======================

 /** Return the birth year. */

 public int getBirthYear()
 { return itsBirthYear;
 } //=======================

 /** Return the first name. */

 public String getFirstName()
 { return itsFirstName;
 } //=======================

 /** Return the last name. */

 public String getLastName() // access last name
 { return itsLastName;
 } //=======================

 /** Replace the last name by the specified value. */

 public void setLastName (String name) // update last name
 { itsLastName = name;
 } //=======================
}

You have seen a similar structure for equipping an object to provide certain information
about itself. An example is the last name of a Person. Listing 5.2 has three relevant parts:

(a) An instance query method so that others can access the information, e.g., the

method call sue.getLastName(). This kind of method usually just returns the
value of an instance variable (itsLastName in this case).

(b) The declaration of the instance variable, sometimes with its initial value specified.
However, the initial value may be specified in the constructors instead (as is done for
itsLastName in Listing 5.2).

(c) Statements to update the value of the instance variable in each instance method that
modifies the information to be provided, e.g., sue.setLastName("Jones").

 Java Au Naturel by William C. Jones 5-7 5-7

Scope and positioning of a field variable declaration

The declaration of an instance variable or class variable can be put anywhere in the
class. Its position in the listing does not affect where it can be used within methods.
Some people like to put all instance variables at the end of the class, and some like to put
them at the beginning. The scope of a variable is where it can be used without being
directly preceded by a dot and an object or class reference:

• The scope of a class variable is its entire class.
• The scope of an instance variable is all instance methods and constructors in its

class.
• The scope of a formal parameter is its method's body. (Reminder: Variables

declared in a method heading are called formal parameters; the corresponding
values in the parentheses of a method call are called arguments).

• The scope of a variable declared in the initializer part of a for-statement is only the
entire for-statement.

• The scope of any other local variable (declared in a method) is from the point where it
is declared to the end of the innermost pair of braces within which it is declared.

Similarly, the placement of methods within the class definition does not affect how they
are called within other methods. But if one method calls another in the class, most
people find it easier to understand if the method doing the calling comes before the
method being called.

Caution Do not use the words private or public inside a method definition.
If you make this mistake, the message that the compiler gives you can be
baffling. Local variables are by nature private, since you can only mention
them inside their methods. But only class variables or instance variables
are explicitly stated to be public or private.

Technical note If you declare a variable in e.g. the third statement of a method, you are
not allowed to refer to that variable in the first two statements of that method. It is as if
the creation of the variable does not occur until that third statement. However, the
bytecode that the compiler produces creates all of the local variables of a method when
the method begins execution, regardless of where they are declared. The point of
declaration does not determine when the variable is created at runtime, it only determines
where the variable can be used.

Language elements
A variable declaration that is outside of any method can have the word static before its type.
Such a variable can be used with the class name in place of its executor.

Exercise 5.7 Change the Person class of Listing 5.2 so that any outside class can find
out the first name of the Person who was most recently created. Use "none so far" for
the answer if no Persons have yet been created.
Exercise 5.8 (harder) Write a method public static int range (int one,
int two) for the MathOp class in the earlier Listing 5.1: The method returns an integer
chosen at random within the range of the two parameters (i.e., between or equal to the
two parameters). Use a Random class variable. Allow for one being greater than two.
Exercise 5.9* Change the Person class of Listing 5.2 so that any outside class can find
out the smallest birth year of all the Persons who have been created so far. Use -1 for
the answer if no Persons have yet been created.
Exercise 5.10* Change the Person class of Listing 5.2 so that any outside class can find
out the average birth year of all the Persons who have been created so far. Use 0 for the
answer if no Persons have yet been created.

 Java Au Naturel by William C. Jones 5-8 5-8

5.3 Final Local, Instance, And Class Variables

If a variable declaration has the word final immediately before the name of the type,
the compiler will not let any statement change the value any time after you give it its initial
value. Such variables are called constants in most programming languages, but Java
programmers tend to call them final variables.

Final class variables

The Time class constructor in Listing 4.5 has the phrase itsMin = itsMin + 60 in
one method. Other methods would also mention 60, since that is the number of minutes
in an hour. The logic of the Time class would be clearer if you declare a final class
variable with the value 60 and use it instead. By convention, we write the variable name
all in capital letters if it is a final class variable. So the declaration in the Time class, and
the corresponding change in the Time constructor, could be as follows:

 public static final int MIN_PER_HOUR = 60; // class variable
 itsMin = itsMin + MIN_PER_HOUR;

The BasicGame class in Listing 4.3 has an instance variable itsSecretWord. Every
BasicGame object has exactly the same secret word, though they may have different
user's words (depending on what the user chose for that game). It would make more
sense to have just one copy of this value for the whole class, rather than one for each
BasicGame object. Since the value of this variable never changes, you could write the
class variable declaration in the BasicGame class, and the revised statement in the
shouldContinue method, as follows:

 public static final String SECRET = "duck"; // class variable
 return ! SECRET.equals (itsUsersWord);

Programming Style Any constant value that is used in two or more methods in
a class should be declared as a final class variable and that variable used in
place of the constant value. The name of the variable should be all in capital
letters. It may or may not be public. Some exceptions: 2, 1, 0, and "".

This book normally lists field variables in the order public static final, then
private static, and then the instance variables. This book also puts a prefix of "the"
on almost all names of non-final class variables, and never anywhere else. This
hallmark, along with the prefix "its" on almost all names of instance variables, makes
bugs less likely. If you do not do this in your own definitions, at least obey the following
safety principle: Never name a parameter or local variable the same as a class variable
or an instance variable.

Final instance variables and final local variables

In Listing 5.2, no provision is made for changing two of the values of the Person instance
variables once they have been assigned. This should be made clear in the declarations:

 private final String itsFirstName;
 private final int itsBirthYear;

They could be made publicly visible if there is a good reason to do so, because that
would not violate the encapsulation principle: No outside class could change the value of
any instance variable of any Person object. But as it is, we have the getXXX methods to
retrieve any one of the values, so we need not make them public. In general, it is
preferable to access even final instance variables through getXXX methods rather than
directly -- it makes it easier to upgrade the software in the future.

 Java Au Naturel by William C. Jones 5-9 5-9

The value of a final instance variable must be assigned in the declaration or else in every
constructor of the class. You can see that the Person class does the latter, so the
addition of the word final is the only change needed. When all of an object's instance
variables are final, the object is said to be immutable (because you cannot change its
attributes once it has been created). String values, for instance, are immutable.

You may declare a variable that is local to a method as final, in which case you should
immediately assign its final value at the point where you declare it. This should usually
be done if you use a constant value in two or more places within the method. Some
people like to make the name all in capital letters; others reserve that for class variables.

Some people go so far as to say that every constant value used in a method should be a
named final variable, other than perhaps 0, 1, and 2 and the empty String. This book
does not go that far. That principle would require that every string literal be named.

Language elements
A variable declaration can have the word final before its type.
The value of such a variable cannot be changed once it has been assigned.

Exercise 5.11 Rewrite Listing 4.5 to store 10 in a named local final variable, then use it
wherever it is appropriate.
Exercise 5.12* Rewrite Listing 4.6 to store both 1 and 100 in named public final
variables standing for the lower and upper limits, then use them wherever appropriate.
Exercise 5.13* Rewrite the Nim constructor in Listing 4.8 to use local final variables for
the numbers 21 and 3, then use them wherever it is appropriate.

5.4 Two New String Methods

You now have enough background to understand a complete simulation of the Vic's
Programmable CD Organizer (described in Chapters 2 and 3). Of course, no one can
write the actual program in Java; since it moves armatures and gears and springs, the
Vic engineers have to write it in native code. If you were to look at their implementation,
you would see almost all the methods with the notation native and no method bodies.

The Vic simulation developed in these two sections will not involve graphics; it is too early
for that. But the simulation will produce tracing output to the terminal window such that,
each time one of the four action instance methods is executed, you will see a full
description of that sequence of slots. The simulation makes heavy use of class variables
and final variables. And it introduces two new String methods from the standard library.

The data structure

Each sequence of slots is represented by a string of non-blank characters, where 0
signals an empty slot and any other character signals a slot that contains a CD whose
name is that character. The instance variables are itsSequence (the String), itsPos
(a position in the sequence) and itsID (a positive int). So getPosition only needs
one statement to report a string of characters containing the current position and ID:

 return itsPos + "," + itsID;

The value of itsID is also used in the tracing output, to tell you which Vic object is
being described. The trace method each action instance method calls has the
following single statement. The method call System.out.println has a single
String parameter that it prints to the terminal window:

 System.out.println ("Vic# " + itsID + ": " + action
 + itsPos + "; sequence= " + itsSequence);

 Java Au Naturel by William C. Jones 5-10 5-10

The Vic.say method can use this output statement as well, having just one statement:

 System.out.println ("SAYS: " + message);

The backUp method first checks that itsPos is greater than 1, since otherwise the
program is to terminate immediately. Then it decrements itsPos and calls the trace
method in an obvious way. The logic for backUp and the three one-liner Vic methods
discussed so far is in the upper part of Listing 5.3 (see next page). System.exit(0)
is not a graceful way of terminating; adding an explanatory message is an exercise.

String methods

Before you go further, you need to know about the two methods in the String class that
this software uses. One is the length method: s.length() returns the number of
characters in the String s. The other is the substring method, which returns a new
String value that is a portion of the executor. For instance, s.substring(2,4)
returns the String value consisting of the characters numbered starting from 2 and going
up to but not including 4. That is, you get the characters numbered 2 and 3, in that order.
Figure 5.1 describes the two new String methods.

s.length()
is the number of characters in the String object referred to by s.

s.substring (start, end)
returns a new String object consisting of the characters of s in positions start
through end-1. The program can crash unless 0 <= start <= end <= s.length().

 Figure 5.1 Two String methods

You also need to know that Java numbering of the positions in a String is zero-based:
The first character is numbered 0, the second is numbered 1, the third is numbered 2,
etc. Therefore, "abcdef".substring(2,5) is the string "cde". This all means that
the seesSlot method can be coded as just one statement, as follows.

 return itsPos < itsSequence.length();

For instance, if itsSequence has length 6, and thus numbers the characters 0 through
5, itsPos is beyond the end of the sequence of slots if itsPos is 6. For the seesCD
method, you must look at the substring consisting of one character starting at position
itsPos, which is expressed in Java as follows:

 itsSequence.substring (itsPos, itsPos + 1);

In Listing 5.3, a named constant String value NONE represents the absence of a CD,
thus has the value "0". The coding for moveOn parallels backUp.

Chaining

If a method call returns an object value, you may use the method call for the executor of
another method call. This is called chaining of method calls, or sometimes cascading.
For instance, the following statements are legal:

 // replace spot.equals (getPosition()) by:
 getPosition().equals (spot);
 // replace the last two statements of seesCD by:
 return ! itsSequence.substring(itsPos,itsPos+1).equals(NONE);
 // replace the first three statements in Listing 4.1 by:
 new BasicGame().playManyGames();

 Java Au Naturel by William C. Jones 5-11 5-11

Listing 5.3 The Vic class of objects, part 1 of a String-based simulation

public class Vic extends Object
{
 private static final String NONE = "0";
 /////////////////////////////////
 private String itsSequence = "";
 private int itsPos = 1;
 private final int itsID; // assigned by the constructor

 public String getPosition()
 { return itsPos + "," + itsID;
 } //======================

 public static void say (String message)
 { System.out.println ("SAYS: " + message);
 } //======================

 private void trace (String action)
 { System.out.println ("Vic# " + itsID + ": " + action
 + itsPos + "; sequence= " + itsSequence);
 } //======================

 public void backUp()
 { if (itsPos == 1)
 System.exit (0);
 itsPos--;
 trace ("backUp to slot ");
 } //======================

 public void moveOn()
 { if (! seesSlot())
 System.exit (0);
 itsPos++;
 trace ("moveOn to slot ");
 } //======================

 public boolean seesSlot()
 { return itsPos < itsSequence.length();
 } //======================

 public boolean seesCD()
 { if (! seesSlot())
 System.exit (0);
 String s = itsSequence.substring (itsPos, itsPos + 1);
 return ! s.equals (NONE);
 } //======================
}

Exercise 5.14 Write a private class method in the Vic class that has a String parameter
and an int parameter and returns the one-character substring at the given position. Then
replace more complex coding by a call of that method in Listings 5.3, 5.4, and 5.5.
Exercise 5.15* An attempt to moveOn or backUp or to evaluate seesCD when it is
illegal causes an abrupt System.exit(0) without explanation. The user would
appreciate a tracing output in such cases. Revise these three methods to call a private
method that explains the problem (with showMessageDialog) and then terminates.

 Java Au Naturel by William C. Jones 5-12 5-12

Part B Enrichment And Reinforcement

5.5 Complete String Implementation Of A Vic Simulator

The stack operations

Since Vics all share the same stack, we begin by declaring a class variable theStack,
initially an empty string of characters. The stackHasCD class method then tells whether
the string is not empty, i.e., it tells whether theStack.length() is positive.

The coding for takeCD first checks that seesSlot() is true; if not, the program
terminates. If seesCD() is false, nothing happens, otherwise theStack appends
the substring itsSequence.substring(itsPos, itsPos+1).

Next, itsSequence puts NONE in place of that substring. The way that itsSequence
puts NONE at position itsPos is to make the new value of itsSequence be (a) the
substring from position 0 up to itsPos, followed by (b) NONE, followed by (c) the
substring running from position itsPos + 1 up to the end. The last thing that takeCD
does is call the trace method.

The upper part of Listing 5.4 (see next page) contains the Java coding for the
stackHasCD method and the takeCD method just described. The logic for the putCD
method is rather more complex; a reasonable plan is in the accompanying design block.

STRUCTURED NATURAL LANGUAGE DESIGN for putCD
1. Exit the program if there is no slot at the current position.
2. If the current slot does not have a CD and the stack does, then...
 2a. Change itsSequence to be a new string consisting of three parts:
 (a) all its characters up to but not including the current position;
 (b) the top value on the stack;
 (c) all its characters after the current position.
 2b. Remove the top value from the stack.
3. Print out a tracing message.

The implementation of putCD in the lower part of Listing 5.4 differs somewhat from the
design. The first thing the coding does is test ! seesCD(), which will exit the program
immediately if there is no slot at the current location. So Step 1 (testing seesSlot())
does not have to be coded explicitly.

The reset method

The value passed in to the reset method has the type description String[], which
has not yet been discussed in this book. A full explanation of these array variables has to
wait until Chapter Seven, but the foretaste you get here should be manageable.

The Vic class has a class variable named theTableau where it keeps what are initially
the three empty String values it allows. The type description of this variable is
String[], which means it can hold several String values. The class variable
theTableau can be initialized to be three empty Strings with this coding:

 private static String[] theTableau = { "", "", "" };

 Java Au Naturel by William C. Jones 5-13 5-13

Listing 5.4 The Vic class of objects: the parts involving theStack

// public class Vic continued: using the stack

 private static String theStack = ""; // initially empty

 public static boolean stackHasCD()
 { return theStack.length() > 0;
 } //======================

 public void takeCD()
 { if (seesCD())
 { theStack = theStack
 + itsSequence.substring (itsPos, itsPos + 1);
 itsSequence = itsSequence.substring (0, itsPos) + NONE
 + itsSequence.substring (itsPos + 1,
 itsSequence.length());
 }
 trace ("takeCD at slot ");
 } //======================

 public void putCD()
 { if (! seesCD() && stackHasCD())
 { int atEnd = theStack.length() - 1;
 itsSequence = itsSequence.substring (0, itsPos)
 + theStack.substring (atEnd, atEnd + 1)
 + itsSequence.substring (itsPos + 1,
 itsSequence.length());
 theStack = theStack.substring (0, atEnd);
 }
 trace ("putCD at slot ");
 } //======================

The reset method simply assigns its args parameter to this theTableau variable,
replacing the current value of three empty Strings by however many non-empty Strings
the user gives as input in args. However, in accordance with the specifications for
reset in Chapter Two, it does not make the assignment if args has no strings at all or
if some Vic object has already been constructed.

The class variable theNumVics keeps track of the number of Vic objects created so
far. This is done just as you saw for theNumPersons in the earlier Listing 5.2:
Initialize it to zero in the declaration, then increment it in the constructor. This variable is
used to determine the itsID value for each Vic, and it is also used by the reset
method: If theNumVics is not zero, the reset method has no effect.

Each object whose type is String[] has a public final instance variable named
length that you can test to find out how many elements are in the array. So the
reset method makes sure that args.length is positive before it replaces
theTableau by args. The full coding for the reset method is therefore as follows:

 public static void reset (String[] args)
 { if (theNumVics == 0 && args.length > 0)
 theTableau = args;
 } //======================

 Java Au Naturel by William C. Jones 5-14 5-14

The Vic constructor

We saved the hardest method for last. To help the constructor do its job, we have two
class variables: One is a random number generator and the other is a named constant
that contains the first 12 letters of the alphabet. These letters are at positions 1 through
12 of the LETTERS string, with the character at position 0 left blank. The value of
itsPos will always be at least 1 for any Vic object. In effect, we switch to a one-based
numbering of characters in a String in spite of Java's preference for zero-based. You
should compare the following narrative development of the constructor with its coding in
Listing 5.5, where each line of the method is numbered.

The first thing the Vic constructor does is create the object (line 1) and then check that
theNumVics is less than the number of strings in theTableau (which will be three
unless they were replaced by the reset method, in which case it could be dozens,
depending on the user's choice; see line 2). If theNumVics is too large, we already
have all the objects we are allowed, so we do nothing but increment theNumVics (line
15), set itsID to that value (line 16), and print a tracing message (line 17). These
three actions are what we do at the end of the construction process for regular Vics too.
So the question is, what do we do if theNumVics is not too large?

Listing 5.5 The Vic class of objects, completed

// public class Vic completed: constructor and reset

 private static final java.util.Random randy
 = new java.util.Random();
 private static final String LETTERS = " abcdefghijkl";
 private static int theNumVics = 0;
 private static String[] theTableau = {"", "", ""};

 public static void reset (String[] args)
 { if (theNumVics == 0 && args.length > 0)
 theTableau = args;
 } //======================

 public Vic()
 { super(); // 1
 if (theNumVics < theTableau.length) // 2
 { itsSequence = theTableau[theNumVics]; // 3
 if (itsSequence.length() == 0) // 4
 { for (int k = 3 + randy.nextInt (6); k >= 1; k--) // 5
 { if (randy.nextInt (2) == 0) // 6
 itsSequence = NONE + itsSequence; // 7
 else // 8
 itsSequence = LETTERS.substring (k, k + 1) // 9
 + itsSequence; // 10
 } // 11
 } // 12
 itsSequence = " " + itsSequence; // 13
 } // 14
 theNumVics++; // 15
 itsID = theNumVics; // 16
 trace ("constructed "); // 17
 } //======================

 Java Au Naturel by William C. Jones 5-15 5-15

First we need to make itsSequence equal to the corresponding array element (line 3).
That is done with the following statement (fully explained in Chapter Seven; we do not
say anything more about arrays here):

 itsSequence = theTableau[theNumVics];

If this is not the empty String, it must be the one that came from reset, so we are done
with the construction process (except putting a blank on the front and doing the three
actions mentioned earlier). But if it is the empty String (line 4), we have a loop that
executes from 3 to 8 times (randomly chosen in line 5), each time adding a 1-character
string to the front of itsSequence. The string it adds is NONE half the time (again
chosen at random; lines 6-7) and is otherwise the corresponding letter from the
LETTERS value (lines 8-10). For instance, an object with six slots and only the second
and fourth slots having no CD has "a0c0ef" for itsSequence. Then a blank is put
on front (to make it one-based; line 13) and the three actions mentioned earlier are done.

Caution Any time you work out a complex logic such as this, you need to go
over it very carefully to make sure that there are no errors. This Vic object
class crashed on its fourth test run because the constructor does not always
assign a value to itsSequence. After this bug was found, the declaration
of itsSequence was changed to initialize it to the empty String. The bug

was caused by a failure to obey a simple principle: Initialize every instance variable in its
declaration unless you are absolutely sure it is initialized in every constructor.

Exercise 5.16 If the user calls the reset method twice before any Vic is constructed,
what happens the second time?
Exercise 5.17 Modify the simulation by having each tracing statement begin with a list of
the elements in theStack.
Exercise 5.18 Describe the consequence of forgetting the phrase ! seesCD() &&
in the coding of putCD.
Exercise 5.19* Describe the consequence of reversing the order of indexing in the
constructor to have for (int k = 1; k <= 3 + theRandy.nextInt(6); k++).
Exercise 5.20* Describe the consequence of forgetting the phrase && stackHasCD()
in the coding of putCD.

5.6 Case Study: Introduction To Networks

This Network material presents a completely different software situation from the Vic
software, so you can see more examples of how to use the language elements you have
learned. No new language features are introduced in these three sections.

Some situations where networks arise

One relevant situation is the network of nodes on the World Wide Web. Each node can
send messages directly to several other nodes. A message can be routed from one node
to any other node by having it pass through several direct node-to-node connections
along the way.

Another relevant situation is a group of students who are registered for a group of
courses. Each student has registered for several courses and each course has several
students registered for it.

 Java Au Naturel by William C. Jones 5-16 5-16

A third relevant situation is the set of airports served by a particular airline. Each airport
provides direct flights to only a few other airports. But one can get to any other airport
(hopefully) by taking a series of direct flights.

Networks and nodes

These situations have common elements you can model in software. A Network object
corresponds to the WWW or the college or the airline. Each Network object has a
(usually long) list of all the Node objects in the network. Nodes correspond to internet
nodes or students or courses or airports. Each Node object has a (relatively short) list of
other Node objects that it connects to. Figure 5.2 shows an example of a network and
gives the node-list for the entire network and for each node in it.

 Figure 5.2 Example of a network with four nodes

"Node x connects to Node y" models any of these relations:

• Internet Node x can send a message directly to Node y.
• College Student x is registered for Course y.
• College Course x has registered in it Student y.
• The Airline has a direct flight from Airport x to Airport y.

The Network and Position classes

The only two methods for the Network class are as follows:

• net = new Network() constructs a Network object that represents an actual

network. In other words, it creates a virtual network. Each use of this constructor
normally gives a different network.

• net.nodes() produces the list of Nodes in the Network object net, starting with
the first node.

The nodes method is the key method. It produces a new Position object. That Position
object iterates through the list of all the Nodes in the Network one at a time. If you get a
Position object from a Network net using e.g. Position pos = net.nodes(), you
can use the following three instance methods:

• pos.moveOn() changes the position of pos to the next Node on the list of nodes

(like Vic's moveOn).
• pos.hasNext() tells whether there is a Node at the current position of pos in its

list (like Vic's seesSlot).
• pos.getNext() returns the Node object at the current position of pos in its list

(not like Vic's takeCD, since getNext does not remove or change the Node at the
position, it only lets you look at it).

 Java Au Naturel by William C. Jones 5-17 5-17

The application program in Listing 5.6 illustrates all of these commands, as well as one
for Node objects: current.getName() returns the name of the node referred to by
current. This coding also illustrates the basic counting logic: If you initialize a variable
to zero and increment it once each time through a loop, then when you exit the loop that
variable will contain the number of iterations of the loop.

Listing 5.6 A program using a Network object

import javax.swing.JOptionPane;

class NetApp
{
 /** List all nodes and tell how many there are. */

 public static void main (String[] args)
 { Network school = new Network();
 int count = 0;
 for (Position pos = school.nodes(); pos.hasNext();
 pos.moveOn())
 { Node current = pos.getNext();
 JOptionPane.showMessageDialog (null,
 current.getName() + " is one of the nodes.");
 count++;
 }
 JOptionPane.showMessageDialog (null,
 "The total number of nodes is " + count);
 System.exit (0);
 } //======================
}

When a program executes, it almost always processes input and produces output.
Typically, the output is the answer to a problem the program solves. For a Vic object, the
input is the initial state of the mechanical components and the output is the final state of
the mechanical components. For a Network object, the input is the initial state of the list
of Nodes and their connections; the output is whatever you display for the user to see.

The Node class

The pos.getNext() method call produces a Node object, one of the Nodes in the
Network. You can do several things with Nodes. For instance, some network situations
involve two distinct groups of Nodes, as with colleges and students. Or they might
represent people, some of whom are male and some female. To have a general model
for such cases, we say some nodes are blue and some not.

For the college situation, blue nodes might represent students and non-blue nodes
courses. Or for people, blue nodes might represent males and non-blue nodes females.
For airports, we indicate that color does not matter by having all nodes blue. The method
call sam.isBlue() tests the Node object that sam refers to to see if it is blue. The
logic in Listing 5.6 could be modified to count the blue nodes and print the name of each
by replacing the body of the for-statement by the following:

 Node current = pos.getNext();
 if (current.isBlue())
 { JOptionPane.showMessageDialog (null,
 current.getName() + " is a blue node.");
 count++;
 }

 Java Au Naturel by William C. Jones 5-18 5-18

You cannot change the state of a Network. But you can go down the list of nodes a given
node connects to to find out things about those connections, as you will see next. The
methods for Networks, Nodes, and Positions provide some very useful services for
answering questions about a network.

The four Node methods

You have already seen two instance methods for Nodes. We introduce here two new
ones, so you now have four altogether:

• aNode.getName() returns a String representation of the Node.
• aNode.isBlue() tells whether aNode belongs to one of two categories of Nodes.
• aNode.equals(anotherNode) tells whether two (possibly different) Node objects

represent the same Node in the network, analogous to String equals.
• aNode.nodes() returns a Position object that iterates through the list of all Nodes

that aNode connects to in the network.

A software suite to track water flow through the pipes of a municipal system would
involve network operations. Figure 5.3 shows a network of water pipe connections. The
arrows indicate the direction of flow through the pipes. If pipes refers to the Network
here, the list that pipes.nodes() produces has all eight nodes of the network on it.
However, the list that x.nodes() produces for various node values x has at most two
nodes on it. For instance, as the figure implies, E.nodes() produces a Position object
pos for which pos.getNext() is H, and pos.moveOn(); pos.getNext() is F.

 Figure 5.3 A network with 8 nodes

You might get two different descriptions of the same node when you use the getNext
method. For instance, if bee and cee are Node variables that refer to nodes B and C in
Figure 5.3, then Node x = bee.nodes().getNext() and Node y =
cee.nodes().getNext() may both give you an object that refers to node G, but they
may be different objects (i.e., stored in different places in RAM, so x == y is false).
However, x.equals(y) will be true since they both represent node G.

A utilities class for Nodes

No constructor has been specified for Positions or Nodes, so you cannot make a
subclass that gives additional abilities to Positions or Nodes. But you can create a
NodeOp class to hold various class methods that deal with Nodes. These methods are
declared using the word static, meaning you call them with the class name in place of
the executor. Listing 5.7 (see next page) is a start on this utilities class.

The seesOnlyBlue method

An example of the use of a NodeOp method is the following statement:

 if (NodeOp.seesOnlyBlue (sam))
 JOptionPane.showMessageDialog (null, "only blue nodes");

 Java Au Naturel by William C. Jones 5-19 5-19

Listing 5.7 The NodeOp class

/** Answer queries about one or two given nodes.
 * Precondition for all methods: no parameter is null. */

public class NodeOp
{
 /** Tell whether par connects only to blue nodes. */

 public static boolean seesOnlyBlue (Node par)
 { for (Position p = par.nodes(); p.hasNext(); p.moveOn())
 { if (! p.getNext().isBlue())
 return false;
 }
 return true;
 } //=======================

 /** Tell whether from connects to target. */

 public static boolean connected (Node from, Node target)
 { for (Position p = from.nodes(); p.hasNext(); p.moveOn())
 { if (p.getNext().equals (target))
 return true;
 }
 return false;
 } //=======================

 /** Tell whether par connects to any node of the same color.*/

 public static boolean seesSameColor (Node par)
 { return (par.isBlue() && ! seesOnlyNonBlue (par))
 || (! par.isBlue() && ! seesOnlyBlue (par));
 } //=======================

 /** Tell whether par connects to no blue node. */

 public static boolean seesOnlyNonBlue (Node par)
 {} // left as exercise
}

The purpose of the seesOnlyBlue(Node) class method in Listing 5.7 is to tell whether
the parameter par connects to nothing but blue nodes. A good design is: You run down
the list of nodes par connects to. If you see a node that is not blue, the answer to the
question, "Does par connect only to blue nodes?" is false. If you get to the end of the
list without seeing a non-blue node, the answer to the question is true.

The method call p.getNext() returns a Node value, and the executor of the isBlue
method must be a Node value. Therefore, p.getNext().isBlue() is a legal chain
of method calls that asks whether the Node returned by p.getNext() is blue.

The connected method

The purpose of the connected(Node, Node) class method is to tell whether the first
parameter from connects to the second parameter target. A good design is: You
run down the list of nodes from connects to. If you see the target node, the answer
to the question "Does from connect to target?" is true. If you get to the end of the
list without seeing the target node, the answer to the question is false.

 Java Au Naturel by William C. Jones 5-20 5-20

Note that these two methods have almost exactly the same structure, except the true
and false values are switched. You will see these two looping patterns very frequently.
The first is typical of All-A-are-B conditions (specifically, "All nodes connected to par are
blue"), so we call it the All-A-are-B looping action. The second is typical of Some-A-
are-B conditions (specifically, "Some node connected to from equals target"), so we
call it the Some-A-are-B looping action.

The seesSameColor method

The purpose of the seesSameColor(Node) method is to tell whether some node the
parameter connects to is the same color as the parameter. It is logical that a node is
connected to another node of the same color if and only if it is blue but not connected
only to non-blues, or it is non-blue but not connected only to blues.

All three of the methods in Listing 5.7 are query methods because, after the executor
returns true or false from the method call, every object is in the same state it had
when you made the call. You may protest that the object obtained by the statement p =
par.nodes() has changed, and you would be right. But that object is irrelevant, since:

1. That object did not exist when you called the method,
2. That object cannot be used after you return from the method, and
3. The fact that it was created and modified has no effect on anything after you return

from the method. This is because each future call of nodes() get a totally new
Position object.

Exercise 5.21 Write the method seesOnlyNonBlue described in Listing 5.7.
Exercise 5.22 Write a method public static int getNumNodes (Node par) for
NodeOp: It tells how many nodes its Node parameter connects to.
Exercise 5.23 (harder) Write a main method that only prints out the name of the last
blue node, but prints "no blues" if there are none.
Exercise 5.24 (harder) Write a method public static int bidirectional
(Node par) for NodeOp: It tells whether every Node that par connects to, connects
to par.
Exercise 5.25* Revise Listing 5.6 to print the percentage of nodes that are blue.
Exercise 5.26* Draw the UML class diagram for Listing 5.6.
Exercise 5.27* Write a method public static int hasA (Node par) for
NodeOp: It tells whether the name of any Node that par connects to begins with "A".

5.7 Extending The Network Class

The SmartNet class in Listing 5.8 (see next page) augments the Network class by adding
three useful methods. To use this class, you need only start your program with a
command such as SmartNet net = new SmartNet(). Figure 5.4 shows the UML
class diagram for the SmartNet class.

The purpose of the connectsToAll(Node) method is to tell whether the Node
parameter connects to every other node. The executor looks through the list of all nodes
in the network until it sees one the given node does not connect to, then returns false.
It returns true only when the given node connects to every other node. So this is
another All-A-are-B looping action.

The purpose of the getNumNodes() method is to tell how many nodes are in the whole
network. The executor initializes a counter to zero. Then it goes through the list of all
nodes in the network and adds 1 to the counter each time it sees a node. So the final
answer must be the number of nodes in the whole network.

 Java Au Naturel by William C. Jones 5-21 5-21

Listing 5.8 The SmartNet class

import javax.swing.JOptionPane;

public class SmartNet extends Network
{
 /** Tell whether par connects to all other nodes in this
 * network. */

 public boolean connectsToAll (Node par)
 { for (Position pos = nodes(); pos.hasNext(); pos.moveOn())
 { Node current = pos.getNext();
 if (! (current.equals (par)
 || NodeOp.connected (current, par)))
 return false;
 }
 return true;
 } //======================

 /** Return the total number of nodes in this network. */

 public int getNumNodes()
 { int count = 0;
 for (Position pos = nodes(); pos.hasNext(); pos.moveOn())
 count++;
 return count;
 } //======================

 /** List all nodes in this network that connect to
 * some node of the same color. */

 public void printSameColorConnections()
 { for (Position pos = nodes(); pos.hasNext(); pos.moveOn())
 { Node current = pos.getNext();
 if (NodeOp.seesSameColor (current))
 JOptionPane.showMessageDialog (null,
 current.getName());
 }
 } //======================
}

 Figure 5.4 UML class diagram for the SmartNet class

 Java Au Naturel by William C. Jones 5-22 5-22

The printSameColorConnections() method is used in a situation where you expect
every node to connect to a node of a different color, such as students registered for
courses. But you want to make sure this is true. The executor looks through the list of all
nodes in the network to find those that are connected to a node of the same color (i.e., a
blue node connected to a blue node or a non-blue node connected to a non-blue node).
It prints all such nodes it sees.

You may wonder why this subclass of Network is called SmartNet. If you have a friend to
whom you teach Spanish, is your friend still the same person? Answer: Yes, but a
smarter person, since now your friend can speak Spanish. Similarly, making net = new
SmartNet() instead of net = new Network() would produce the same network of
nodes, but that network would be able to answer the question, "Does this particular Node
connect to all other Nodes?", which a plain Network cannot answer. That is, SmartNet
objects are smarter than plain Network objects.

Exercise 5.28 Rewrite the condition in SmartNet's connectsToAll method to use
&& rather than ||.
Exercise 5.29 Write a SmartNet method public boolean noLoners(): The
executor tells whether each of its nodes is connected to at least one node.
Exercise 5.30 Write a SmartNet method public boolean atLeastOneNonBlue():
The executor tells whether at least one of its nodes is not blue.
Exercise 5.31* Write a SmartNet method public boolean isBipartite(): The
executor tells whether every node connects only to nodes of the opposite color. Call on
an existing NodeOp method to do most of the work.
Exercise 5.32* Write a SmartNet method public boolean numBlues(): The
executor tells how many blue nodes it has.
Exercise 5.33* Write a SmartNet method public boolean hasUniversalNode():
Tell whether any node is connected to every node except possibly itself.
Exercise 5.34* Rewrite the SmartNet class so that itsNumNodes is an instance
variable and getNumNodes returns its value rather than re-calculating it each time it is
called.
Exercise 5.35* Draw the UML diagram for the SmartNet class.
Exercise 5.36** Write a SmartNet method public boolean tellFirst (Node
one, Node two): Tell which of the two given nodes comes first on the list of all
network nodes. Return null if neither is on the list. Precondition: Neither is null.

5.8 Analysis And Design Example: The Reachability Problem

Marking nodes with numbers

Each Node has a color (blue or not) and a name; you cannot change them. But each
Node also has an integer value you can change. This value is used to mark Nodes you
have processed during execution of an algorithm, so you do not process them again.

• x.setMark(5) sets Node x's marker number to 5 (you can use any int value

here). The marker number is initially zero for all Nodes when the Network is created.
• x.getMark() returns the current value of x's marker number.

The Reachability Problem

An important problem in the study of networks is to find out whether it is possible to send
a message from a given starting point to every other node. The message can be routed
through as many other nodes as is necessary, as long as it gets through eventually. For
the Airline situation, the problem amounts to finding out whether the airline can get you to
any airport from a given airport starting point, clearly a desirable quality in an airline.

 Java Au Naturel by William C. Jones 5-23 5-23

This is the Reachability Problem. The setMark and getMark methods are intended to
help solve this problem and many others. They are used to solve the Traveling
Salesman Problem in the optional Section 5.9 on recursion.

Solution to the Reachability Problem

Solving the problem of whether all nodes are reachable from a given node is rather
complex, so you need a plan. A first approach is as follows: Mark 1 on every node you
can reach from the starting point. Then mark 1 on every node you can reach from one of
those you marked. Then mark 1 on every node you can reach from one of those, etc.
When you cannot mark any more, see if every node in the network has been marked.

How do you keep track of each node you have checked out (that is, you have marked the
nodes you can reach from it)? You can use a different mark, say 2 instead of 1. So 1
means it is reachable but you have not yet checked out which nodes you can reach from
it, and 2 means it is both reachable and checked out. This design can be refined as
shown in the accompanying design block. Figure 5.5 traces the first few steps of this
algorithm.

 Figure 5.5 Steps in the Reachability algorithm

How do you know when to repeat Step 3? Since this is a yes-no question, you could use
a boolean variable. Set it false at the beginning of Step 3, then set it true if you find a
node marked 1 at Step 3a. Repeat Step 3 if you find the boolean variable has turned
true after going through the list of nodes. Listing 5.9 (see next page) contains the
complete logic.

 Java Au Naturel by William C. Jones 5-24 5-24

STRUCTURED NATURAL LANGUAGE DESIGN for the searching method
1. Mark 2 on the given node (since you are about to check it out).
2. Mark 1 on every node you can reach from the given node.
3. For each node current in the list of nodes of the network, do...
 3a. If current is marked 1 (reachable but not yet checked out), then...
 3aa. Mark 2 on current (since you are about to check current out).
 3ab. Mark 1 on every node you can reach from current unless it
 already has a mark of 1 or 2.
4. Repeat Step 3 until you find no more nodes marked 1.
5. Return true if no nodes are marked 0; return false otherwise
 (since a 0 means it cannot be reached from the original node).

Listing 5.9 A SmartNet method for the Reachability Problem

 /** Tell whether every node is reachable from the given node.
 * Precondition: source is not null. */

 public boolean allReachableFrom (Node source)
 { checkOut (source); // marks 2 on source, 1 on some others
 boolean foundNodeToCheckOut;
 do
 { foundNodeToCheckOut = false;
 for (Position pos= nodes(); pos.hasNext(); pos.moveOn())
 { Node current = pos.getNext();
 if (current.getMark() == 1)
 { foundNodeToCheckOut = true;
 checkOut (current);
 }
 }
 }while (foundNodeToCheckOut);
 return allNodesAreMarked();
 } //======================

 /** Mark 2 on par; mark 1 on all nodes reachable from par
 * except for those already marked 1 or 2.
 * Precondition: par is not null. */

 private static void checkOut (Node par)
 { par.setMark (2);
 for (Position p = par.nodes(); p.hasNext(); p.moveOn())
 { Node current = p.getNext();
 if (current.getMark() == 0)
 current.setMark (1);
 }
 } //======================

 private boolean allNodesAreMarked()
 { boolean valueToReturn = true;
 for (Position pos = nodes(); pos.hasNext(); pos.moveOn())
 { if (pos.getNext().getMark() == 0)
 valueToReturn = false;
 else
 pos.getNext().setMark (0);
 }
 return valueToReturn;
 } //======================

 Java Au Naturel by William C. Jones 5-25 5-25

Step 2 requires more than one or two statements to implement, so it is done as a call to a
separate private helper method named checkOut which includes Step 1. Step 3ab uses
the same method. Step 5 also requires more than one or two statements, so it has a
separate method too, named allNodesAreMarked. Note: Listing 5.9 is rewritten in a
much more efficient way in Section 5.9.

Programming Style You may well ask why the checkOut method is a class
method instead of an instance method. The reason is, the Network object itself
is not used at all (no explicit or implicit this). It would be deceptive to make it
an instance method, and deception is not good style.

Implementing the Network class with a prototype

You are probably wondering why you do not get any Network software with which to test
your programs, analogous to the Vic software. The reason is simple: This is a major
programming project at the end of Chapter Seven (when you have learned about arrays).

For now, you can use the three classes in this section. They have overly simple logic,
they are not adequate for realistic use of networks, and parts of the Node class are left as
exercises. However, they are sufficient to allow you to test the methods you write. Study
them carefully to reinforce your understanding of instance variables and integers.

A standard technique in software development is to develop a prototype of a system that
sort of fakes the functionality of the real thing, for purposes of seeing how it looks and
feels. Then you toss it when you write the real thing. These three classes are examples
of such prototypes.

The Position methods

In this prototype implementation, a Position object keeps track of the id number of the
Node at its current position in its list. When you call getNext, it returns a Node object
with that id. The Node returned will be equal to any other Node object with the same id,
because the equals method returns true if and only if the executor Node has the
same id number as the parameter Node. Nodes are number from 0 to 99 inclusive, and
itsCurrent may be greater than 99, so calculating the current node's number may
require subtracting 100.

A Position object also keeps track of the id number of the last node in its list of nodes, so
it knows when it has gone to far. So getNext returns null when its current node id is
beyond its last node id, and hasNext simply verifies that its current node is not beyond
its last node. The moveOn method adds 1 to the id number for its current node. These
methods are coded in Listing 5.10 (see next page). Listing 5.11 provides the
corresponding definition of the other two classes.

Exercise 5.37 Rewrite the allReachableFrom method to have just one statement
subordinate to the for-loop, namely, an if-statement.
Exercise 5.38 Continue the trace of the algorithm in Figure 5.5 for two more executions
of Step 3a.
Exercise 5.39 Write the isBlue Node method (an odd itsID means it is blue) and
the getName Node method (every Node is named "Darryl") for Listing 5.11.
Exercise 5.40 Write the setMark and getMark Node methods for Listing 5.11. Add
an extra instance variable named itsMark to do this.
Exercise 5.41 In the Node class of Listing 5.11, which Nodes does Node #6 connect to?
Node #42? Node #97?
Exercise 5.42* Revise Listings 5.10 and 5.11 so each Node connects to five other
Nodes of the opposite color (an odd itsID means it is blue). Hint: Have #18 connect
to #19, #21, #23, #25, #27.

 Java Au Naturel by William C. Jones 5-26 5-26

Listing 5.10 Prototype Position class of objects

public class Position extends Object
{
 private int itsCurrent; // Node at current position on list
 private int itsLast; // Node at last position on list

 public Position (int first, int last)
 { super();
 itsCurrent = first;
 itsLast = last;
 } //======================

 public Node getNext()
 { if (itsCurrent > itsLast)
 return null;
 else
 return new Node (itsCurrent % Network.NUM_NODES);
 } //======================

 public boolean hasNext()
 { return itsCurrent <= itsLast;
 } //======================

 public void moveOn()
 { itsCurrent++;
 } //======================
}

Listing 5.11 Prototype Network and Node classes of objects

public class Network extends Object
{
 public static final int NUM_NODES = 100;
 ///////////////////////////////////////

 public Position nodes()
 { return new Position (0, NUM_NODES - 1);
 } //======================
}
//##

public class Node extends Object
{
 private int itsID; // ranges from 0 to NUM_NODES - 1

 public Node (int index)
 { super();
 itsID = index;
 } //======================

 public Position nodes()
 { return new Position (itsID + 1, itsID + 4);
 } //======================

 public boolean equals (Node par)
 { return par != null && this.itsID == par.itsID;
 } //======================
}

 Java Au Naturel by William C. Jones 5-27 5-27

5.9 Recursion (*Enrichment)

The following method definition is at the beginning of Chapter Three. It uses a while-
statement to put a CD in each slot of the executor's sequence of slots, by moving one
slot forward each time until there are no more slots to fill:

 public void fillSlots()
 { while (seesSlot())
 { putCD();
 moveOn();
 }
 } //=======================

When you think about what a while-statement means, you can see this is the same logic
as the following. Of course, that last line is a comment instead of a Java statement, so
the effect is not the same. But it describes what the while-statement does.

 public void fillSlots()
 { if (seesSlot())
 { putCD();
 moveOn();
 // repeat this if-statement
 }
 } //=======================

This logic can be expressed a third way. The comment has been replaced by a call of
the method that contains the if-statement. This is called recursion.

 public void fillSlots()
 { if (seesSlot())
 { putCD();
 moveOn();
 fillSlots(); // i.e., repeat this if-statement
 }
 } //=======================

Execution does not go on forever for any of these logics. For each of them, the executor
moves one slot forward each time through the loop. Eventually it comes to the end of the
sequence. Then the seesSlot() condition is false and execution stops.

Recursive version of fillSlots(int)

Consider this task: We want to fill in the first four slots in a sequence, or the first six slots
or whatever is specified in a variable numToFill. Afterward we want to back up to the
starting position. But if there are less than numToFill in the sequence, we just fill in all
there are and then back up to the original position.

That logic can be written fairly clearly using recursion: When numToFill is positive and
you see a slot, then you can fill numToFill slots if you (a) put a CD in the first slot, then
(b) move on, then (c) fill numToFill-1 slots, then (d) back up by one slot. The
following is a line-for-line translation of this logic:

 Java Au Naturel by William C. Jones 5-28 5-28

 public void fillSlots (int numToFill)
 { if (seesSlot() && numToFill > 0)
 { putCD(); // (a)
 moveOn(); // (b)
 fillSlots (numToFill - 1); // (c)
 backUp(); // (d)
 }
 } //=======================

The recursive logic makes it unnecessary to keep track of the starting position in the
sequence. The next-to-last statement in the method just means: Repeat this if-
statement but with numToFill having a value 1 less than the previous time.

Recursive version of getNumSlots()

The getNumSlots method in the Interlude (before Chapter Four) had the executor move
down its sequence, adding 1 to a counter for each slot it saw. When it came to the end, it
backed up to the starting point (because it is a query method) and then returned the final
value of the counter. A recursive solution to the request to count your slots and report
how many you have is to (a) report zero if you have no slots, otherwise (b) move on to
the next slot and count how many there are from that point on, then (c) back up one slot
and report 1 more than you found in step (b). The coding is as follows:

 public int getNumSlots()
 { if (! seesSlot()) // (a)
 return 0; // (a)
 moveOn(); // (b)
 int num = getNumSlots(); // (b)
 backUp(); // (c)
 return 1 + num; // (c)
 } //=======================

Figure 5.6 should give you some idea of how recursion works for the method call
sam.getNumSlots() with two slots left in sam's sequence. The key is, each method
call has the runtime system create a new Method object to carry out the process given by
the method definition. Useful metaphor: The method definition for getNumSlots is a
college course that Method objects can take to learn how to do something. Calling the
method when sam has two slots left has the runtime system create a graduate of that
course, labeled #1 in the figure, who is to carry out the process studied in the course.

Part of the process Method object #1 carries out is a method call that creates a totally
different graduate of the course, labeled #2 in the figure, to carry out that same process
when the sequence has one slot. Part of the process Method object #2 carries out is a
method call that creates a third graduate of the course, labeled #3 in the figure, to carry
out the same process when the sequence has no slots. So #3 returns 0 to #2, who
stores 0 in his own variable num, thus returns 1 to #1, who stores the 1 in his own totally
separate variable num, and thus returns 2 to the point where it was originally called.

 Figure 5.6 Call of getNumSlots with two additional recursive calls

 Java Au Naturel by William C. Jones 5-29 5-29

People new to recursion sometimes ask, "How can a method call itself?" The answer is,
"That doesn't happen; what happens is, one Method object calls a totally different Method
object that graduated from the same course."

Turing Machine programs, as described at the end of Chapter Three, conventionally use
recursion to the exclusion of while-statements. With recursion, methods in a subclass of
the Tum class can always be coded as a single multi-selection statement.

Recursion applied to Networks

The allReachableFrom method in the earlier Listing 5.9 for Networks is much easier
and much more efficient when you use recursion. You can eliminate all but the first and
last statements of the allReachableFrom method if you just replace one statement in
the checkOut method, as shown in Listing 5.12. Specifically, checking out a node par
consists in marking it 2, then checking out every node marked 0 you can reach directly
from par. In effect, to mark all the nodes you can reach from par, you first mark par
and then you simply mark all the nodes you can reach from a node you can reach from
par.

Listing 5.12 Recursive allReachableFrom method in SmartNet

 /** Rewrite of SmartNet's allReachableFrom for efficiency. */

 public boolean allReachableFrom (Node source)
 { checkOut (source);
 // all of these lines have been deleted
 return allNodesAreMarked();
 } //======================

 private static void checkOut (Node par)
 { par.setMark (2);
 for (Position p = par.nodes(); p.hasNext(); p.moveOn())
 { Node current = p.getNext();
 if (current.getMark() == 0)
 checkOut (current); // this is the only line changed
 }
 } //======================

The Traveling Salesman Problem for a network of airports is to answer the question of
whether you can visit every airport without going through the same airport twice, starting
from a given airport. A general solution can be obtained by calling canTravelFrom
(givenAirport, getNumNodes()) for the canTravelFrom method in Listing 5.13
(see next page). This method is based on the logic in the accompanying design block.

 Java Au Naturel by William C. Jones 5-30 5-30

Question: Can one travel through n different nodes marked zero starting from base?
Answer: If n is 1, then...
 Of course it is possible, since base itself is the one.
 Otherwise...
 Mark 1 on base.
 If there is any node such that
 (a) you can reach it from base in one direct step, and
 (b) it is marked zero, and
 (c) you can travel through n-1 different nodes marked zero
 starting with it, then...
 It is obviously possible.
 Otherwise...
 It is not possible.

Listing 5.13 Recursive NodeOp method for the Traveling Salesman

 /** Tell whether it is possible to travel through n nodes,
 * all different and all marked 0, starting from Node base.
 * Precondition: base is marked 0. */

 public static boolean canTravelFrom (Node base, int n)
 { if (n <= 1)
 return true;
 base.setMark (1);
 for (Position p = base.nodes(); p.hasNext(); p.moveOn())
 { Node current = p.getNext();
 if (current.getMark() == 0
 && canTravelFrom (current, n - 1))
 { base.setMark (0); // restore original state
 return true;
 }
 }
 base.setMark (0); // restore original state
 return false;
 } //======================

Language elements
A method can call any method in its class, even itself.

Exercise 5.43 (harder) Rewrite the fillSlots method in Listing 3.4 recursively,
where the executor returns to its original position.
Exercise 5.44 (harder) Rewrite the seesAllFilled method in Listing 3.5 recursively.
Exercise 5.45* Rewrite the clearSlotsToStack method in Listing 3.4 recursively.
Exercise 5.46* Rewrite the hasAsManySlotsAs method in Listing 3.6 recursively.
Exercise 5.47** Rewrite the lastEmptySlot method in Listing 3.8 recursively.
Exercise 5.48** Write a recursive method public boolean canFillAllSlots()
for a subclass of Vic: The executor tells whether there are enough CDs in the stack to fill
all of its empty slots. When the method terminates, the executor must be in the same
state it was in when the method began. Note that a non-recursive solution is too hard.

 Java Au Naturel by William C. Jones 5-31 5-31

5.10 More On JOptionPane (*Sun Library)

This section describes methods from the javax.swing.JOptionPane class that can
be quite useful for major projects or in later courses, though they are not mentioned
elsewhere in this book. Look at your documentation to see additional possibilities,
something like jdk1.3\docs\api\javax\swing\JOptionPane.html on your hard
disk. Or on the web, go to the following Internet address, click on the package you want,
then click on the class you want:

 http://java.sun.com/j2se/1.3/docs/api

The showMessageDialog method call has the following more general form:

 showMessageDialog (null, someMessage, "title at the top",
 JOptionPane.someIntName)

The first parameter is a Component value; if it is not null, the dialog is displayed in the
frame for that Component object and usually positioned directly below the Component.

The second parameter someMessage is typically a String to be displayed, on several
lines if it includes the newline character '\n'. However, the parameter type is specified
as Object, so you may make it any of several kinds of displayable objects. If it is null, no
Exception is thrown, but nothing is displayed.

The third parameter is a String value to replace the default title "Confirm". For the fourth
parameter, replace someIntName by one of the following to specify the icon:

• PLAIN_MESSAGE (no icon at all)
• ERROR_MESSAGE (a horizontal bar inside an octagon)
• WARNING_MESSAGE (an "!" inside a triangle)
• QUESTION_MESSAGE (a "?" inside a rectangle)
• INFORMATION_MESSAGE (an "i" inside a circle, which is the default icon)

The showInputDialog method call has the default title "Input", the "?" icon, and two
buttons saying "OK" and "Cancel". It is also overloaded with a four-parameter version
having the same four parameters with the same meaning as for showMessageDialog.

The showConfirmDialog can return any of several int values to tell what button the
user clicked: YES_OPTION, NO_OPTION, OK_OPTION, CANCEL_OPTION, and
CLOSED_OPTION (meaning that the user clicked the X-shaped closer icon in the top
right of the window). The name showConfirmDialog is also overloaded; the more
general form of it has two variants:

 showConfirmDialog (null, messageString, titleString,
 JOptionPane.YES_NO_OPTION)
 showConfirmDialog (null, messageString, titleString,
 JOptionPane.YES_NO_CANCEL_OPTION)

The first three parameters are as for showMessageDialog (the default title here is
"Select an option"). The fourth parameter names an int value that specifies what buttons
(either two or three of them) are displayed for the user to click. The default option (when
only the first two parameters are used) is the YES_NO_CANCEL_OPTION.

 Java Au Naturel by William C. Jones 5-32 5-32

5.11 Review Of Chapter Five

Listing 5.2 and Listing 5.3 illustrate almost all Java language features introduced in this
chapter other than recursion.

About the Java language:

Ø You may call a class method (declared using static) with the name of its class in

place of the executor. By contrast, an instance method requires a reference to an
object of the class as the executor.

Ø You can use this inside an instance method as a reference to the executor of the
method call. By contrast, a class method does not have an executor, so you cannot
use this inside a class method.

Ø If you call a method without an executor and without a class name in place of the
executor, the compiler uses the default. For calling a class method, the default is the
class containing the method call. For calling an instance method, the default is
this of the method containing the method call (i.e., it is this instance of the
class).

Ø You may declare a variable in a class outside of any method, which makes it a field
variable. Then each object of the class has its own value for the variable if it is an
instance variable. But there is only one value for the whole class if it is a class
variable (i.e., declared with the static modifier).

Ø If the declaration of a field variable assigns it a value, that takes effect for an object's
instance variable when the constructor is called, for a class variable when the
program begins. The runtime system supplies a default value if you do not: zero or
null or false, as appropriate.

Ø The word final is allowed in any kind of variable declaration. It means that the first
assignment of a value to that variable is the last one.

Ø If a method call returns an object, it can be used as the executor of another method
call. This is a cascading or chaining of method calls.

Ø someString.length() returns the number of characters in the someString.
Ø someString.substring(startInt, endInt) returns the substring of

someString running from position startInt to just before position endInt.
Numbering is zero-based (starts from zero). You must have the following true:
0 <= startInt <= endInt <= someString.length()

Ø In the grammar summary of Figure 5.7, the Type is int, boolean, or a ClassName;
ParameterList is one or more Type VariableName combinations separated
by commas, with no assignments to those parameters; and the Modifier is either
public or private. Italicized words are optional elements.

Modifier static final
 Type VariableName = Expression;

declaration of class variable with
initial value

Modifier static Type MethodName
 (ParameterList) { StatementGroup }
Modifier static void MethodName
 (ParameterList) { StatementGroup }

declaration of class method that
accepts input initially assigned to
its formal parameters

 Figure 5.7 Declarations added in Chapter Five

 Java Au Naturel by William C. Jones 5-33 5-33

Other vocabulary to remember:

Ø If a class does not have any instance methods or instance variables or main method,

we call it an utilities class. If it has instance methods or instance variables and no
main method, we call it an object class. The only other kind of class we use in this
book is a class that has a main method and no other method, called an application
program. A class method is independent if it could be in any class.

Ø String values are immutable, i.e., the attributes of these objects cannot be changed.

Answers to Selected Exercises

5.1 Insert before the first if: if (count == 0) return 0;
5.2 Insert before the for-statement: if (expo > 30) expo = 30;
5.3 public static int power (int base, int expo)
 { if (base <= 0 || expo < 0)
 return 0;
 int limit = 2147483647 / base;
 int power = 1;
 for (; expo > 0 && power <= limit; expo--)
 power = power * base;
 if (expo == 0)
 return power;
 else
 return -1;
 }
5.7 Put this outside of any method: private static String theLatestName = "none so far";
 Put this statement at the end of the coding for the constructor: theLatestName = itsFirstName;
 Add this method to the Person class:
 public static String getNameOfLatestCreated()
 { return theLatestName;
 }
5.8 java.util.Random randy = new java.util.Random();
 public static int range (int one, int two)
 { if (one <= two)
 return one + randy.nextInt (two - one + 1);
 else
 return two + randy.nextInt (one - two + 1);
 }
5.11 Put this declaration as the first statement of toString: final int BASE = 10;
 Replace the phrase "itsHour < 10" by "itsHour < BASE".
5.14 private static char getSub (String sequence, int position)
 { return sequence.substring (position, position + 1);
 }
 Replace the following four parts of Listings 5.3-5.5:
 return ! getSub (itsSequence, itsPos).equals (NONE); // last 2 statements of seesCD
 theStack = theStack + getSub (itsSequence, itsPos); // statement in takeCD
 + getSub (itsStack, atEnd) // fourth line of the body of putCD
 itsSequence = getSub (LETTERS, k) + itsSequence; // in the constructor; note the order
5.16 The new set of strings replaces the old set of strings provided by the previous call of reset.
 This is no actual change in values, assuming that the same args was used each time.
5.17 Replace "Vic# " in the trace method by theStack + "; Vic# ".
5.18 If seesSlot() is false, the correct result happens -- the program terminates. Otherwise, when the
 stack is not empty, the "contract" for putCD is violated, because nothing is supposed to happen by
 calling putCD when a CD is already in that slot, but instead a CD is taken from the stack and put
 into the current slot in place of the CD that is already there.
5.21 It is the same coding as for seesOnlyBlue except remove the ! operator in the if-condition.
5.22 public static int getNumNodes (Node par)
 { int count = 0;
 for (Position p = par.nodes(); p.hasNext(); p.moveOn())
 count++;
 return count;
 }

 Java Au Naturel by William C. Jones 5-34 5-34

5.23 public static void main (String[] args)
 { Network airline = new Network();
 String lastBlue = "no blues";
 for (Position pos = airline.nodes(); pos.hasNext(); pos.moveOn())
 { if (pos.getNext().isBlue())
 lastBlue = pos.getNext().getName();
 }
 JOptionPane.showMessageDialog (null, lastBlue);
 }
5.24 public static int bidirectional (Node par)
 { for (Position p = par.nodes(); p.hasNext(); p.moveOn())
 { if (! connected (p.getNext(), par))
 return false;
 }
 return true;
 }
5.28 Replace the line beginning with "if" by:
 if (! current.equals (par) && ! NodeOp.connected (current, par))
5.29 public boolean noLoners()
 { for (Position pos = nodes(); pos.hasNext(); pos.moveOn())
 { if (! pos.getNext().nodes().hasNext())
 return false;
 }
 return true;
 }
5.30 public boolean atLeastOneNonBlue()
 { for (Position pos = nodes(); pos.hasNext(); pos.moveOn())
 { if (! pos.getNext().isBlue())
 return true;
 }
 return false;
 }
5.37 Replace the for-statement by the following:
 for (Position pos = nodes(); pos.hasNext(); pos.moveOn())
 if (pos.getNext().getMark() == 1)
 { foundNodeToCheckOut = true;
 checkOut (pos.getNext());
 }
5.38 Next after G, H will be checked out, which changes its 1 to 2. Next, the boolean variable
 is tested and the do-while repeats. E is checked out, which changes its 1 to 2 and I's 0 to 1.
5.39 public boolean isBlue()
 { return itsID % 2 == 1;
 }
 public String getName()
 { return "Darryl";
 }
5.40 private int itsMark = 0;
 public void setMark (int newMark)
 { itsMark = newMark;
 }
 public int getMark()
 { return itsMark;
 }
5.41 Node #6 connects to Nodes 7, 8, 9, 10.
 Node #42 connects to Nodes 43, 44, 45, 46.
 Node #97 connects to Nodes 98, 99, 0, 1.
5.43 public void fillSlots()
 { if (seesSlot())
 { putCD();
 moveOn();
 fillSlots();
 backUp();
 }
 }
5.44 public boolean seesAllFilled()
 { if (! seesSlot())
 return true;
 else if (! seesCD())
 return false;
 moveOn();
 boolean valueToReturn = seesAllFilled();
 backUp();
 return valueToReturn;
 }

 Java Au Naturel by William C. Jones Review-1 Review-1

Review: Overall Java Language So Far

This summary presents a description of all of the language elements seen so far except
for the String[] args in a main method heading. It even includes some elements
from the next chapter relating to double. Several special notations are used to make
the descriptions compact yet reasonably clear:

• A phrase in italics is optional.
• Words beginning with a small letter are reserved words (the keywords plus true,

false, and null); they must be written exactly as is.
• Words beginning with a capital letter and ending in "Name" can be replaced by any

identifier of a class, method, or variable as indicated. An identifier is a name that the
writer of the definition makes up. It can be made up of letters, digits, and
underscores. It cannot start with a digit and it cannot be a reserved word.

• Other words beginning with a capital letter represent phrases defined elsewhere in
this section to be any of several different things.

A CompilationFile is a file you may compile in Java, structured as shown below. If it has
the optional extends phrase, then every public declaration in the superclass named is
indirectly in the defined class by inheritance, except for constructors and those
declarations that the subclass overrides by giving a new declaration with the same
signature (i.e., the same name and the same parameter structure).

 ImportDirectives
 public class ClassName extends SuperclassName
 { DeclarationGroup
 }

You may have import directives in a compilable file, as long as they come before any
class definition in the file. The ImportDirectives consist of one or more lines structured
as shown below. The first allows the use of the named class from another package. The
second allows the use of any class from that other package. The PackageName is
several identifiers separated by dots, e.g., javax.swing and java.awt.event.

 import PackageName . ClassName ;
 import PackageName . * ;

A DeclarationGroup is any number of consecutive Declarations. A Declaration can be
one of the five forms listed below (lines beginning with a left brace are a continuation of
the preceding line). The first two are field variable declarations; the last three are method
declarations. If the assignment to the variable is not present, the variable is initialized to
zero, null, or false (whichever is appropriate). Methods defined in the same class can
have the same MethodName if they have different signatures. For the constructor
declaration (listed last), the ClassName has to be that of the class the constructor is in.
You may omit super(...); which will then default to super(); .

 ModifierPhrase Type VariableName ;
 ModifierPhrase Type VariableName = Expression ;
 ModifierPhrase Type MethodName (ParameterList)
 { StatementGroup }
 ModifierPhrase void MethodName (ParameterList)
 { StatementGroup }
 public ClassName (ParameterList)
 { super (ArgumentList) ; StatementGroup }

 Java Au Naturel by William C. Jones Review-2 Review-2

Examples An object of the following class represents a TV show that has a ranking on a
scale of 1 to 10. The top line is an import directive whose PackageName is java.util (a
package containing Random). The TVShow class has two declarations of VariableNames
with assignments and two without. These variable declarations have three different
ModifierPhrases: "public static final", "private static final", and "private". The Type is int in
two cases; it is Random and String in the other cases. The TVShow class also has a
declaration of a constructor with the ParameterList "String name, int rank" and two
declarations of non-constructor methods.

import java.util.Random;

public class TVShow
{
 public static final int MAX_RANK = 10; // two class variables
 private static final Random randy = new Random();
 ///////////////////////////////
 private String itsName; // two instance variables
 private int itsRank;

 /** Create an object for the given name and rank. */

 public TVShow (String name, int rank) // constructor
 { super();
 itsName = name;
 if (rank >= 1 && rank <= MAX_RANK)
 itsRank = rank;
 else
 itsRank = 1;
 } //=======================

 /** Return a new TVShow object with the given name but a
 * randomly chosen value for its rank. */

 public static TVShow randomShow (String name) // class method
 { return new TVShow (name, 1 + randy.nextInt (MAX_RANK));
 } //=======================

 /** Return the rank for this particular TVShow object. */

 public int getRank() // instance method
 { return itsRank;
 } //=======================
}

A ModifierPhrase can have one of the following four forms. The modifier public says
any other class can access the name; private says only definitions within the current
class can access the name; final says it cannot be changed later (overridden or
reassigned); and static says access can be with the class name in place of an
instance of the class (thus it is a class method or a class variable). A non-constructor
declaration without the static modifier is an instance method or instance variable.

 public static final
 private static final
 public final
 private final

 Java Au Naturel by William C. Jones Review-3 Review-3

The only Type discussed through the first part of Chapter Six is one of the following. The
boolean type is for values that are either true or false. The int type is for numbers
without decimal points. The double type is for numbers that have a decimal point and
digits after it. The ClassName is an object type.

 boolean
 int
 double
 PackageName. ClassName

An ArgumentList, used in method calls, consists of one or more Expressions with
commas between two consecutive expressions. So it has one of the following two forms.

 Expression
 Expression , ArgumentList

Examples The following are statements containing method calls with 2, 1, and 0
arguments, respectively.

 TVShow t1 = new TVShow ("Law & Order", 9);
 TVShow t2 = TVShow.randomShow ("NYPD Blue");
 System.out.println (t2.getRank());

A ParameterList, used in method headings, describes the kinds of arguments that must
be passed as input to the execution of the method. It has one of the following two forms.

 Type VariableName
 Type VariableName , ParameterList

Examples The following method headings in the TVShow class have 2, 1, and 0
parameters, respectively.

 public TVShow (String name, int rank)
 public static TVShow randomShow (String name)
 public int getRank()

A StatementGroup is any number of consecutive Statements. A Statement can be any
of the following nine forms. If an else could be matched with more than one if, then
the else is to be matched with the most recent such if. The parentheses shown after
if, while, and for are not optional.

 Type VariableName ;
 MethodCall ;
 Initializer ;
 return Expression ;
 { StatementGroup }
 if (Condition) Statement
 if (Condition) Statement else Statement
 while (Condition) Statement
 do Statement while (Condition) ;
 for (Initializer ; Condition ; Updater) Statement

 Java Au Naturel by William C. Jones Review-4 Review-4

An Initializer is something that can be used in the first part of a for-statement, to assign a
value to the loop control variable at the beginning of the looping process. It can have any
of the following four forms.

 Type VariableReference = Expression
 VariableReference = Expression
 VariableReference ++
 VariableReference --

An Updater is something that changes the value of the loop control variable, as follows.

 MethodCall
 VariableReference = Expression
 VariableReference ++
 VariableReference --

Examples The following are possible for-statement headings.

 for (int k = 5; k < size; k++)
 for (k--; k > 0; k--)
 for (itsMin = min; itsMin < 0; itsMin = itsMin + 60)
 for (p = nodes; p.hasNext(); p.moveOn())

An Expression is a phrase for which the runtime system can compute a value. It has
one of the following three forms.

 ObjectExpression
 NumericExpression
 Condition

An ObjectExpression has one of the following forms. The this reference is only
allowed within an instance method or constructor. The VariableReference must be an
object type and the MethodCall must return an object type.

 this
 null
 VariableReference
 MethodCall
 StringValue
 new ClassName (ArgumentList)

A VariableReference has one of the following forms. Option: You may omit this. or
ClassName. at the beginning of a VariableReference, to have it default to the executor
of the current instance method or to the class the VariableReference is in, respectively.

 VariableName
 PackageName. ClassName . VariableName
 this . super . VariableName
 ObjectExpression . VariableName

Examples The following statements assign various kinds of ObjectExpressions to
variables.

 TVShow a = null; // a refers to no object
 Object b = System.out; // assign a VariableReference
 String c = sam.getPosition(); // assign a MethodCall
 String u = "Friends"; // assign a StringValue
 TVShow x = new TVShow ("24", 8); // assign a new value

 Java Au Naturel by William C. Jones Review-5 Review-5

A MethodCall has one of the following forms. Option: You may omit this. or
ClassName. at the beginning of a MethodCall, to have it default to the executor of the
current instance method or to the class the MethodCall is in, respectively.

 PackageName. ClassName . MethodName (ArgumentList)
 this . super . MethodName (ArgumentList)
 ObjectExpression . MethodName (ArgumentList)

A NumericExpression has one of the following forms. The MethodCall must return an int
or double type and the VariableReference must be an int or double type. The last form
simply means that, if you already have a NumericExpression, you can put parentheses
around it and it will still be a NumericExpression.

 IntegerLiteral
 DoubleLiteral
 VariableReference
 MethodCall
 NumericExpression * NumericExpression
 NumericExpression / NumericExpression
 NumericExpression % NumericExpression
 NumericExpression + NumericExpression
 NumericExpression - NumericExpression
 (NumericExpression)

A Condition is a kind of Expression. It has one of the following forms. The MethodCall
must return a boolean type and the VariableReference must be a boolean type.

 true
 false
 VariableReference
 MethodCall
 ComparisonOfTwoValues
 ! Condition
 Condition && Condition
 Condition || Condition
 (Condition)

Examples The following assign various NumericExpressions and Conditions to variables.

 int e = 47; // assign an IntegerLiteral
 int f = e; // assign a VariableReference
 int k = x.getRank(); // assign a MethodCall
 int m = f * (e - 5); // assign result of operator
 boolean p = true; // assign a boolean literal
 boolean q = s.equals (t); // assign a MethodCall
 boolean r = e <= f; // assign a ComparisonOfTwoValues
 boolean ok = p && ! q; // assign result of operator

A ComparisonOfTwoValues is a special kind of Condition. It has one of the following
eight forms.

 NumericExpression < NumericExpression
 NumericExpression <= NumericExpression
 NumericExpression > NumericExpression
 NumericExpression >= NumericExpression
 NumericExpression == NumericExpression
 NumericExpression != NumericExpression
 ObjectExpression == ObjectExpression
 ObjectExpression != ObjectExpression

 Java Au Naturel by William C. Jones Review-6 Review-6

A StringValue has one of the following foms. The only operator that can be used with
object references is the plus sign, where at least one of the operands is a String value. It
concatenates the two String values. If the other operand is a numeric value, the plus sign
concatenates the string of characters that form the numeral with the string of characters
in the String value.

 StringLiteral
 VariableReference
 MethodCall
 StringValue + StringValue
 StringValue + NumericExpression
 NumericExpression + StringValue

A StringLiteral is a pair of quotes containing any characters other than a backslash or a
quote, except you may use one of the \n or \\ or \b or \t combinations.

An IntegerLiteral is a sequence of one or more digits, optionally preceded by a negative
sign.

A DoubleLiteral is a sequence of one or more digits, then a decimal point, then a
sequence of one or more digits. The whole is optionally preceded by a negative sign.

The twenty reserved words seen so far in this book are the following (true, false,
and null are technically not keywords). Those in the first line can only be used outside
of a method body, and those in the last line can only be used inside a method body.

private public class extends static void
int boolean new true false null
if else while do for return this super

The thirteen Sun standard library methods seen so far in this book are the following.
Object: equals (someObject),
 toString().
String: equals (someString),
 length(),
 substring (start, end).
Random: new Random(),
 nextInt (limitInt).
System: System.exit (0),
 System.out.println (someString).
Integer: Integer.parseInt (someString).
JOptionPane: JOptionPane.showMessageDialog (null, someString),
 JOptionPane.showInputDialog (promptString),
 JOptionPane.showConfirmDialog (null, someString).

Examples The main method of the following class can be executed from the command
line using java Puzzler. It illustrates the use of some of these library methods.

 public class Puzzler
 {
 public static void main (String[] args)
 { String s = JOptionPane.showInputDialog ("How many?");
 int number = Integer.parseInt (s);
 for (int k = 0; k < s.length(); k++)
 System.out.println (s.substring (0, k));
 JOptionPane.showMessageDialog (null, "all done");
 System.exit (0);
 } //=======================
 }

