
 Java Au Naturel by William C. Jones Int-1 Int-1

Interlude: Integers And For-Loops

The next two chapters, Chapters Four and Five, explain how you store data values in
objects using instance variables and how you store data values in classes using class
variables. You use these language features in defining object classes that depend only
on the standard library. You will need to know how to work with whole-number values.
This Interlude collects this information in one place, so that the following two chapters
can concentrate just on language features for defining your own classes from scratch.

You have previously seen that a variable declared as type boolean can store either of
the values true and false. You may assign to a boolean variable the result of a call
of a boolean method or the result of combining boolean values using any of the three
operators ! (meaning "not"), && (meaning "and"), and || (meaning "or").

You may also declare a variable as type int (rather than e.g. String or boolean). This
means that you can store a whole-number value in that variable, as long as it is in the
range plus or minus 2,147,483,647. The reason for that limit is that the storage space set
aside for these whole-number values is limited to 31 base-two digits along with a plus or
minus sign, and 231 is 2,147,483,648, just slightly over two billion.

Increment and decrement operators

The following method could be in a subclass of Vic (described in Chapters Two and
Three). It tells how many slots the Vic has. First, the original position is recorded in
spot. Then each time the first while-loop moves forward in the sequence of slots (by
executing moveOn()), count is incremented by 1. When seesSlot() becomes
false, the second while-loop backs up to the original position. Then count is returned
as the answer to the getNumSlots() query. Reminder: The body of a while-statement
must be enclosed in braces { } unless it consists of only one statement:

 public int getNumSlots()
 { String spot = getPosition();
 int count = 0;
 while (seesSlot())
 { count++;
 moveOn();
 }
 while (! spot.equals (getPosition()))
 backUp();
 return count;
 } //=======================

The ++ symbol is the increment operator; it adds 1 to the int variable to which it is
appended. So the expression count++ changes the value of count to be 1 more than
its current value. Java also has a decrement operator, e.g., the expression num--
would subtract 1 from the value stored in the num variable.

A method that returns an int value does so analogously to methods that return boolean
values: You specify int in the heading as its return type and then have one or more
statements consisting of return followed by an int value. As with any return
statement, executing this statement immediately stops execution of the method.

You may also have int variables as parameters. The following method could be in a
subclass of Turtle; a sample call of this method is tina.makeSquare(40). The
executor of the instance method (the object before the dot; tina in this case) turns 90
degrees and then draws a line side pixels long.

 Java Au Naturel by William C. Jones Int-2 Int-2

 public void makeSquare (int side)
 { paint (90, side);
 paint (90, side);
 paint (90, side);
 paint (90, side);
 } //=======================

Arithmetic operators for integers

A binary operator is a symbol which combines two values to obtain a new value. Those
two values are the operands of that operator. For instance, && and || are binary
operators. By contrast, ! is a unary operator: You apply it to only one value (operand)
to obtain a new value. The words "binary" and "unary" come from the Latin for "two" and
"one". Java provides five binary arithmetic operators for int values:

• x + y is the integer result of adding y to x;
• x - y is the integer result of subtracting y from x;
• x * y is the integer result of multiplying y times x;
• x / y is the integer quotient after dividing y into x; and
• x % y is the integer remainder after dividing y into x.

Since x / y is a whole number, the fractional part of the division is discarded. So
12 / 4 and 13 / 4 and 15 / 4 are all 3. Since x % y is the remainder from
the division, 12 % 4 is 0 and 13 % 4 is 1 and 15 % 4 is 3. Negative numbers
can be tricky: (-13) / 4 is -3 and so (-13) % 4 is -1.

Caution If one operand of an arithmetic operator involves another
arithmetic operator, you should usually put parentheses around that
operand to make your meaning clear. The compiler applies normal algebra
rules for clarifying an expression such as x + y * z, but it is safer to
parenthesize. This book does so except for repeated additions.

Comparison operators for integers

Java has six binary operators which compare two numbers to obtain a true-false value:

• x > y means x is greater than y;
• x < y means x is less than y;
• x <= y means x is less than or equal to y;
• x >= y means x is greater than or equal to y;
• x == y means x equals y (note the DOUBLE equals-sign);
• x != y means x is NOT equal to y.

You could generalize the earlier makeSquare method to make any triangle, square,
pentagon, or other regular polygon, by supplying a second int parameter that tells how
many degrees to rotate each time (turn must evenly divide 360 for this to work right). In
this method, the statement total = total + turn; means that you first calculate
the sum of total and turn and then store the result in total:

 public void makeRegularPolygon (int turn, int side)
 { paint (turn, side);
 int total = turn;
 while (total < 360)
 { paint (turn, side);
 total = total + turn;
 }
 } //=======================

 Java Au Naturel by William C. Jones Int-3 Int-3

Strings concatenated with ints and objects

String and int are two different types of values. Java is strongly typed, which means that
there are strict limits on assigning a value of one type to a variable of another type. In
particular, you cannot assign an int value to a String variable or return an int value when
a String value is to be returned. Nor can you assign a String value to an int variable or
return it from an int-returning method. However, the concatenation operator + will
combine a String value and an int value into a String value by treating the int value as if it
were a numeral, i.e., the string of digits as you would normally write them. So
"a" + 572 is the string "a572", 32 + "cat" is the String value "32cat", and
"8" + "4" is the String value "84".

The following method call prints the value of the String parameter in the terminal window
(often called the DOS window). The method call usually has a concatenation of a String
and a numeric value as its parameter, to help in tracing the execution of the program:

 System.out.println ("the value of x is " + x);

If a method is to return a String value and you have declared int x in that method, the
statement return x; would not even compile, because you cannot return an int value
when a String value is required. But concatenating the empty String "" with the int
value makes a String value expression, and it is legal to return that value from the
method. So you could have return "" + x; as a statement in the method.

General principle When you "add" a String value to anything, you always get a String
value. This definition of the plus sign makes coding in Java easier. The compiler
expects that you made a mistake if you assigned a non-String value to a String variable
or returned a non-String value from a String method. But if you explicitly add "" to a non-
String value, you are both acknowledging and correcting the incompatibility.

Java allows variables to be declared as type double as well as int, which means they
can store numbers with decimal points (such as 4.7 and -0.53). Chapter Six contains
detailed discussion of the use of this type of number. We do not need it until then.

Language elements
A Statement can be: VariableName ++ ;
 or: VariableName -- ;
You may use int as the declared type of a variable or as the return type of a method.
An int literal is a sequence of digits, optionally preceded by a negative sign.
The operators that combine two int values to get an int value are + - * / %
The operators that combine two int values to get a boolean value are > < == != >= <=
You may use a plus sign between a numeric value and a String value. This concatenates the
numeral with the string of characters.

Loop controls

The makeBigSquare() method of the Turtle class (Section 1.4) contained just four
statements, each being the command paint(90,40). And the makeHexagon()
method contained just six statements, each being the command paint(60,30). The
following expresses the same logic using while-statements:

 public void makeBigSquare() public void makeHexagon()
 { int k = 0; { int k = 0;
 while (k < 4) while (k < 6)
 { paint (90, 40); { paint (60, 30);
 k++; k++;
 } }
 } //===================== } //=====================

 Java Au Naturel by William C. Jones Int-4 Int-4

In each case, the while-statement tests the value of k to see if the loop should continue
(k < someValue). Since k is the only variable in the continuation condition whose
value is changed by the loop, it is the loop control variable in each case. The while-
statement is preceded by an initializer step int k = 0, to assign the starting value of
the loop control variable. And the last statement in each loop is an update step k++,
whose purpose is to modify the value of the loop control variable.

The for-statement

Java's for-statement allows us to bring these three intimately-connected parts of the logic
together in one place, to make the overall structure clear. Those two earlier methods can
be written as follows with exactly the same effect:

 public void makeBigSquare()
 { for (int k = 0; k < 4; k++)
 paint (90, 40);
 } //=======================

 public void makeHexagon()
 { for (int k = 0; k < 6; k++)
 paint (60, 30);
 } //=======================

In general, for(initializer; condition;
update){...} is a loop that executes as long
as the condition is true, with the initializing
command executed just before the first iteration
and the updating command executed at the end
of each iteration. The two semicolons are
required inside the parentheses. As with the
other structured statements using if and
while, you may omit the braces around the
subordinate part of a for-statement if it is just one
statement. Figure 1 Flow-of-control for
 the for-statement

The makeRegularPolygon method shown earlier in this Interlude can be written using
a for-statement as follows. It illustrates the fact that that the loop control variable does
not always have to increment or decrement by 1 each time:

 public void makeRegularPolygon (int turn, int side)
 { for (int total = 0; total < 360; total = total + turn)
 paint (turn, side);
 } //=======================

You are not required to declare the loop control variable in the initializing step. But if you
do declare a variable in the initializing step of a for-statement, the compiler does not allow
you to mention it outside of the for-statement.

Progressing through a sequence of integers

The following method finds the first power of 2 that is greater than a given int value:

 public int powerGreaterThan (int given)
 { int power;
 for (power = 1; given >= 1; power = 2 * power)
 given = given / 2;
 return power;
 } //=======================

 Java Au Naturel by William C. Jones Int-5 Int-5

However, this is going too far. If you are undisciplined in the use of the for-statement, it
loses its basic meaning of "continuation condition together with the update of the variable
on which the continuation condition depends". It is not a coincidence that the preceding
for-statements have an integer as the loop control variable. The common features in the
earlier examples are as follows:

• The updating phrase moves the loop control variable one step further in a sequence

of integers or the equivalent.
• The body of the for-statement does not change the position of the loop control

variable in the sequence of integers.
• The continuation condition stops the loop when the loop control variable reaches the

end of the sequence of integers, if not before.

Programming Style Some programmers use a for-statement wantonly,
ignoring its basic meaning. This book restricts the use of the for-statement to
situations with the three features above. It is also good style to declare the
loop control variable in the for-statement heading where possible.

There are some cases in which the loop control variable is given its initial value several
statements before the for-statement. You may leave out the initializer step in such a
case, so that the first thing inside the parentheses of the for-statement heading is a
semicolon. But the two semicolons are required in the heading of the for-statement even
when the initializer step is missing. Note: You may use this even simpler rule: Use a
for-statement when the updating is k++ or k--; use a while-statement for all other loops.

Caution When the body of a for-statement or while-statement is a single
statement rather than something in braces, that single statement cannot be
a variable declaration. Similarly, when one of the two subordinate parts of
an if-statement is a single statement not within braces, the statement cannot
be a variable declaration. For example, the compiler does not allow the
phrase if (x == y) int max = z;.

The do-while statement

You have now seen two looping statements in Java, the while-statement and the for-
statement. Java has one more, the do-while statement. The following coding does
exactly what a while-statement would do, repeatedly executing the two statements,
except that no test of the condition is made until after the first time through the loop:

 do
 { paint (turn, side);
 total = total + turn;
 }while (total < 360);

The need for the do-while statement rarely arises. We will
not use it in this book except in case studies at the ends of
Chapters Four and Five.

Programming Style The do-while statement is
one case where you should put something on
the line with the ending brace. Do it because, if
the while-part were on the next line, it would
deceive people into thinking it is the beginning of

a new while statement instead of the end of a do-while
statement. Deceiving people is not good style. You will
further avoid confusion if you use braces around the
body of the do-while statement even when it has only Figure 2 Flow-of-control for
one statement in it. the do-while statement

 Java Au Naturel by William C. Jones Int-6 Int-6

Language elements
A Statement can be: for (Initializer ; Condition ; Update) Statement
 or: for (Initializer ; Condition ; Update) { StatementGroup }
 or: do { StatementGroup } while (Condition) ;
An Initializer can be: int VariableName = Expression
 or: VariableName ++
 or: VariableName --
 or: VariableName = Expression
The Update part can be an assignment or a method call.
Any one of the three parts of a for-statement can be left out, but keep the two semicolons.
If the condition is left out, the loop continues until a return statement in its body is executed.

Exercise 1 If x is 23 and y is 5, what are x / y, (x+1) / y, and (x+2) / y?
Exercise 2 If x is 23 and y is 5, what are x % y, (x+1) % y, and (x+2) % y?
Exercise 3 How would you revise the getNumSlots method in this section to return
the number of slots that contain CDs?
Exercise 4 Write a method public void FiveCircles() for a subclass of Turtle:
The executor draw five circles, all with the same center, but with diameters of 60, 120,
180, 240, and 300. Use a for-statement.
Exercise 5 Write an action method for a subclass of Turtle that has the executor print
the word "Hi" seven times, moving ahead 20 pixels after each word. Use a for-statement.
Use a parameter for 7. Assume the Turtle is facing due east.
Exercise 6 How many times does each of the following print "Hi"?
(a) for (int k = -4; k <= 5; k++) System.out.println ("Hi");
(b) for (int k = -2; k < 8; k++) System.out.println ("Hi");
(c) for (int k = 3; k >= -6; k--) System.out.println ("Hi");
Exercise 7 Rewrite the while-statement in the main method at the end of Section 3.1 as
a do-while statement.

Answers to Exercises

1 23 / 5 is 4. 24 / 5 is 4. 25 / 5 is 5.
2 23 % 5 is 3. 24 % 5 is 4. 25 % 5 is 0.
3 Replace the count++ statement by: if (seesCD()) count++;
4 public void FiveCircles()
 { for (int radius = 30; radius <= 150; radius = radius + 30)
 swingAround (radius);
 }
5 public void ManyHi (int numWords)
 { for (int k = 0; k < numWords; k++)
 { say ("Hi");
 move (0, 20);
 }
 }
6 (a) 10 times. (b) 10 times; (c) 10 times.
7 do
 { sequence.takeCD();
 sequence = new Vic();
 }while (sequence.seesSlot());

 Java Au Naturel by William C. Jones 4-1 4-1

4 Instance Variables

Overview

So far you have derived new classes that extend what objects can do. This chapter
shows you how to derive new classes that extend what the objects know. These
programs will be developed entirely with classes from the Sun standard library. So you
will be able to run these programs without having the Vic or Turtle class or their analogs.

This chapter introduces a new context for learning about object-oriented software design.
You are to develop several programs, each allowing the user to play a game against the
computer. Some examples of such games are Checkers and Solitaire (although these
particular games are not developed in this chapter). You only need study through
Section 4.7 to understand the material in the rest of this book.

• Section 4.1 develops the overall analysis and design for game programs.
• Section 4.2-4.5 describe language features you will need for these game programs:

graphical input/output, instance variables, constructors, and whole numbers.
• Section 4.6 implements fully a game of guess-my-randomly-chosen-number.
• Sections 4.7-4.8 explain overloading, overriding, polymorphism, and precedence.
• Sections 4.9-4.10 implement fully the games of Nim and Mastermind, as further

examples of analysis and design.
• Section 4.11 introduces the BlueJ development environment. This downloadable

free software provides a very nice editor, debugger, and runtime environment.
• Section 4.12 shows you how you can use buttons and textfields in your programs.

4.1 Analysis And Design Of A Game Program

The computer games we develop will all have the same general structure. To get a fix on
that structure, we begin by creating a prototype, a program that has the proper structure
but plays a very trivial game. This gives us a solid foundation for the real games.

For this trivial game, the user tries to guess the secret word the computer has chosen. It
is trivial because the secret word is not so secret -- it is "duck". The main application only
needs to create a game-playing object and tell it to play. This straight-line logic is shown
in Listing 4.1. For any of the more complicated games to be developed later, the main
application would be the same except with "BasicGame" changed to "Mastermind" or
"TicTacToe" or "Checkers" or whatever is appropriate.

Listing 4.1 A game-playing application program

class GameApp
{
 /** Play the basic game repeatedly until the user tires. */

 public static void main (String[] args)
 { BasicGame game; // declare the game variable
 game = new BasicGame(); // create an object to put in it
 game.playManyGames(); // tell the object to play
 System.exit (0); // terminate the GUI interface
 } //======================
}

 Java Au Naturel by William C. Jones 4-2 4-2

A class that has only a public static void main method can omit public from
the class heading if the only time you will use it is to execute it from the command line.
Omitting "public" just means the class cannot be used by other software packages. It
also means you can put that application class in a file with another (public) class.

The System.exit(0) command simply terminates the program. You have to have it
in Listing 4.1 because the game-playing object will use a graphical interface. On some
computer systems, the computer will lock up if you finish running a program that has a
graphics interface but never execute the System.exit(0) command. You did not
have to put this command in your Vic programs because it is already in the method that
reacts to clicking the X-shaped window-closer icon in the top right corner of the window.
System is a class in the Sun standard library, and exit is a class method in System.

Analysis and logic design

The way the computer plays many games is quite simple: First it plays a game. Then it
asks the user if he/she wants to play another game. If the answer is no, the process
stops, otherwise the computer plays another game and the cycle repeats. This general
process applies to any of the several games we will develop. That is, once we have
implemented it for a BasicGame, we can use that implementation for other games such
as Checkers or Chess.

The progress of any one of these games is as follows: First, set up the initial state of the
game (in Mastermind, choose a 3-digit random number; in TicTacToe, create an empty
3x3 board; in Checkers, create an 8x8 board with 12 red and 12 black pieces placed in
the appropriate squares; etc). Second, ask the user for his/her first move in the game.
Then see whether that move wins or loses the game (in almost all games, it will not).

If the user's move does not terminate the game, the computer makes its move in
response or takes whatever action is appropriate, then the user takes another move or
makes another choice. This cycle continues until the game is over. A reasonable plan
for the logic design of the BasicGame is shown in the accompanying design block.

STRUCTURED NATURAL LANGUAGE DESIGN for BasicGame's playOneGame
1. Ask the user for his/her first guess.
2. Repeat the following until the current guess is completely right...
 2a. Tell the user he/she is wrong, and give a hint.
 2b. Ask the user for his/her next guess.
3. Tell the user that he/she has finally gotten it right.

This logic can be implemented with the following coding for the playOneGame method.
As usual, empty parentheses indicate a method that has no parameters. The obvious
precondition on the five methods called here is that they can only be relied on to make
sense when called by this playOneGame method in this order:

 public void playOneGame()
 { askUsersFirstChoice();
 while (shouldContinue())
 { showUpdatedStatus();
 askUsersNextChoice();
 }
 showFinalStatus();
 } //======================

Asking the user whether another game is to be played, or asking for the next guess,
requires a method for getting input from the user. And telling the user that the guess is
right or wrong requires a method for displaying output to the user. The next section
introduces methods from the Sun standard library that allow this.

 Java Au Naturel by William C. Jones 4-3 4-3

4.2 Input And Output With JOptionPane Dialog Boxes

The various compiled classes are organized into categories called packages. You
simply put package X; as the top line in a file to make the class in that file be in
package X. If you do not specify a package for a class when you compile it, its package
is the folder on the hard disk where its file is stored.

The JOptionPane class

The JOptionPane class is in the javax.swing package (technically, swing is the
"subpackage" of the javax package). JOptionPane provides some components for a GUI
(Graphical User Interface). A file containing a class that uses the JOptionPane class
should have the import directive import javax.swing.JOptionPane; at the top
of the file. This line directs the compiler to look in the Sun standard library package
named javax.swing for the class. If you do not have the import directive, the
compiler is not able to find JOptionPane.

The System and String classes are in the standard java.lang package, which the
compiler automatically makes available to every class. If you want to use any class that
is not in java.lang or in your current package, you have to give an import directive to
tell the compiler where to find it. You need one import directive for each such class,
except if you use several classes from the same package, e.g., javax.swing, you may
have import javax.swing.*; as a shorthand for all import directives for classes
from that same package. Reminder: s.equals(t) tests whether the String values
stored in s and t have the same characters in the same order.

The showMessageDialog method

The JOptionPane class has three class methods that we will use (i.e., you call them with
the class name in place of the executor object). One of these is the
showMessageDialog method that displays a small rectangle containing a message. It
does not ask for user input. An example of its use is as follows:

 JOptionPane.showMessageDialog (null, "Hi there!");

The first parameter of the showMessageDialog method call is the window to display the
dialog box in. When this window value is null, the value that indicates the absence of an
object, the dialog box appears in the middle of the monitor screen. This is the only way
we will use the showMessageDialog method.

The second parameter of showMessageDialog is the message to be displayed. In
the preceding example, it is characters in quotes, called a String literal. The right side of
Figure 4.1 shows an example of what such a message dialog box looks like.

Figure 4.1 Screen shots of calls of showMessageDialog and showInputDialog

 Java Au Naturel by William C. Jones 4-4 4-4

If you want to display several lines on this dialog box, you should use the \n symbol in
the String literal. Each such use causes the start of a new line; '\n' is called the
newline character. So "Hi \nthere \nCathy" displays those three words on three separate
lines. The showFinalStatus method of the BasicGame class need only print out a
message saying the user guessed the secret word right, so it could have this statement:

 JOptionPane.showMessageDialog (null,
 "That was right. \nCongratulations.");

The showInputDialog method

The showInputDialog method in JOptionPane displays a small rectangle containing a
given string of characters (the only parameter). This string is a prompt for input from the
user. Then it waits until the user types something in the empty text box and presses the
OK button or the ENTER key. When the user does so, the method returns the string of
characters the user typed. The left side of Figure 4.1 shows what this dialog box looks
like (the vertical line is the cursor). For instance, the askUsersNextChoice method of
the BasicGame class could consist of the following statement, storing the input in a String
variable named itsUsersWord:

 itsUsersWord = JOptionPane.showInputDialog
 ("Guess the secret word: ");

Listing 4.2 is an application program that illustrates the use of these two JOptionPane
methods. It asks the user for the user's first name and last name, stores each in a String
variable, then prints them out in reverse order with a comma between them (e.g., "Jones,
Bill"). It needs the System.exit(0) because it uses JOptionPane's graphic interface.
Figure 4.1 shows what you might see on the screen when the program runs. Note: This
is one of the few application programs in this book that does not call an instance method.

The next-to-last statement of Listing 4.2 uses a plus sign between pairs of String values
to indicate that the message is a single String value obtained by combining the four
String values into one long String value. This is concatenation of string values.

Listing 4.2 An application program illustrating the use of JOptionPane

import javax.swing.JOptionPane;

class NameChange
{
 /** Ask the user for his/her first name, then for the last
 * name, then print them out in the opposite order. */

 public static void main (String[] args)
 { JOptionPane.showMessageDialog (null,
 "Illustrate the use of JOptionPane methods");
 String firstName = JOptionPane.showInputDialog
 ("What is your first name?");
 String lastName = JOptionPane.showInputDialog
 ("What is your last name?");
 JOptionPane.showMessageDialog (null,
 "Reversed it is " + lastName + ", " + firstName);
 System.exit (0); // needed when using JOptionPane
 } //======================
}

 Java Au Naturel by William C. Jones 4-5 4-5

The showConfirmDialog method

JOptionPane also has a method that asks a yes/no question (supplied as a String for the
second parameter; the first parameter is again null). If the user clicks the YES option, the
value returned is an int value named YES_OPTION, defined in the JOptionPane class.
The == operator tests the value to see if it equals the YES_OPTION, so the following
logic could be used for the playManyGames method of the BasicGame class:

 playOneGame();
 while (JOptionPane.showConfirmDialog (null, "again?")
 == JOptionPane.YES_OPTION)
 playOneGame();

As usual, we can omit the braces around the body of the while-statement when it only
contains one statement. Note: Due to a glitch in this Sun standard library method, the
user cannot just tab over to the NO or CANCEL option and then press the ENTER key;
the user must actually click NO or CANCEL to terminate this loop.

The null value

The value null is a special value that can be assigned to any object variable. It indicates
the absence of a reference to an actual object. For instance, if sam refers to some String
object and you do not want it to do so anymore, execute the command sam = null.
That erases the object reference in sam. sam then refers to no object at all, so of
course you cannot execute sam.equals(x) or any other such method call -- it would
not make sense to ask a nonexistent object to answer a question or to perform an action.

If the user clicks the OK button in response to the showInputDialog message without
entering any value, it returns the empty String, a String with no characters, written as "".
But if the user clicks the Cancel button or the closer icon in the upper-right corner, the
method returns null. Your coding must allow for these two possibilities.

Indenting a Java program

Programming Style In Listing 4.2, four of the five statements do not fit on one
line. It is good style in such cases to strongly indent the continuation of the
line, so a reader does not think it is a separate statement. The line break
should come after a comma or semicolon or before a left parenthesis or an
operator (such as + and >).

In general, it is good programming style to indent your Java logic in the conventional way:
1. Indent one tab position for the heading of a method and two tabs for its body.
2. Indent one extra tab position for a statement subordinate to if, while, do, or for.
3. Indent two extra tab positions or more for a continuation of a program line onto the

next line.
4. Indent almost nowhere else.

Language elements
You may put an import directive before the first class in a file. Use one of these two formats:
 import PackageDescription . ClassName ;
 import PackageDescription . * ;
The value null may be assigned to any object variable or otherwise used as an object value.
The \n sequence within quotes indicates that the start of a new output line occurs at that point.

Exercise 4.1* Write an application program that asks the user for two strings of
characters and then tells the user whether they are equal to each other (print "equal" or
"different"). But tell the user "Stop fooling around" if either entry is null.
Exercise 4.2* Draw the UML class diagram for Listing 4.2.

 Java Au Naturel by William C. Jones 4-6 4-6

4.3 Declaring Instance Variables: A First Look At Encapsulation

The only way you have previously seen to store information is in variables declared within
a method. Those variables "belong" to the method and only exist during a single
execution of the method . But in order for a BasicGame object to do what it has to do,
such as decide whether the current game should continue, it needs to know two things:
What is the secret word and what is the user's most recent choice. Information is stored
in variables, but a local variable is not suitable for this information.

Declaring instance variables

You need to store these two pieces of information as part of the BasicGame object. Java
indicates this relation by having the variables declared outside of any method to
distinguish them from local variables. You could name them itsSecretWord and
itsUsersWord. They are called instance variables, because each instance (object) of
the BasicGame class has its own separate values stored in these variables.

These two instance variables are declared as private variables in the BasicGame class.
This means that methods outside of the BasicGame class cannot access them directly. It
is legal to declare them as public instead, but we rarely do that with instance variables.
Bugs in a program are usually easier to avoid if we prevent direct access by outsiders to
the instance variables of objects. This is called encapsulation. Since this simplest of all
games has the secret word "duck", and the user has made no guess when the game is
first created, the BasicGame class contains the following two declarations:

 private String itsSecretWord = "duck";
 private String itsUsersWord = "none";

Each time a BasicGame object is created, it is given these two variables, where the initial
value of the first is "duck" and the initial value of the second is "none". These declarations
are exactly the same as for local variables except they have private at the beginning.
Note: Some books define encapsulation more generally, to mean keeping data and
objects together in one class so that outside classes can access variables only indirectly,
through method calls that protect against inappropriate changes.

Using instance variables

Suppose sam refers to an instance of a class that has an instance variable someVar.
Then sam.someVar is the someVar variable belonging to the object sam refers to.
Within an instance method, this.someVar is the variable that belongs to the executor
of the method, but you can write just plain someVar (this refers to that executor).

This is analogous to what you already know about instance methods: If sam refers to
an instance of a class, then sam.someMethod() calls the someMethod belonging to
the object sam refers to. Within an instance method, this.someMethod() calls the
method that belongs to the executor, and so does just plain someMethod().

Listing 4.3 (see next page) shows the complete BasicGame class. Some people prefer to
put the instance variables first in the class, as shown, and others prefer to put them last
in the class. The order of the declarations of instance variables and instance methods in
a class generally has no effect on whether the class compiles or how it executes.

The logic of the methods for the basic game in Listing 4.3 was discussed earlier:

• askUsersFirstChoice stores the input in the game's own variable named

itsUsersWord.

 Java Au Naturel by William C. Jones 4-7 4-7

• shouldContinue is true whenever the two words are not the same word. The
equals method for Strings tests whether two objects have the same contents. If the
user clicked Cancel, the input is null, and the equals method returns false
when the parameter is null.

• askUsersNextChoice gets the user's response on each turn other than the first.
It does the same as askUsersFirstChoice for this game.

• The two methods that show the status simply print an appropriate message.

Listing 4.3 The BasicGame class of objects

import javax.swing.JOptionPane;

public class BasicGame extends Object
{
 private String itsSecretWord = "duck";
 private String itsUsersWord = "none";

 public void playManyGames()
 { playOneGame();
 while (JOptionPane.showConfirmDialog (null, "again?")
 == JOptionPane.YES_OPTION)
 playOneGame();
 } //======================

 public void playOneGame()
 { askUsersFirstChoice();
 while (shouldContinue())
 { showUpdatedStatus();
 askUsersNextChoice();
 }
 showFinalStatus();
 } //======================

 public void askUsersFirstChoice()
 { itsUsersWord = JOptionPane.showInputDialog
 ("Guess the secret word:");
 } //======================

 public boolean shouldContinue()
 { return ! itsSecretWord.equals (itsUsersWord);
 } //======================

 public void showUpdatedStatus()
 { JOptionPane.showMessageDialog (null,
 "That was wrong. Hint: It quacks.");
 } //======================

 public void askUsersNextChoice()
 { askUsersFirstChoice(); // no need to write the coding again
 } //======================

 public void showFinalStatus()
 { JOptionPane.showMessageDialog (null,
 "That was right. \nCongratulations.");
 } //======================
}

 Java Au Naturel by William C. Jones 4-8 4-8

The state of an object is determined by its instance variables. They give the object its
"personality". A method that modifies the executor's state and does nothing else is a
mutator method (a special kind of action method, e.g., askUsersNextChoice). A
method that merely accesses the executor's state is an accessor method (a special kind
of query method, e.g., shouldContinue).

The Object class

The superclass for the BasicGame class is the Object class. Object is a class in the Sun
standard library. It is in the java.lang package, which means you do not need an
import directive to help the compiler find it. The Object class is the ultimate superclass of
every class in Java; if you define any class without an extends phrase, the compiler
supplies the default extension extends Object. So we could have left that phrase
out of Listing 4.3 with no difference in effect. Chapters Four through Six put it in classes
that have instance methods or instance variables, as a reminding that we are defining
classes of objects.

The Object class contains a method named toString. It returns a String equivalent of
the object. A plus sign between a String value and an object reference x causes the
object reference to be interpreted as x.toString(), using that object's toString
method. So if now is an object variable for which now.toString() has the value
"0730", then the phrase "now = " + now has the value "now = 0730".

Exercise 4.3 Revise the shouldContinue method to change the secret word to
"goose" for the second and later guesses if the first guess is not "duck".
Exercise 4.4 (harder) Revise the BasicGame logic so that the user gets it right after at
most five guesses, as follows: Add an instance variable initialized to be the empty String
at the start of each game. Concatenate "x" to it every time the user makes a guess.
Then treat whatever answer the user gives as right when that instance variable has the
value "xxxxx" (this illustrates how you can count without using numbers).
Exercise 4.5* Revise the BasicGame logic so that the user who takes more than three
guesses to get it right will never succeed in guessing the right answer. Hint: See the
preceding exercise.
Exercise 4.6* Explain the difference between an instance variable and a local variable.

4.4 Defining Constructors; Inheritance

When you create a new object, as in sam = new SmartTurtle() or sue = new
Vic(), you do it by calling on a constructor method in that class. If you (or whoever
developed the class) did not provide one or more constructor methods, the compiler
provides one for you by default. It is as follows for the SmartTurtle class you saw in an
earlier chapter:

 public SmartTurtle() // default constructor
 { super();
 } //=======================

This default constructor (supplied by the compiler) is the method that sam = new
SmartTurtle() calls, since the SmartTurtle class (Listing 1.3) does not explicitly
define a constructor. The default constructor says you construct a new SmartTurtle
object by doing nothing but calling the constructor method of the superclass of the
SmartTurtle class. That is, of course, the Turtle class. The Turtle class provides an
explicit constructor which the SmartTurtle constructor calls with the command super().

 Java Au Naturel by William C. Jones 4-9 4-9

The default constructor for the BasicGame class or any other class is the same as the
above except of course the method heading is different, e.g.:

 public BasicGame() // default constructor
 { super();
 } //=======================

super() calls the no-parameter constructor of the superclass, which for BasicGame is
the Object class. That fills in the instance variables specified by the Object class. The
Object class has a number of instance variables and methods that all objects need. One
instance variable tells the class of the object, so the runtime system can inspect it to see
what methods it is allowed to call. Another instance variable keeps track of information
that the automatic garbage collection process needs. These Object instance variables
are private, so you cannot access them in a program.

Explicitly defined constructors

When you define a class for which you want something more than what the default
constructor gives you, you have to define the constructor(s) explicitly in the class. The
first statement should always call super() (or its equivalent, discussed later).
super() is only allowed for the first statement of a constructor.

Listing 4.3 specifies initial values for the two instance variables of a BasicGame. An
alternative is to not have an assignment in the declaration, but to assign the value in the
constructor itself. That is, the two lines declaring the instance variables in Listing 4.3
would be replaced by the following variable declarations and constructor:

 private String itsSecretWord;
 private String itsUsersWord;

 public BasicGame() // constructor
 { super();
 itsSecretWord = "duck";
 itsUsersWord = "none";
 } //=======================

There is no reason to do so in this case, but usually it is necessary. For example,
suppose you want a Vic object to be able to answer the question, "Was your first slot
empty when you were created?" The answer is true if the Vic saw a slot but did not
see a CD in that slot. You could test someVic.firstWasEmpty() at any time if you
have the following instance variable and two methods in a subclass of Vic:

 public class GoodVic extends Vic
 {
 private boolean itsFirstWasEmpty;

 public GoodVic() // constructor
 { super();
 itsFirstWasEmpty = seesSlot() && ! seesCD();
 } //=======================

 public boolean firstWasEmpty()
 { return itsFirstWasEmpty;
 } //=======================
 }

 Java Au Naturel by William C. Jones 4-10 4-10

Inheritance

An inconvenience with Vics is that you cannot return to the front of the sequence
because you do not know how far back to go. That can easily be fixed if you define the
following class of objects that know their starting position:

 public class BasicVic extends Vic
 {
 private String itsInitialPosition;

 public BasicVic() // constructor
 { super();
 itsInitialPosition = getPosition();
 } //=======================

 public void returnToStart()
 { while (! itsInitialPosition.equals (getPosition()))
 backUp();
 } //=======================
 }

Now if you change the heading on any subclass of Vic to say extends BasicVic
instead of extends Vic, it inherits the returnToStart method. Then you can
execute sam.returnToStart() for any object sam of that subclass, to have sam
repositioned at the front of its sequence. Reminder: A subclass inherits all public
methods and variables of the superclass it extends, i.e., an instance of the subclass can
refer to them as if they were defined in the subclass.

Parameters of constructors

A constructor may have one or more parameters. For instance, you might want to define
a class of objects that remember their first names and their last names and can provide
them on request. The Person class in the upper part of Listing 4.4 (see next page) is
such a class. You then must supply both names when you construct a new Person
object, as in the following statements:

 al = new Person ("Jorge", "Borges");
 String fullName = al.getFirstName() + " " + al.getLastName();

The constructor in the Person class illustrates the most commonly used format for
constructors, namely, the parameters supply the initial values of instance variables. You
could call it the natural constructor, since the primary purpose of a constructor is to
initialize all instance variables.

To develop software for a hospital, you might define Patient as a subclass of Person.
Then the first statement in the Patient constructor is the super call of the constructor
from its superclass, which is Person. Constructing a Person object requires supplying the
first and last name. So Patient's super call must include those two parameters to
initialize the private instance variables in the Person superclass. You cannot use plain
super(), since the Person class does not have a constructor with no parameters.
Therefore, part of the Patient class could be as shown in the lower part of Listing 4.4.

You may omit the call of super, in which case the compiler inserts super() (i.e., no
parameters) in your constructor by default. So the super statement in the Person
constructor is optional, but the explicit call of super in the Patient constructor is
required because the insertion of super() would call a non-existent constructor with no
parameters, which the compiler will not allow. This book writes the super() call at the
beginning of each constructor in this chapter and the next, to remind you it is there.

 Java Au Naturel by William C. Jones 4-11 4-11

Listing 4.4 The Person class of objects

public class Person extends Object
{
 private String itsFirstName;
 private String itsLastName;

 public Person (String first, String last) // constructor
 { super();
 itsFirstName = first;
 itsLastName = last;
 } //=======================

 public String getFirstName()
 { return itsFirstName;
 } //=======================

 public String getLastName()
 { return itsLastName;
 } //=======================
}
//##

public class Patient extends Person
{
 private String itsDoctor;

 public Patient (String first, String last, String doc)
 { super (first, last);
 itsDoctor = doc;
 } //=======================
}

Name shadowing

Caution A method is allowed to have a local variable or parameter with the
same name as an instance variable. But it usually causes trouble. Within
that method, the instance variable is shadowed: Use of the variable name
is a reference to the locally declared variable, not to the instance variable. A
common logic error is to "redeclare" an instance variable; e.g., to write the

last statement of the Patient constructor as String itsDoctor = doc. That extra
word String means you are declaring a new variable named itsDoctor local to the
method. The compiler will not point out that it is surely not what you meant to do.

A related error occurs in the Patient constructor if you name the instance variable doc,
the same name as the parameter, and so the last statement is doc = doc. This merely
assigns the value of the parameter to the parameter, not to the instance variable. This
form of assignment is never necessary and usually indicates a logic error in the program.

This book puts a prefix of "its" on almost all instance variables and never anywhere else.
This hallmark makes both of the above-mentioned bugs less likely. Some people prefer
instead the prefix "my", as in myFirstName, myLastName, myDoctor. If you do not
do this sort of thing in your own definitions, at least obey the following safety principle:
Never name a parameter or local variable the same as an instance variable.

 Java Au Naturel by William C. Jones 4-12 4-12

Programming Style You should explicitly initialize each instance variable to a
value either in its declaration or in every constructor. This makes programs
clearer. You should make the initialization in the declaration rather than the
constructor when possible. That will make it clear to the reader of the coding
that the initial value does not depend on the constructor's parameters.

The reason that this is a style principle rather than a requirement is that, if you do not
assign a value to an instance variable in its declaration or in some constructor, the
runtime-system assigns one for you (null or false or zero). But you should not require the
reader to remember this minor point of the Java language. Explicitly initialize.

The use of this for instance variables

If the body of instance method X contains a method call without saying which object is its
executor, then its executor is by default the executor of X. The same principle applies to
instance variables: If the body of instance method X mentions an instance variable
without saying which object it belongs to, it is by default a use of the executor's instance
variable. Since the keyword this can be used in an instance method to refer to the
executor of the method, the statement in the Person's getFirstName method of
Listing 4.4 could be written as return this.itsFirstName; to do the same thing.

A constructor method is technically neither a class method nor an instance method; it is a
method of constructing objects of the class. Within a constructor definition, the use of an
instance variable without saying which object it belongs to is by default a use of the
instance variable of the object being constructed (the same is true of instance methods).
The pronoun this refers to the object being constructed. So the last two statements of
the Person constructor in Listing 4.4 could be written as follows without changing the
constructor's effect:

 this.itsFirstName = first;
 this.itsLastName = last;

Caution Do not assign a value to this, as in this = whatever; it is
never necessary, and the compiler will refuse to accept it anyway.

Language elements
Instance variables are declared outside of any method. You may use one of these two formats:
 private Type VariableName = Expression;
 private Type VariableName ;
A Declaration may be: public ClassName (Parameters) { StatementGroup }
A Statement may be: super (ExpressionsSeparatedByCommas) ;
Such a statement is only allowed as the first statement in a constructor.

Exercise 4.7 Write out the default constructor for the SmartTurtle class.
Exercise 4.8 Write a RedTurtle constructor for a subclass of Turtle, in which the turtle
object always starts with the drawing color red and a due west heading.
Exercise 4.9 Define a NamedTurtle class: Objects are given a name when constructed
(via a parameter) and they tell you what the name is when you use the getName
method in an expression such as sam.say ("I am " + sam.getName()).
Exercise 4.10* Define a Terrapin subclass of the NamedTurtle class in the preceding
exercise. A Terrapin is given its name and its best friend (another Turtle object) when
constructed, and can tell you its name and who its best friend is when asked.

 Java Au Naturel by William C. Jones 4-13 4-13

4.5 Integer Instance Variables

You can store numeric information in an instance variable of an object. For example, if
you want each Person object to remember its birth year, you could add an instance
variable to the Person class of Listing 4.4 as follows:

 int itsBirthYear; // instance variable for Persons

Then the Person constructor could have a third parameter so that each construction of a
Person object supplies the birth year, as in sam = new Person ("Jorge",
"Borges", 1899). A representation of this Person object is in Figure 4.2.

 public Person (String first, String last, int year)
 { super();
 itsFirstName = first;
 itsLastName = last;
 itsBirthYear = year;
 } //=======================

 Figure 4.2 UML object diagram for a Person object

You would also want to add to the Person class a method to allow people to ask a
Person object for its birth year with a method call such as sam.getBirthYear():

 public int getBirthYear()
 { return itsBirthYear;
 } //=======================

A Turtle object needs to keep track of its current position (conventionally measured from
the top left corner of the frame), and its current heading (conventionally measured in
degrees counterclockwise of a due east heading). So the instance variables might be
declared and initialized as follows:

 private int itsHeading = 0; // due east
 private int itsX = 380; // in the center of 760 pixels wide
 private int itsY = 300; // in the center of 600 pixels tall

The Time class of objects

In some programming situations you work with clock times and you need to compute how
many hours and minutes there are between two clock times. For instance, you may need
to compute that 10:15 in the morning is 2 hours and 45 minutes after 7:30 in the morning.
You may also need to solve problems such as finding out what clock time is 2 hours and
45 minutes after 7:30 in the morning. When you add in the complexities of accounting for
afternoon versus morning, you can see that encapsulating these calculations in a class of
Time objects will simplify things greatly.

 Java Au Naturel by William C. Jones 4-14 4-14

Listing 4.5 defines a class of Time objects that can track the time of day, measured in
hours and minutes since midnight. You can then have statements such as the following:

 now = new Time (7, 30); // 7:30 in the morning
 wait = new Time (2, 45); // 2 hours 45 minutes
 later = now.add (wait); // produces 10:15 in the morning

This class makes Time an abstraction, so that the development of logic that works with
clock times is easier.

Listing 4.5 The Time class of objects and its driver (can be in the same file)

public class Time extends Object
{
 private int itsHour;
 private int itsMin;

 /** Create an object for the given hour and minute. If min
 * is negative, adjust the values to make 0 <= min < 60. */

 public Time (int hour, int min) // constructor
 { super();
 itsHour = hour;
 for (itsMin = min; itsMin < 0; itsMin = itsMin + 60)
 itsHour--;
 } //=======================

 /** Return the time expressed in military time. */

 public String toString()
 { if (itsHour < 10)
 return ("0" + itsHour) + itsMin;
 else
 return ("" + itsHour) + itsMin;
 } //=======================

 /** Return the result of adding this Time to that Time. */

 public Time add (Time that)
 {} // left as an exercise
}
//###

import javax.swing.JOptionPane;

class TimeTester
{
 public static void main (String[] args)
 { Time t1 = new Time (13, 25);
 Time t2 = new Time (8, -150);
 JOptionPane.showMessageDialog (null, "1 " + t1.toString());
 JOptionPane.showMessageDialog (null, "2 " + t2.toString());
 Time t3 = t1.add (t2);
 JOptionPane.showMessageDialog (null, "3 " + t3.toString());
 t1 = t2.add (t3);
 JOptionPane.showMessageDialog (null, "1 " + t1.toString());
 System.exit (0);
 } //=======================
}

 Java Au Naturel by William C. Jones 4-15 4-15

The Time class has two int instance variables for the hours and the minutes, and the
constructor is the natural one that initializes the two instance variables with the values of
the two parameters. It makes a reasonable adjustment for a negative number of minutes.
The toString method returns the time expressed as a String value indicating the
usual military time. For instance, 14 hours and 15 minutes is expressed as "1415" but 7
hours and 30 minutes is expressed as "0730". A defect is corrected in the exercises.

Time's toString method concatenates the "0" with the digits of itsHour to get a
String value, then concatenates the result with the digits of itsMin. The order of the
operations is important; "0" + (itsHour + itsMin) would have a quite different
result, e.g., "042" if itsHour were 12 and itsMin were 30.

Driver programs

Before you use a class of objects in a program having several classes, you should test
out the methods in that class separately. A driver program is an application program
whose only purpose is to test the methods of a class thoroughly. The TimeTester class
in the lower part of Listing 4.5 does this fairly well, by creating three Time objects and
using both the toString method and the add method several times.

This driver program would be an even better test if it could accept input from the user that
gives the hour and minute values for one or both of t1 and t2. However, you do not
as yet have any way to get a number from the user; showInputDialog only gets a
string of characters, which is not at all the same thing. This situation will be rectified in
the next section.

Programming Style Always put a space on each side of an operator (including
+ = <) and also directly after a comma or semicolon; it makes your program
much easier to read. The space between a method name and its parentheses
is optional -- some people prefer it and some do not.

Exercise 4.11 If x is 23 and y is 5, what are "x" + (x + y) and ("x" + x) + y?
Exercise 4.12 Write a Person method public int getAge (int currentYear):
The executor tells the current age of the Person, given the current year. But it returns
zero if the current year is before the Person's birth year.
Exercise 4.13 If a Time object t4 has 13 for itsHour and 5 for itsMin, what is
t4.toString()? What should it be in military time?
Exercise 4.14 (harder) How would you revise Time's toString method to avoid the
problem indicated by the preceding exercise?
Exercise 4.15 (harder) Write the Time method public Time add (Time that):
The executor returns a new Time object that is the sum of the two, e.g., 0740 add 1430 is
2210. If the sum is more than 2359, drop the extra 24 hours, e.g., 1300 add 1400 is 300.
Exercise 4.16* Write a Time method public int timeInMinutes(): The executor
tells the total number of minutes that have passed since midnight.
Exercise 4.17* Write a Time method public Time subtract (Time that): The
executor returns a new Time object that is itself minus the parameter, e.g., 0720 subtract
1430 is 1650. If the difference is negative, add an extra 24 hours.
Exercise 4.18* If you wanted Time objects to have a third attribute, the name of the day
of the week, then (a) What instance variable declaration would you add? (b) What
change would you make in the constructor? (c) What instance method would you have
that tells the caller the object's day of the week? Write and compile the revised class.
Exercise 4.19* Revise the Time constructor to properly adjust for itsMin larger than
59, adding to itsHour as needed. Then repeatedly add or subtract 24 from itsHour
until the value is in the range 0 to 23 (discard the excess; we do not care what day it is).
Exercise 4.20** Revise the Time constructor as stated in the preceding exercise, but do
not have any looping statements anywhere in the constructor. Hint: Use the % operator.

 Java Au Naturel by William C. Jones 4-16 4-16

4.6 Making Random Choices

We next develop a more interesting game than a BasicGame. The game object starts by
picking a secret number at random in the range from 1 to 100, inclusive. It then asks the
user to guess the number. If the user gets it right, of course the game is over. Otherwise
the game object tells the user whether the guess was higher than the secret number or
lower, and the game continues with more guessing.

Random integers

One thing this game needs is the ability to choose an integer value at random from a
certain range of values. Fortunately, the Sun standard library has a Random class in the
java.util package that provides objects that can do this. The phrase new
Random() creates a random number generator that you may assign to a variable of
Random type, called perhaps randy.

A Random object has an instance method named nextInt with a positive int value as
the parameter. It returns an int value chosen at random in the range from 0 up to but not
including that parameter value:

 Random randy = new Random() creates a random-number generator.
 randy.nextInt(6) returns one of 0, 1, 2, 3, 4, or 5, with equal likelihood.
 randy.nextInt(2) returns either 0 or 1, with equal likelihood.
 randy.nextInt(100) returns one of 0, 1, 2, ..., 99, with equal likelihood.

In general, nextInt(n) returns one of the first n non-negative int values, chosen with
equal likelihood. These numbers are not truly random, since computers hardly ever do
anything at random. But the sequence of numbers you get by repeated calls of the
method is close enough for most purposes.

Since the number-guessing game wants one of the 100 int values in the range 1 to 100
inclusive, you need to call randy.nextInt(100) to get one of 100 different int values,
then add 1 to the result to get one of the 100 different int values beginning with 1. If
instead you needed a random int value in the range 20 to 30 inclusive, a total of 11
possibilities, you would call randy.nextInt(11) and then add 20 to the result.

The general principle is that the expression min + randy.nextInt(num) gives one
of num consecutive int values with the smallest being min. If, however, you want a
multiple of ten chosen at random from 30, 40, 50, ..., 150, you could use the expression
30 + 10 * randy.nextInt(13), which clearly gives one of the 13 possible multiples
of 10. And if you want to get the result of rolling two dice, you could use the following:

 int die1 = 1 + randy.nextInt (6);
 int die2 = 1 + randy.nextInt (6);
 JOptionPane.showMessageDialog (null,
 ("The 2 dice show " + die1) + die2);

The GuessNumber game

It will be quite convenient to have the GuessNumber class be a subclass of BasicGame.
That means we can use whatever methods of the BasicGame class we want. For
instance, the playManyGames and playOneGame methods can be used unchanged
for a GuessNumber game. That is, we have the advantage of reusable software by
making GuessNumber a subclass of BasicGame. We can play the game with this one
statement: new GuessNumber().playManyGames();.

 Java Au Naturel by William C. Jones 4-17 4-17

A GuessNumber object should apparently have two instance variables, perhaps named
itsSecretNumber and itsUsersNumber (parallel to the instance variables in Listing
4.3). The askUsersFirstChoice method should begin by having a random number
generator assign to itsSecretNumber a value from 1 to 100 inclusive. That means
you should have the random number generator as an instance variable as well. This
initialization of the secret number cannot be done in the constructor, since each time the
game is played, the secret number must be re-initialized.

This logic is shown in the top part of Listing 4.6 (see next page). It has the import
directive for JOptionPane but not for Random. You do not need to have an import
directive if you explicitly name the package that Random is in every time you mention the
word Random. This is the "fully qualified name" of the Random class. The alternative to
what is shown is to have import java.util.Random; as a second line before the
class heading and then simply use an unadorned Random in two places.

The askUsersFirstChoice method does the same as for any later choice, except that
it first initializes itsSecretNumber. So it can call the askUsersNextChoice method
to get the input. There is no reason to write the same coding twice.

The shouldContinue method returns true whenever itsSecretNumber is not equal
to itsUsersNumber. The test of equality of numbers is always made with the operator
== or !=. The equals method can only be used with objects, and int values are not
objects.

The rest of Listing 4.6 should be clear except for askUsersNextChoice, which is
discussed next. Figure 4.3 gives the UML class diagram.

 Figure 4.3 UML class diagram for GuessNumber

Caution A test for equality of Strings, as in the shouldContinue method
of the earlier Listing 4.3, is always made with the equals method. Do not
use == or != to compare strings except in a comparison with null.

The use of the parseInt method for askUsersNextChoice

The showInputDialog method returns a String value (which can be null if the user
clicked the Cancel button). A String value is not an int value, so you cannot assign it to
the int variable itsUsersNumber. You have to convert the string of characters, which
is a numeral, to a number. There is a difference: The number 88 can be added to or
subtracted from other numbers; the numeral "88" is just keystrokes or marks on the
screen. Some people like to remember the difference this way: Half of the number 88 is
44, but half of the numeral "88" is "8" (or even "oo" if you cut it in half horizontally rather
than vertically). Or perhaps this way: Pro football players have big numerals on their
jerseys and big numbers in their bank accounts.

 Java Au Naturel by William C. Jones 4-18 4-18

Listing 4.6 The GuessNumber class

import javax.swing.JOptionPane;

public class GuessNumber extends BasicGame
{
 private java.util.Random randy;
 private int itsSecretNumber;
 private int itsUsersNumber;

 public GuessNumber()
 { super();
 randy = new java.util.Random();
 } //=======================

 public void askUsersFirstChoice()
 { itsSecretNumber = 1 + randy.nextInt (100);
 askUsersNextChoice();
 } //=======================

 public void askUsersNextChoice()
 { String s = JOptionPane.showInputDialog
 ("Guess my number from 1 to 100:");
 if (s != null && ! s.equals (""))
 itsUsersNumber = Integer.parseInt (s);
 else
 itsUsersNumber = -1; // just to have a value there
 } //======================

 public boolean shouldContinue()
 { return itsUsersNumber != itsSecretNumber;
 } //======================

 public void showUpdatedStatus()
 { if (itsUsersNumber > itsSecretNumber)
 JOptionPane.showMessageDialog (null, "Too high");
 else
 JOptionPane.showMessageDialog (null, "Too low");
 } //=======================

 // inherited from BasicGame:
 // playManyGames
 // playOneGame
 // showFinalStatus
}

Fortunately, the Sun standard library has a class named Integer that can help convert a
numeral to a number. Integer (in the java.lang package) contains a class method:

 Integer.parseInt (someString)

This method returns the int value you get when you interpret the keystrokes as digits of a
number. If the user enters letters instead of digits or otherwise provides a badly-formed
numeral, the program can crash. This is a violation of the robustness principle: All
application programs should be written so that they cannot crash. But you may ignore
this possibility until you see the advanced techniques in Chapter Six to avoid such
crashes by checking that the String is a well-formed numeral. Until then, all user input
that is supposed to be numeric will be assumed to be so, unless it is null or "".

 Java Au Naturel by William C. Jones 4-19 4-19

Parse means to analyze a string of characters into its component parts. For instance,
when you make sense of a Roman numeral, you are not "translating" it to an ordinary
number, you are "parsing" it.

So the askUsersNextChoice method in Listing 4.6 gets the String value input using
JOptionPane's class method and then has it parsed to an int value using Integer's class
method. However, a null value or empty String returned by showInputDialog is
taken as -1. Note that the order of the operands of && is crucial; you cannot ask the null
value if it equals the empty String. With the order given, if s is null, short-circuit
evaluation will avoid testing the call of equals.

You have now seen all three varieties of object design:

1. Use existing objects and their methods (the Vic class in Listing 3.3).
2. Use existing objects but add new methods (the GuessNumber class in Listing 4.6).
3. Invent new objects to do the job (the Time class in Listing 4.5).

Language elements
You may use == or != between two object values (but rarely do so unless one is null).

Exercise 4.21 Write an expression that gives a random int value from -5 to 5, inclusive.
Also write an expression that gives a random even number from 30 to 50, inclusive.
Exercise 4.22 Revise the GuessNumber game to have the secret number be in the
range from 200 to 300, inclusive.
Exercise 4.23 What is the most number of guesses it would take for a really smart
person to win this GuessNumber game? Explain your answer.
Exercise 4.24 (harder) Revise the GuessNumber game to tell the user "close enough;
you win" when the guess is either 1 or 2 off from the right answer.
Exercise 4.25 (harder) Write a method that asks the user for a sequence of int values
and, when showInputDialog returns null, announces the smallest of them.
Exercise 4.26* Write an application program that asks the user for two int values and
then announces whether one evenly divides the other (using %).
Exercise 4.27* Revise the GuessNumber game to say "you're hot" if within 2 of the right
answer, "you're warm" if within 6 of the right answer, and "too high" or "too low"
otherwise.
Exercise 4.28* Revise the GuessNumber game to have the program lie one-third of the
time that the guess is too high; it says it is too low. But it never lies about the guess
being too low, nor does it lie twice in a row.
Exercise 4.29* Find the best strategy for getting the right answer in the fewest guesses
for the revision of GuessNumber described in the preceding exercise.

4.7 Overloading, Overriding, And Polymorphism

The signature of a method is its name followed by the types of its parameters in
parentheses (leave out the return type and the names of its parameters). For instance,
the signatures of the three JOptionPane methods described in Section 4.2 are as follows
(a Component is a graphical object such as a Window):

 showMessageDialog (Component, String)
 showInputDialog (String)
 showConfirmDialog (Component, String)

and the signatures of the methods of the Time class in Listing 4.5 are as follows:

 Time (int, int)
 toString()
 add (Time)

 Java Au Naturel by William C. Jones 4-20 4-20

Overloading of method names

Java lets you have several methods in the same class with the same name if they have
different signatures. This is overloading of method names. This is quite common for
constructors; you may have as many as you want as long as the compiler can distinguish
them based on the parameter structure. For instance, you might want a second Time
constructor that has a single int value as input, being the total number of minutes to be
converted to hours plus minutes. So you could add to Listing 4.5 a constructor with the
following heading:

 public Time (int totalMinutes)

You might also want the Time class to have a second toString method, one with a
String parameter telling which time zone to use, so it could have this heading:

 public String toString (String timeZone)

In the email metaphor of Section 1.6, a Time object that gets the message with subject
line toString first checks the body of the message. If it contains a String, that is an
indication of the time zone. If the body of the message is blank, it returns military time.

Overriding of method definitions

A class may have the same method heading as a method in its superclass. For instance,
both the BasicGame class and the GuessNumber class have a method with the heading
public boolean shouldContinue(). The Java language rule in such a case is, if x
is declared as a GuessNumber object somewhere, then x.shouldContinue() calls
the method in GuessNumber, not the one inherited from BasicGame. The new definition
of shouldContinue() overrides the original definition of shouldContinue() for
GuessNumber objects, since it has the same signature (name and parameter pattern).
This principle applies to instance methods, not class methods.

To illustrate the overriding of method definitions, we have just one more listing involving a
subclass of Vic (the last in this book, because you are probably getting tired of Vics by
now). This subclass is named BigVic. Each BigVic object keeps its own record of the
number of filled slots and the number of empty slots it has. These are two int variables
named itsNumFilled and itsNumEmpty. They are instance variables, because each
instance (object) of the BigVic class has its own.

If a program says sue = new BigVic(), then sue's object has the two instance
variables itsNumFilled and itsNumEmpty attached to it, in addition to whatever all
Vic objects have. A call of sue.getNumFilled() has sue look up the value of
sue.itsNumFilled and report it back. This is true even if the variable sue is
declared as a simple Vic variable. If the program also says sam = new BigVic(),
then sam's object has its own two variables which are completely distinct from sue's.

When sam refers to a BigVic object, a main method that calls sam.putCD() cannot
simply execute the original putCD() method in the Vic class, because that would make
sam's counts wrong. So the BigVic class must have its own putCD() method that
makes the two counts right. The method call sam.putCD() will execute the putCD()
in the BigVic class, not the original one inherited from the Vic class. In other words, the
new definition of putCD() overrides the original definition of putCD() for BigVic
objects, since it has the same signature.

Caution You cannot have two methods defined in the same class with the
same signature. If they have the same name, they must have a different
parameter structure (overloading the name). It is not enough to be different
in the part of the method heading that comes before the method name.

 Java Au Naturel by William C. Jones 4-21 4-21

Calling a method that has been overridden

Part of the job of the new putCD method in BigVic is to execute the original putCD
method in the Vic class. But if you write putCD() as one of the statements in the
definition of the new putCD method, the executor would execute the new BigVic method,
not the old Vic method, which would cause no end of difficulty.

Listing 4.7 contains the BigVic class other than the constructor (left as an exercise). The
method call super.putCD() tells the runtime system to execute the putCD method
from the superclass, i.e., from the class BigVic extends. That will be the putCD method
defined in the Vic class (since the intermediate Looper superclass does not override that
definition of putCD()).

Listing 4.7 Four methods in the BigVic class

public class BigVic extends Looper
{
 private int itsNumFilled; // count this's filled slots
 private int itsNumEmpty; // count this's non-filled slots

 public BigVic() // constructor
 { // left as an exercise
 } //======================

 /** Tell how many of the executor's slots are filled. */

 public int getNumFilled()
 { return itsNumFilled;
 } //======================

 /** Tell how many of the executor's slots are empty. */

 public int getNumEmpty()
 { return itsNumEmpty;
 } //======================

 /** Do the original putCD(), but also update the counters. */

 public void putCD()
 { if (! seesCD() && stackHasCD())
 { itsNumFilled++;
 itsNumEmpty--;
 super.putCD();
 }
 } //======================

 /** Do the original takeCD(), but also update the counters. */

 public void takeCD()
 { if (seesCD())
 { itsNumFilled--;
 itsNumEmpty++;
 super.takeCD();
 }
 } //======================
}

 Java Au Naturel by William C. Jones 4-22 4-22

Similarly, super.takeCD() inside BigVic's takeCD method will execute the takeCD
method from the original Vic class. In either case, the BigVic object also corrects the
counts for the number of filled slots and empty slots. Note: super.someMethod is
only allowed in a subclass of the class that contains someMethod.

Polymorphism

If you execute sue = new BigVic() and then execute sue.fillSlots(), that
contains a call of putCD() (fillSlots is defined for Loopers in the earlier Listing
3.4, and every BigVic object is a Looper object as well). That call changes two counters,
sue.itsNumFilled and sue.itsNumEmpty, in the BigVic object. But calls of
fillSlots() with an ordinary Looper object do not change any counters. The
command putCD() within the definition of fillSlots has different effects depending
on the class of the object that is executing the command. So we say that the putCD()
statement in Listing 3.4 is polymorphic (meaning it has more than one form).

Similarly, when a method executes game = new GuessNumber() and then executes
game.playOneGame(), that causes a call of shouldContinue(). This is because
playOneGame is defined for BasicGames in the earlier Listing 4.3, and every
GuessNumber object is a BasicGame as well. That call tests itsUsersNumber. But
calls of shouldContinue() with an ordinary BasicGame object test itsUsersWord
instead. The command shouldContinue() within the definition of playOneGame
has different effects depending on the class of the object that is executing the command.
So we say that the shouldContinue() condition in Listing 4.3 is polymorphic.
Polymorphism is the execution of polymorphic method calls.

Stickies

Think of polymorphism this way: Each object has a sticky-note on its side saying what
class it belongs to. When the runtime system executes this.shouldContinue() for
a GuessNumber object, it checks out the sticky-note on the side, sees that this is a
GuessNumber object, and so executes the shouldContinue method defined in the
GuessNumber class. If it found that the sticky-note said it was a BasicGame object, it
would execute the shouldContinue method defined in the BasicGame class.

How does the sticky get there, you ask? The super call in the constructor puts the
sticky on the object. The super call has to be the first statement in the constructor so
that the rest of its statements can use this (implicitly or explicitly). (Note: In case you
had not guessed by now, this is a metaphor. There really is no sticky-note in RAM, just
an extra instance variable defined in the Object class and initialized by the super call.)

The equals method for Strings

The Object class defines a method named equals: x.equals(y) returns an answer
of true or false, depending on whether x and y refer to exactly the same object.
The String class overrides that definition with its own equals method: x.equals(y)
for two String references returns true if the String objects contain exactly the same
characters in the same order, even if they are two different String objects. In effect, it
tests whether two boxes have the same contents, even if they are different boxes.

Caution It is almost always bad, and often uncompilable, to override a
method in a superclass that does not have exactly the same method
heading in all respects. For instance, Object's equals method has the
heading public boolean equals (Object o), so any equals
method you define should also begin with public boolean.

 Java Au Naturel by William C. Jones 4-23 4-23

Language elements
Two methods may have the same name if they are in different classes or have different signatures.
The following kinds of method calls are allowed inside an instance method and will call
MethodName in the superclass using the same executor:
 super . MethodName ()
 super . MethodName (ExpressionsSeparatedByCommas)

Exercise 4.30 Create a Liar subclass of the Person class in Listing 4.4: When you ask a
Liar for its first name, half the time it says it is Darryl even if that is a lie.
Exercise 4.31 (harder) What changes would you make in Listing 4.7 to use an instance
variable named itsNumSlots (the total number of slots) but not the instance variable
itsNumEmpty, and still do the same things with the same method calls?
Exercise 4.32* Write out the signature of each method called in Listings 1.10 and 1.11.
Exercise 4.33* Write out the full Time constructor with the heading public Time
(int totalMinutes). Be sure to allow for negative inputs.
Exercise 4.34** Write out the BigVic constructor that Listing 4.7 needs.

4.8 The Rules Of Precedence For Operators

Sometimes you have to put parentheses around parts of an expression to have it mean
what you want it to mean. For instance, as you learned in algebra class, x + y * z
needs parentheses if you mean (x + y) * z but not if you mean x + (y * z).
This is because multiplication takes precedence over addition.

This section gives all the rules of precedence you need, if you choose to minimize the
number of parentheses you use. This thorough discussion requires talking about a few
things you will not see until the next two chapters. So just accept for now that it can be
useful to put (int) or (Time) in front of an expression. You can use the name of
any type of value in those parentheses, so the generic form is (someType).

Accept also that you can put not only parentheses () but also brackets [] around
an expression to get something useful. Both of these are "grouping symbols." For this
section only, we call a matched pair of grouping symbols plus their contents "groupers".

The algebra rules of precedence in Java are as follows:

1. For arithmetic expressions, multiply and divide operations are done first, then add and
subtract. The % symbol counts as a divide operation. So 3+5 * 8 has the value 43,
not 64.

2. The compiler works left-to-right in a sequence of multiply and divide operations. So
10 / 2*5 is 25, not 1.

3. The compiler also works left-to-right in a sequence of add and subtract operations. So
10 - 2+5 is 13, not 3. When one of the two added values is a String, the result is a
string of characters, not a numeric value. So when you take into account the left-to-right
evaluation, you see that the value of 3 + 4 + "x" + 3 + 4 is "7x34".

4. You need to put parentheses around an expression formed with the addition,
subtraction, multiplication, and division signs + - * / % if you negate it (as in -(x + y))
or you apply (someType) to it or you want to override the usual algebra rules of
precedence.

 Java Au Naturel by William C. Jones 4-24 4-24

The general rules of precedence in Java are as follows:

1. You never need to put parentheses around an expression that only involves words
connected by dots and/or followed by groupers, ++ or --.

2. You never need to put parentheses around ! Whatever or - Whatever if the
latter is the negation operator (as in y > -x; we are not talking about subtraction here).
You need to put parentheses just around the Whatever part if that part consists of an
operator applied to two or more operands and the operator is not a dot or grouper.

3. You only need to put parentheses around (someType) Whatever when that
expression is directly followed by a dot or grouper. You need to put parentheses just
around the Whatever part if that part consists of an operator applied to two or more
operands and the operator is not a dot or grouper.

4. You need to put parentheses around an expression formed with ||, such as Stuff
|| MoreStuff, if you use && to combine that or-expression with another value.

5. You should always put parentheses around an expression formed with ?: except
when it is to be assigned or returned (you will see ?: expressions in Chapter Six).

6. You should also use parentheses liberally in some quite rare situations which are not
used in this book: if you use shift or logical or bitwise operators, if you test for equality
between two boolean expressions, or if you use the value of an assignment operation in
a statement.

Caution You would not put a space in the middle of the word String or
boolean and expect it to compile, would you? In Java, ++ and <= and
== are all words, and the compiler will not like it if you put a space in the
middle of one of those words. Also, the compiler does not understand

coding containing multi-comparisons, as in 0 < x < y. You must express this as
0 < x && x < y.

1 2 3 4 5 6 7 8 9 10 11
()
[]
.

++
--

!
(type)
-
+

*
/
%

+
-

<
<=
>
>=
instanceof

==
!=

&& || ?: =
+=
-=
*=
/=
%=

Figure 4.4 Precedence of operators: The highest precedence is towards the left.
 The + and - at level 3 are not add and subtract; they apply to one operand.

Exercise 4.35 Neither of the following expressions will compile correctly. Add correcting
parentheses to fix each one: (a) ! y + 2 < 3 && z.isTall()
(b) (Boss) person.getJob().
Exercise 4.36 (harder) There are eight possible assignments of true and false to the
boolean variables b, c, and d. Which assignments give (b || c) && d a different
value from b || (c && d)?
Exercise 4.37* Same question as the preceding exercise, but for the two expressions
!b && (c || !d) and !(b || !c && d).

 Java Au Naturel by William C. Jones 4-25 4-25

Part B Enrichment And Reinforcement

4.9 Analysis And Design Example: The Game Of Nim

The game of Nim starts with a pile of stones, perhaps 20 to 40 in all. Two players take
turns removing 1 to 5 stones from the pile (although the upper limit might be set at some
other small number, such as 3 or 4). The player who takes the last stone wins the game.

For instance, if the pile starts with 23 stones, the first player might take 4, leaving 19, and
then the second player could take 3, leaving 16. If the first player then takes 2, leaving
14, the second player could take 4, leaving 10. Then the first player might take 1, leaving
9, and the second player could take 3, leaving 6. Then the second player will easily win
the game. The accompanying design block is a reasonable plan for this program.

STRUCTURED NATURAL LANGUAGE DESIGN for Nim
1. Choose at random an initial number of stones for the pile, 20 to 40.
2. Choose at random the maximum number to take each turn, 3 to 5.
3. Ask the user how many he/she wants to take for the first turn.
4. Repeat the following until the pile has no more than the maximum one may take...
 4a. Choose the number the computer takes and tell the user.
 4b. Ask the user how many he/she wants to take for the next turn.
5. Tell the user who won and why.

Object design for Nim

The BasicGame logic applies here, so Nim should be a subclass of BasicGame. That is,
BasicGame objects can be "retrained" to perform acceptably the tasks that this situation
requires. The playManyGames and playOneGame logic can stand without change, so
you have five methods to develop.

A single game seems to have just two attributes, the number of stones currently in the
pile and the maximum number of stones one may take on each turn. Store this
information in two instance variables named itsNumLeft and itsMaxToTake. The
askUsersFirstChoice method should initialize these two values, the former as a
random number in the range from 20 to 40 and the latter as a random number in the
range from 3 to 5. This implies that a Nim object also needs a random number
generator. The Nim object should keep the generator around to use in deciding its next
move, so the generator should be an instance variable rather than a local variable of one
method. Once the askUsersFirstChoice method has chosen the initial values, it
asks for the user's next choice. These declarations are in the top part of Listing 4.8 (see
next page).

Implementing askUsersFirstChoice is a bit more complicated than the other
methods. The general idea should be to ask for input, repeating as needed until the user
supplies a permissible choice, then subtract that number from itsNumLeft. When you
rework this basic logic in detail, you could come up with the logic in the accompanying
design block, for which the coding is in the middle part of Listing 4.8.

STRUCTURED NATURAL LANGUAGE DESIGN for askUsersNextChoice
1. Do the following until the choice is in the range from 1 to maxToTake...
 1a. Get input from the user using showInputDialog (so it is a String or else null).
 1b. If the input contains one or more characters then...
 1ba. Convert the string of characters received into an integer choice.
2. Subtract choice from itsNumLeft to get the new value of itsNumLeft.

 Java Au Naturel by William C. Jones 4-26 4-26

Listing 4.8 The Nim class of objects

import javax.swing.JOptionPane;

public class Nim extends BasicGame
{
 private java.util.Random randy = new java.util.Random();
 private int itsNumLeft;
 private int itsMaxToTake;

 public void askUsersFirstChoice()
 { itsNumLeft = 20 + randy.nextInt (21);
 itsMaxToTake = 3 + randy.nextInt (3);
 askUsersNextChoice();
 } //=======================

 public void askUsersNextChoice()
 { int choice = 0;
 do
 { String s = JOptionPane.showInputDialog
 (itsNumLeft + " left. Take 1 to " + itsMaxToTake);
 if (s != null && ! s.equals (""))
 choice = Integer.parseInt (s);
 }while (choice < 1 || choice > itsMaxToTake);
 itsNumLeft = itsNumLeft - choice;
 } //=======================

 public boolean shouldContinue()
 { return itsNumLeft > itsMaxToTake;
 } //======================

 public void showFinalStatus()
 { if (itsNumLeft == 0)
 super.showFinalStatus();
 else
 JOptionPane.showMessageDialog (null, "I take "
 + itsNumLeft + " and so I win.");
 } //=======================

 public void showUpdatedStatus()
 { int move = itsNumLeft % (itsMaxToTake + 1);
 if (move == 0)
 move = 1 + randy.nextInt (itsMaxToTake);
 itsNumLeft = itsNumLeft - move;
 JOptionPane.showMessageDialog (null, "I take " + move
 + ", leaving " + itsNumLeft);
 } //=======================
}

The shouldContinue and showFinalStatus methods

The shouldContinue method is the easiest to develop next: If there are no stones left,
the game is over and the human player wins. Otherwise, if the computer opponent can
take all remaining stones and win, it should do so, which also makes the game over.
Otherwise the game should continue. You may conclude, therefore, that the game
should continue if and only if itsNumLeft is greater than itsMaxToTake.

 Java Au Naturel by William C. Jones 4-27 4-27

The logic for the showFinalStatus method is implicit in the preceding analysis. It is
basically an if-statement: If there are no stones left, the program should announce that
the user wins. This can be done by using super to call on the showFinalStatus
method in the BasicGame superclass. But if there are a few stones left, it will not be
more than itsMaxToTake, so the computer opponent announces that it takes the
remaining stones and wins. See the middle part of Listing 4.8 for the coding of these two
methods.

The showUpdatedStatus method

The hard part of the showUpdatedStatus method is to decide what move the computer
player is to make. This is a problem of strategy rather than a programming problem.
Extensive thought leads to the conclusion that the computer opponent can always win if it
leaves a multiple of six stones each time (assuming the maximum allowed is five; the
general formula is itsMaxToTake+1). So the computer's move will always be to
calculate the remainder left after itsNumLeft is divided by itsMaxToTake+1 and take
that many stones.

However, the human player might have left a multiple of six stones (or whatever
itsMaxToTake+1 is). In that case, the computer opponent must choose some number
of stones and hope that, on the next move, the human player does not leave a multiple of
six (or whatever). A random choice from 1 to itsMaxToTake is appropriate here. The
program then subtracts that many stones from itsNumLeft and announces the result.

Note how easily the preceding two paragraphs lead to the correct coding for
showUpdatedStatus, as shown in the lower part of Listing 4.8. The most important
principle for developing the correct logic for a method is to write it out in English first (or
whatever natural language you are most comfortable with), normally with a structured
organization. Read it over, make sure there are no errors in it, then write it down in Java.

Debugging The primary information you need for debugging a program is the
intermediate values of key variables. Each variable in the Nim class is printed right after
it is assigned a value with one exception. You can get that information by temporarily
inserting the following as the last statement of askUsersNextChoice:

System.out.println (itsNumLeft + "=num; choice=" + choice);

Note on terminology If X extends Y, we often say that X "is derived" from Y, that X is a
"child" of Y, and that Y is a "parent" of X. Since BasicGame is the parent class of Nim
and GuessNumber, that makes those two "sibling" classes.

Exercise 4.38 Revise Listing 4.8 so that an illegal choice by the user is changed to be a
guess of 1. Be sure to inform the user of this adjustment each time it happens.
Exercise 4.39 (harder) Revise Listing 4.8 so that the user gets to decide who goes first,
once informed of itsNumLeft and itsMaxToTake.
Exercise 4.40* What happens if itsMaxToTake is 5, the human player leaves 6, the
computer takes 4, and then the human player tries to take 3? Fix the inconsistency.
Exercise 4.41* Revise Listing 4.8 so that the rule is that a player can take up to half of
the remaining stones, but always at least 1, and the size of the initial pile of stones is
from 50 to 100. Have the computer take about a third of the remaining stones each time.
Exercise 4.42** For the game rules of the preceding exercise, give the computer a
strategy that guarantees it wins if the human player does not make the one right choice
every time.
Exercise 4.43** Revise Listing 4.8 so that the showFinalStatus method announces
how many games so far the human player has won and how many the program has won.

 Java Au Naturel by William C. Jones 4-28 4-28

4.10 Analysis And Design Example: The Game Of Mastermind

Suppose you decide to write a program to play the game of Mastermind. The program is
to choose a three-digit whole number (000 to 999) and the human player is to guess the
number. Each time the user announces a guess, the program is to tell whether all three
digits are right. If the user's choice is not completely right, the program is to tell how
many digits of the guess were in the right position. It is also to tell how many other digits
of the guess were in the wrong position in the number. Then it has the user guess again.

Analysis and logic design

To make sure you have the concept right, you try it out with some sample data, e.g., if the
program's chosen number is 123 and you guess 325, the program is to say you have one
digit in the right place (the 2) and one digit in the wrong place (the 3). You realize that
you are not sure how to count the number wrong when duplicate digits are involved, e.g.,
how many digits are wrong in the guess 225 if the program's chosen number is 123? So
you check with your client and find out that the first 2 is considered to be in the wrong
position. That is, the game should announce 1 in the right position and 1 in the wrong
position. After several more trials, you are ready to work out the logic design. A
reasonable plan is shown in the accompanying design block.

STRUCTURED NATURAL LANGUAGE DESIGN for Mastermind
1. Choose a secret three-digit whole number.
2. Ask the user for his/her first guess.
3. Repeat the following until the current guess is completely right...
 3a. Tell the user how many digits are right and how many are wrong.
 3b. Ask the user for his/her next guess.
4. Tell the user he/she has finally gotten it right.

Object design and initialization

This logic has the same structure as the BasicGame logic, so you can make Mastermind
a subclass of BasicGame. The inherited playManyGames, playOneGame, and
showFinalStatus methods can be used unchanged.

The construction game = new Mastermind() should create the game-playing object
and askUsersFirstChoice should choose a secret three-digit number at random.
Since you will have to compare individual digits of the guess, it is probably more
convenient to pick three separate one-digit numbers at random. So you could have the
following initializations of instance variables (the digits are in the range 0 to 9 inclusive):

 randy = new Random();
 itsFirst = randy.nextInt (10);
 itsSec = randy.nextInt (10);
 itsThird = randy.nextInt (10);

The user's input will be a three-digit integer. It will be easiest to store the three digits in
three separate variables, so you can compare them with the three digits of the secret
number. Since one instance method gets these three values and another instance
method looks at them to see if they match, you must store the three digits of the user's
guess in instance variables. These three variables could be named usersFirst,
usersSec, and usersThird. The upper part of Listing 4.9 (see next page) declares
the instance variables, the constructor, and the rather obvious askUsersFirstChoice
method (which has most of its work done by the askUsersNextChoice method).

 Java Au Naturel by William C. Jones 4-29 4-29

Listing 4.9 The Mastermind class of objects, one method postponed

import javax.swing.JOptionPane;
import java.util.Random;

public class Mastermind extends BasicGame
{
 private Random randy;
 private int itsFirst; // 100's digit of secret number
 private int itsSec; // 10's digit of secret number
 private int itsThird; // 1's digit of secret number
 private int usersFirst; // 100's digit of user's guess
 private int usersSec; // 10's digit of user's guess
 private int usersThird; // 1's digit of user's guess

 public Mastermind()
 { super();
 randy = new Random();
 } //=======================

 public void askUsersFirstChoice()
 { itsFirst = randy.nextInt (10);
 itsSec = randy.nextInt (10);
 itsThird = randy.nextInt (10);
 askUsersNextChoice();
 } //=======================

 public void askUsersNextChoice()
 { String s;
 do
 { s = JOptionPane.showInputDialog
 ("Enter a three-digit integer:");
 }while (s == null || s.equals (""));
 int guess = Integer.parseInt (s);
 usersThird = guess % 10;
 usersFirst = guess / 100;
 usersSec = (guess / 10) % 10;
 } //=======================

 public boolean shouldContinue()
 { return usersFirst != itsFirst || usersSec != itsSec
 || usersThird != itsThird;
 } //=======================
}

The askUsersNextChoice method

First you have to get a string of characters as input and convert it to an integer value
stored in guess (except if the input string has no characters, you get another input).
Now you need to separate out the digits. Taking the remainder from dividing guess by
10 clearly gives the last digit of guess. Taking the quotient from dividing guess by
100 clearly gives the first digit of guess (assuming the user has not made a mistake
and entered more than 999). But how do you get the middle digit?

If you take the quotient from dividing guess by 10, you suppress the last digit, so the
last digit of that quotient must be the next-to-last digit of the original guess. In other
words, the computation (guess / 10) % 10 gives the middle digit of guess. The
coding for this askUsersNextChoice method is in the middle part of Listing 4.9.

 Java Au Naturel by William C. Jones 4-30 4-30

The shouldContinue method

If each one of the user's digits matches the corresponding secret digit, the game is over.
So if any one of the three user's digits is not the same as the corresponding secret digit,
the game should continue. That gives the obvious coding in the bottom of Listing 4.9.

The showUpdatedStatus method

The showUpdatedStatus method has to calculate the number of user's digits in the
right position and the number of user's digits that are in the wrong position. You can
simply go through the user's digits one at a time and for each one, count it as right if it
matches the corresponding secret digit, otherwise see if it matches either of the other two
secret digits (in which case it counts as being in the wrong position).

The easiest way is to initialize two counters numRight and numWrong to 0 and
increment the appropriate one when you see that a particular user's digit matches some
secret digit. Then print a message telling the user the result. The coding is in Listing
4.10.

Listing 4.10 The Mastermind class of objects, part 2

 public void showUpdatedStatus() // in Mastermind
 { numRight = 0;
 numWrong = 0;

 if (usersFirst == itsFirst)
 numRight++;
 else if (usersFirst == itsSec || usersFirst == itsThird)
 numWrong++;

 if (usersSec == itsSec)
 numRight++;
 else if (usersSec == itsFirst || usersSec == itsThird)
 numWrong++;

 if (usersThird == itsThird)
 numRight++;
 else if (usersThird == itsSec || usersThird == itsFirst)
 numWrong++;

 JOptionPane.showMessageDialog (null, " You have "
 + numRight + " in the right place and "
 + numWrong + " in the wrong place.");
 } //======================

Exercise 4.44 Under what circumstances can the user get one or more digits right if the
user chooses a negative number for the guess? Which digits are they?
Exercise 4.45 Explain what happens when the user chooses a positive four-digit or
longer number for the guess.
Exercise 4.46** Revise the Mastermind program so that, after each game played, it tells
the user the number of games played to date and the average number of guesses
required to get the right answer.
Exercise 4.47** Rewrite the Mastermind program so that askUsersNextChoice
calculates numRight and numWrong. Have shouldContinue and
showUpdatedStatus use those calculated values.

 Java Au Naturel by William C. Jones 4-31 4-31

4.11 Using BlueJ With Its Debugger

You can download for free the BlueJ IDE (this acronym stands for "Integrated
Development Environment"). BlueJ is an environment in which you can compile,
execute, and analyze Java classes. It uses true Java, since you have to first install a
recent official version of Java (from e.g. java.sun.com/products) in order to use BlueJ.
The primary purposes of the BlueJ environment are to help you debug your programs
and to let you manipulate objects one step at a time (execute a single method, see the
result, execute another method, etc.).

Go to the URL www.bluej.org and click on the icon for downloading the latest version.
Store it in a folder named bluej. You will then have a file with a name something like
bluej-115.jar. Open the bluej folder and click on that jar file. The installer will ask you for
the name of the folder where your current version of Java JDK is stored, which you
should supply (e.g., jdk1.3.1_01). You can then enter the BlueJ environment by clicking
on the icon specified in the installation instructions (probably bluej or bluej.bat).

Checking out an example

Click on the Project option, then click Open Project. Double-click on the examples sub-
folder in the bluej folder. Choose one of the examples listed there to try out. We
illustrate the process with the Hello example:

• Click on the Hello sub-folder of examples and then click open. This loads the Hello

project into BlueJ. You will see a class box named Hello in a central workarea. It is
cross-hatched to indicate that it is not yet compiled.

• Click on Compile. This compiles all the classes showing in the workarea. The cross-
hatching disappears from the Hello class box to indicate this.

• Right-click the Hello class box. You will see a list of the methods in the Hello class
that can be called without using an instance of the Hello class. There are but two: a
constructor new Hello() and public static void main(String[] args).

• Click on the main method. It allows you to enter the args parameter value, which
you may ignore (we rarely use command-line arguments). Then click OK to execute
the main method. A terminal window pops up with the output "Hello world", which is
all this main method produces.

• Read the source code for the Hello class, which you can view by clicking on the
"Open Editor" option within the Hello class box. The source code is shown below.

• Close the editor and click on the constructor new Hello(). You are asked for the
name of the Hello object you are constructing; enter sam and click OK. You will see
an object box (rounded corners, "sam:" at the top) to represent this Hello object.

• Right-click on the object box to see a list of the instance methods you can call for this
Hello object. Click on the only one shown, namely, public void go(). That will
execute sam.go(), which causes a second "Hello, world" to appear in the terminal
window.

 class Hello
 {
 public void go()
 { System.out.println("Hello, world");
 }

 public static void main(String[] args)
 { Hello hi = new Hello();
 hi.go();
 }
 }

 Java Au Naturel by William C. Jones 4-32 4-32

In general, you can execute any class method or constructor by right-clicking on a class
box and then clicking the method name. You can execute any instance method by right-
clicking on an object box (which represents an instance of the class) and then clicking the
method name. You can also inspect the current values of all class variables (described
in Chapter Five) and instance variables by clicking on the Inspect option for an object
box. Figure 4.5 shows what the BlueJ display looks like at this point.

Figure 4.5 The BlueJ display for the Hello class with an instance of Hello

Note If your attempt to run BlueJ causes the message "out of environment space" on a
Windows system, it may help to click on the Properties icon of your DOS window, select
the Memory option, and set the initial environment to 4096.

Adding a new class to the project

Click New Class and give it the name Adder. A class box with that name will appear in
the workarea. Right-click it and choose Open Editor to create code for it. You will see a
minimal coding for the class, with an instance variable x and a method named
sampleMethod. Replace the body of that method to have the following coding:

 public int sampleMethod (int y)
 { x = x + y;
 return x;
 }

Close the editor window, compile the Adder class (click Compile), then construct an
Adder object named adder_1 (right-click the Adder class box and click on new
Adder()). Right-click on adder_1 and then click Inspect to see that the current value
of the instance variable x is 0. Figure 4.6 shows what the display looks like now.

 Java Au Naturel by William C. Jones 4-33 4-33

Figure 4.6 The BlueJ display with the Adder class and an Adder instance

Right-click on adder_1 and then click int sampleMethod(int y) to execute that
method. You have to enter the value of the parameter; type 5 and then click OK. BlueJ
will then tell you that the result of the method call sampleMethod(5) is 5.

Repeat with parameter value 3; BlueJ will tell that the result of the method call
sampleMethod(3) is 8. Inspect adder_1 to see that the instance variable x now
has the value 8. Make sure you understand why these things happen before you go on.
Play around with it all a bit more.

Using BlueJ with existing classes

Put the following classes from this chapter in a folder named games: GameApp,
BasicGame, and GuessNumber. Each should be in a file named like Whatever.java.
Click on the Project menu choice and select Open Non-BlueJ Project. Navigate to the
folder that contains the games folder, click on games, then click on Open in BlueJ. All
three classes will appear in the workarea. Click on Compile to compile them all.

You have created a BlueJ project unit to manage these three classes, so you can now
create instances of the class and try them out. For instance, once you create an instance
of GuessNumber, you can right-click on it, choose void playOneGame() from the list
of methods inherited from BasicGame, and thereby play a game. During the game, right-
click the GuessNumber object from time to time and click Inspect so that you can see the
current values of the instance variables. Note: If you use Turtles from Chapter One, and
the first command you give a Turtle is to sleep 5 seconds (5000 ms), that gives you time
to click on the Turtle's graphics window to bring it forward so you can see what it draws.
Or you can simply move the bluej window out of the way (this works for Vics too).

 Java Au Naturel by William C. Jones 4-34 4-34

Debugging

The basic debugging process is to set a breakpoint in your coding where you want to
look closely at what is happening. You do this by choosing Open Editor for some class
and then clicking in the far left column, next to some statement in the coding. A stop sign
icon should appear there. That indicates the breakpoint you have set.

Now if you execute the coding, execution pauses when it comes to that stop sign (just
before executing that marked statement) and a debugger window appears. This window
shows the current values of all variables local to the method. You may also inspect the
current state of all the objects involved in the execution.

You may click the Step option to advance the execution by one statement at a time.
Inspect the values of variables at each point of interest. When you have seen all you
want to see, click on the stop sign to remove it, then click Continue in the debugger
window. Execution will then continue normally.

Figure 4.7 shows how the debugger window looks. You may also bring up the debugger
window on a program while it is running by clicking on the turning barber-pole icon. The
Call Sequence window shows what method calls are currently active. In this example,
you are currently executing the askUsersNextChoice method, which was called from
the askUsersFirstChoice method, which was called from the playOneGame method,
which was called by clicking on the method call in the GuessNumber object box.

Figure 4.7 A debugger window for BlueJ

This has been a very short introduction to how to use BlueJ. You will understand it much
better if you read the complete 30-page tutorial available at www.bluej.org (click on
Documentation) and try it out with the example programs and with your own programs.

 Java Au Naturel by William C. Jones 4-35 4-35

4.12 A First Look At Event-Handling: Buttons And Textfields

Chapter Ten goes into details on event-handling in Java. But you may wish to use
buttons and textfields well before you are ready to study the subject at some length. This
section shows you how to do this using an author-defined class named BabyFrame (the
name reminds you that you are not directly using the standard event-handling methods).

Listing 4.11 illustrates the use of this class, along with the Sun standard JLabel library
class from the javax.swing package. This listing is all you need to have software that
accepts a temperature in Fahrenheit degrees and translates it to Centigrade degrees, as
long as you first compile the BabyFrame class provided on this book's website.

A JLabel displays text to the user. The JLabel class has a constructor that gives the text
that initially appears on the label (lines 1 and 4). You may change this text by using the
setText instance method of the JLabel class (line 10). The label added in line 4 is not
used elsewhere in the coding, so it is not given a name. The label added in line 6 is used
in line 10, so it is given the name itsLabel in line 1.

Listing 4.11 An application program illustrating the use of textfields and labels

import javax.swing.JLabel;

 /** Calculate the centigrade equivalent of any Fahrenheit
 * temperature that the user enters in a textfield. */

public class CentigradeFrame extends BabyFrame
{
 private Jlabel itsLabel = new JLabel ("none"); //1

 public CentigradeFrame (String title)
 { super (title); //2
 this.setSize (250, 110); // width, height //3
 this.add (new JLabel ("What is the Fahrenheit temp?"));//4
 this.add (new BabyField_1 (15)); //5
 this.add (itsLabel); //6
 this.setVisible (true); //7
 } //======================

 /** React to ENTER in textfield #1. */

 public void fieldAction_1 (BabyField_1 source)
 { int temp = Integer.parseInt (source.getText()); //8
 int centi = (temp - 32) * 5 / 9; //9
 itsLabel.setText ("In centigrade that is " + centi); //10
 } //======================
}
//###

class CentigradeMain
{
 public static void main (String[] args)
 { new CentigradeFrame ("Simple event handler"); //11
 } //======================
}

 Java Au Naturel by William C. Jones 4-36 4-36

Textfields in a BabyFrame

The CentigradeFrame class is a subclass of BabyFrame. A BabyFrame object
recognizes the BabyField_1 class, which defines a class of textfield objects where the
user can give input. The constructor for a BabyField_1 requires you to say how many
characters wide the textfield will be (line 5). When you have a BabyField_1 kind of
object, you should have a method with exactly the heading shown above line 8. That
method will be executed each time the user presses the ENTER key while typing within
that textfield.

If your program needs more than one textfield for data entry, you also have available the
BabyField_2 class, the BabyField_3 class, and the BabyField_4 class by inheritance from
the BabyFrame class. You should have a fieldAction_2 method to react to the ENTER
key in the BabyField_2 textfield, and similarly for numbers 3 and 4. In this limited
software, you cannot have more than four textfields within your frame.

When the ENTER key is pressed and the fieldAction_1 method is executed, it is passed
the textfield as a parameter. This is so you can retrieve the text that the user typed with
the getText instance method (line 8). You may also change the text that is within the
text field using source.setText (someString), but that is not needed in this case.

BabyFrame methods

A method creates a BabyFrame object by calling a constructor (line 11) whose first
statement must be super(someString) (line 2). This creates a rectangular window
with someString as the title at the top of the frame. Figure 4.8 shows how this
window looks for the coding in Listing 4.11. On the left you see how it looks when the
frame is created. On the right you see how it looks after the user enters 77. Note that
the text shown on itsLabel (at the bottom) has changed.

 Figure 4.8 Display for CentigradeFrame, before and after entering 77

The constructor for a BabyFrame object should set the width and height of the frame in
pixels (line 3). The statement setSize(250, 110) makes the frame be 250 pixels
wide and 110 pixels tall. The constructor should then add any components you want to
have (lines 4, 5, and 6). In this case, it adds a label, then a textfield, then a label. The
order in which they are added determines the order in which they appear, top to bottom.
The last statement in the constructor should always be setVisible(true), because
otherwise the frame will not show the components that have been added.

If the frame is wide enough, several components will be put on one line, left-to-right,
before going on to fill in the next line. For instance, in this case, a width of 500 would
have put the first label and the text field on the same line with itsLabel below them.
A width of 750 would have put all three components on the same line. This "book-
reading order" is called FlowLayout.

 Java Au Naturel by William C. Jones 4-37 4-37

Buttons and TextAreas in a BabyFrame

A BabyFrame object also recognizes the BabyButton_1 class, which defines a class of
button objects that the user can click. The constructor for a BabyButton_1 requires you
to say what text is to appear on the button. When you have a BabyButton_1 kind of
object, you should have a method with exactly the following heading. That method will be
executed each time the user clicks that button:

 public void buttonAction_1()

If your program needs more than one button, you also have available the BabyButton_2
class, the BabyButton_3 class, and so on up through the BabyField_6 class by
inheritance from the BabyFrame class. You should have a fieldAction_2 method to react
to a click of the BabyButton_2, and similarly for numbers 3, 4, 5, and 6. In this limited
software, you cannot have more than six buttons within your frame.

A BabyFrame object can also create a BabyTextArea. This is a rectangular area that lets
you print many lines on the screen at once. By contrast, a JLabel's text can only be one
line. The constructor tells, first, the number of rows of text you want to be able to see at
one time, and second, the number of characters wide the textarea is. For instance, the
following allows for 8 lines with at least 20 characters per line:

 itsOutputArea = new BabyTextArea (8, 20);

When you want to add a line of output to a BabyTextArea, you call on the say instance
method, as in the following:

 itsOutputArea.say ("The overall result is " + x);

Example: revision of the game of Nim

Listing 14.12 (see next page) is a revision of the game of Nim in the earlier Listing 4.8. It
does almost exactly the same thing except that it has more user-friendly GUI
components. Instead of frequently flashing little windows on the screen, it leaves the
frame on the screen with all output to date shown in the textarea. The textarea even has
scrollbars so the user can see everything that has happened so far.

You should closely compare this coding with that in Listing 4.8 to see the similarities as
well as the differences. This NimFrame class requires copies of the last three methods of
that Listing, but with the JOptionPane statements replaced by statements calling on
itsOutput.say (someString). Note particularly that Listing 4.8 has three loops
(including the inherited playManyGames) but Listing 4.12 needs none.

Exercise 4.48* Revise Listing 4.11 so that it asks for a number of inches and gives the
equivalent number of centimeters, assuming 2.52 centimeters per inch.
Exercise 4.49* Revise Listing 4.12 so that it prints the message "Illegal input; try again"
when a number is entered in the textfield that does not lead to calling shouldContinue.
Exercise 4.50* What happens if the user enters a number to take after the game of Nim
is over? Revise the coding so that nothing happens in such a case.
Exercise 4.51** Revise Listing 4.12 to add another button labeled "Repeat same game".
When the user clicks this button, the game starts again with the same values for
itsNumLeft and itsMaxToTake as the previous game.
Exercise 4.52** Revise the simpler GuessNumber game (Listing 4.6) analogously to
Listing 4.12.

 Java Au Naturel by William C. Jones 4-38 4-38

Listing 4.12 The game of Nim, revised for event-handling

public class NimFrame extends BabyFrame // based on Listing 4.8
{
 private java.util.Random randy = new java.util.Random();
 private int itsNumLeft;
 private int itsMaxToTake;
 private javax.swing.JLabel itsPrompt
 = new javax.swing.JLabel ("Take 1 to 00");
 private BabyTextArea itsOutput = new BabyTextArea (6, 42);

 public NimFrame (String title)
 { super (title);
 setSize (500, 250);
 add (new BabyButton_1 ("start new game"));
 add (itsPrompt);
 add (new BabyField_1 (4));
 add (itsOutput);
 setVisible (true); // otherwise the frame will not appear
 buttonAction_1(); // start the software by starting a game
 } //======================

 /** Initialize 2 variables and wait for user's first choice. */

 public void buttonAction_1()
 { itsNumLeft = 20 + randy.nextInt (21);
 itsMaxToTake = 3 + randy.nextInt (3);
 itsOutput.say ("We start with " + itsNumLeft);
 itsPrompt.setText ("Take 1 to " + itsMaxToTake);
 } //======================

 /** This method executes when the user types a number in the
 textfield. If it is legal, the computer makes its move. */

 public void fieldAction_1 (BabyField_1 source)
 { int choice = 0;
 String s = source.getText();
 if (s != null && ! s.equals (""))
 choice = Integer.parseInt (s);
 if (choice >= 1 && choice <= itsMaxToTake)
 { itsNumLeft = itsNumLeft - choice;
 if (shouldContinue())
 showUpdatedStatus();
 else
 showFinalStatus();
 }
 } //======================

 // showUpdatedStatus, showFinalStatus, and shouldContinue
 // are the same as in Listing 4.8, except "itsOutput.say("
 // replaces "JOptionPane.showMessageDialog(null,".
}
//###

class NimMain
{
 public static void main (String[] args)
 { new NimFrame ("The Game of Nim");
 } //======================
}

 Java Au Naturel by William C. Jones 4-39 4-39

4.13 Review Of Chapter Four

Listing 4.3, Listing 4.5, and Listing 4.7 illustrate almost all Java language features
introduced in this chapter. This review includes the preceding Interlude.

About the Java language:

Ø package X; as the top line of a file puts the classes in that file in package X.
Ø The import directive import javax.swing.JOptionPane goes in a

compilable file before any class definitions if you use JOptionPane in some class in
the file. Similarly, you must have import java.util.Random if you use
Random. However, you may instead give the full name (java.util.Random or
javax.swing.JOptionPane) at each mention of the class.

Ø If you want to import several classes from the same package, e.g., from
java.util, use the import directive import java.util.*;. Classes from the
java.lang package (e.g. System, String, Object, Integer) do not need a directive.

Ø A non-public class can be compiled in a file with a public class. This should only be
done for classes that contain only a main method. Imports go at the top of the file.

Ø You may assign the value null to any object variable. It signals the absence of any
actual object reference stored in the variable.

Ø The result of evaluating a plus sign between two strings of characters or between a
string and a number is the first string of characters followed directly by the second. If
one is a number, it is converted to a decimal numeral (a string of characters) before
the concatenation. The empty String "" is the String value whose length is zero.

Ø The newline character \n within the quotes of a String literal starts a new line.
Ø You may declare a variable in a class outside of any method. Then each object of

the class has its own value for the variable if it is an instance variable (which, as you
will see in the next chapter, requires that it not be declared using static).

Ø If one class extends another, then each public method and public variable of the
superclass is indirectly in the subclass. If a class does not explicitly extend any
class, then it makes the default extension of the Object class.

Ø Within the body of an instance method or constructor, the use of an instance variable
without saying which object it belongs to signals that it belongs to the executor of the
instance method or to the object being constructed, respectively. The use of this
inside a constructor is a reference to the object that is being constructed.

Ø A class must have one or more constructors, to say what happens when an
instance of the class is created. If you do not explicitly define a constructor, the
compiler provides the default constructor that has no parameters and no
statements other than super().

Ø If the declaration of an instance variable assigns it a value, that takes effect when the
constructor is called.

Ø For any int variable x, x++ increments x and x-- decrements x.
Ø The six comparison operators are > < >= <= == != .
Ø The five operators for int values are + - * / % (the % is for remainder).
Ø The signature of a method is its name followed by parentheses containing the types

of its parameters (not their names). Different methods can have the same name if
they have a different parameter pattern (signature) or are in different classes. This is
overloading of a method name if they are in the same class.

Ø If a subclass defines an instance method with the same signature as an instance
method in its superclass, that is overriding of a method definition. Suppose the
signature is doStuff(int) Then super.doStuff(3) calls on the coding in the
superclass method.

Ø One of the two rules of precedence people get wrong most is that one should put
parentheses around the whole (someType) Whatever expression when followed
by a bracket [or dot. The other one is that ! takes precedence over && which in
turn takes precedence over ||. Section 4.8 says more on precedence.

 Java Au Naturel by William C. Jones 4-40 4-40

Ø Figure 4.8 describes the remaining new language features. The Initializer part of a
for-statement can assign a value to the loop control variable (the only variable
mentioned in the Condition of the for-statement whose value changes during
execution of the loop). The Initializer part may be the declaration and assignment of
the loop control variable if that variable is not used outside of the for-statement.

public ClassName (ParameterList)
{ StatementGroup
}

declaration of constructor method.
The parameters are optional. The first
statement should be super(...)

super (ArgumentList); statement calling the superclass's
constructor. Only allowed as the first
statement in the constructor

for (Initializer ; Condition ;
 Update)
 Statement

statement that executes the Initializer
part first, then repeats
test-Condition-do-Statement-do-Update,
quitting when the Condition is false

do
{ Statement
}while (Condition);

statement that repeats
do-Statement-test-Condition,
quitting when the Condition is false

private Type VariableName
 = Expression;

declaration of instance variable outside
any method. Initializing is optional

super.MethodName (ArgumentList); statement that calls the method of that
name in the superclass

 Figure 4.8 Declarations and statements added in Chapter Four

About some key Sun standard library methods:

Ø System.exit(0) terminates an execution of a program immediately. A program

that has a graphical user interface should explicitly execute this statement when it is
done, because otherwise some computer systems lock up. The 0 in the parentheses
indicates a normal termination.

Ø System.out.println(someString) displays the value in the parentheses in the
terminal window. The argument may also be a numeric value.

Ø someObject.equals(otherObject) tests whether the two objects are identical.
Ø someObject.toString() is a String form of the object reference.
Ø JOptionPane.showMessageDialog(null, messageString) displays the

messageString on the screen until the user clicks OK or closes the window.
Ø JOptionPane.showInputDialog(promptString) displays the

promptString and waits for input. It returns the String input, except it returns null if
the user clicks the Cancel button.

Ø JOptionPane.showConfirmDialog(null, messageString) displays the
messageString on the screen with three buttons labeled Yes, No, and Cancel, until
the user clicks one of the buttons or closes the window. It returns the int value
JOptionPane.YES_OPTION if the user clicked the Yes button.

Ø new Random() constructs a Random object.
Ø someRandom.nextInt(limitInt) returns an int value chosen randomly with

equal likelihood from zero up to but not including limitInt.
Ø Integer.parseInt(someString) returns the int value that the String value

represents, assuming that it is not badly-formed with letters or other defects.
Ø General note: In these review sections, we normally specify Sun standard library

methods as generic method calls, so you see how they are called: The executor of
an instance method is named "some" followed by the executor's class (e.g.,
someRandom), and the parameters are specified the same way (e.g., someString)
except that parameters may be numeric or boolean or the like (e.g. someInt) and
"some" may be replaced by a more descriptive word (e.g., limitInt).

 Java Au Naturel by William C. Jones 4-41 4-41

Other vocabulary to remember:

Ø A natural constructor is a constructor that assigns the values of its parameters to all

or almost all of the instance variables of the class.
Ø Encapsulation means primarily preventing outside classes from changing instance

variables directly (i.e., without calling a method in the class). It includes declaring
instance variables as private. The purpose is abstraction: sending a message to
an object to have a complex task done rather than doing the task directly.

Ø A local variable or parameter shadows an instance variable when they have the
same name. The name refers to the local variable instead of to the instance variable.

Ø A binary operator is a symbol that combines two values to obtain a new value. &&
and + are binary operators. But ! is a unary operator: You apply it to only one
value to obtain a new value.

Ø Software is reusable if it is designed to be used in several different programming
situations. A driver program is an application program whose only purpose is to test
the methods of a class thoroughly. It is rarely needed when you use BlueJ.

Ø A method call is polymorphic if it calls an instance method and the executor could
be from any of two or more classes that have differing definitions of the method being
called. Polymorphism is the execution of polymorphic method calls.

Answers to Selected Exercises

4.3 public boolean shouldContinue()
 { if (itsSecretWord.equals (itsUsersWord))
 return false; // since the game should NOT continue
 itsSecretWord = "goose"; // so this will apply on all future calls
 return true;
 }
4.4 Add this declaration outside of any method: String itsMark = "";
 Add this statement to askUsersFirstChoice: itsMark = "x";
 Add this statement to askUsersNextChoice: itsMark = itsMark + "x";
 Add this statement to showFinalStatus: itsMark = "";
 Replace the statement in the body of shouldContinue by this statement:
 return ! (itsSecretWord.equals (itsUsersWord) || itsMark.equals ("xxxxx"));
4.7 public SmartTurtle()
 { super();
 }
4.8 public RedTurtle()
 { super();
 switchTo (RED);
 move (-180, 0);
 }
4.9 public class NamedTurtle extends Turtle
 { private String itsName;
 public NamedTurtle (String name)
 { super();
 itsName = name;
 }
 public String getName()
 { return itsName;
 }
 }
4.11 "x" + (x + y) is "x28" and ("x" + x) + y is "x235".
4.12 public int getAge (int currentYear)
 { if (currentYear < itsBirthYear)
 return 0;
 else
 return currentYear - itsBirthYear;
 }
4.13 t4.toString() is "135", but it should be "1305".
4.14 Insert the following at the beginning of the toString() method body:
 if (itsMin < 10)
 { if (itsHour < 10) return ("0" + itsHour) + "0" + itsMin;
 else return ("" + itsHour) + "0" + itsMin;
 }
 else

 Java Au Naturel by William C. Jones 4-42 4-42

4.15 public Time add (Time that)
 { Time valueToReturn = new Time (this.itsHour + that.itsHour, this.itsMin + that.itsMin);
 if (valueToReturn.itsMin >= 60)
 { valueToReturn.itsMin = valueToReturn.itsMin - 60;
 valueToReturn.itsHour++;
 }
 valueToReturn.itsHour = valueToReturn.itsHour % 24;
 return valueToReturn;
 }
4.21 -5 + randy.nextInt (11) and 2 * (15 + randy.nextInt (11)), assuming Random randy.
4.22 Replace the first statement of askUsersFirstChoice by:
 itsSecretNumber = 200 + randy.nextInt (101);
 Replace the string literal in askUsersChoice by: "Guess my number from 200 to 300:".
4.23 Guess 50. If you are wrong, you know there are at most 50 possible right answers.
 Guess 25 or 75, depending on whether the answer was "too high" or "too low".
 If you are wrong, you know there are at most 25 possible right answers. Continue guessing
 in the middle of the range of possible right answers, reducing the number of possible right
 answers to 12, 6, 3, and 1 in that order. The seventh guess will then get it right.
4.24 Replace the statement in the body of shouldContinue by:
 return itsUsersNumber < itsSecretNumber - 2 || itsUsersNumber > itsSecretNumber + 2;
 Add a showFinalStatus method to GuessNumber with this statement in its body:
 if (itsUsersNumber != itsSecretNumber)
 JOptionPane.showMessageDialog (null, "close enough; you win");
 else
 JOptionPane.showMessageDialog (null, "That was right. \nCongratulations.");
4.25 public void findSmallest()
 { JOptionPane.showMessageDialog (null, "Finding the smallest of a group of integers");
 String prompt = "Enter an integer. Click Cancel when done";
 String s = JOptionPane.showInputDialog (prompt);
 if (s != null)
 { int smallestSoFar = Integer.parseInt (s);
 s = JOptionPane.showInputDialog (prompt);
 while (s != null)
 { int input = Integer.parseInt (s);
 if (smallestSoFar > input)
 smallestSoFar = input; // replace the value in smallestSoFar by the one in input
 s = JOptionPane.showInputDialog (prompt);
 }
 JOptionPane.showMessageDialog (null, "The smallest was " + smallestSoFar);
 }
 }
4.30 public class Liar extends Person
 { public Liar (String first, String last)
 { super (first, last);
 }
 public String getFirstName()
 { if (new java.util.Random().nextInt (2) == 1) // == 0 would work as well
 return "Darryl";
 else
 return super.getFirstName(); // since you cannot mention itsFirstName here
 }
 }
4.31 Replace itsNumEmpty by itsNumSlots in the declaration of the instance variables.
 The statement in the body of getNumEmpty should be: return itsNumSlots - itsNumFilled.
 Omit the statements that mention itsNumEmpty in putCD and takeCD.
4.35 (a) could be either ! (y + 2 < 3) && z.isTall() or ! (y + 2 < 3 && z.isTall())
 (b) is ((Boss) person).getJob()
4.36 In the two cases when b is true and d is false and c is either true or false,
 (b || c) && d is false but b || (c && d) is true. In the other six cases they match.
4.38 Delete "do {" and the line beginning "}while". Put the following just before the last statement:
 if (choice < 1 || choice > itsMaxToTake)
 { choice = 1;
 JOptionPane.showMessageDialog ("Illegal; changed to 1.");
 }
4.39 Replace the last statement of askUsersFirstChoice by the following:
 if (JOptionPane.showConfirmDialog (null, "Taking up to " + itsMaxToTake + " and starting with"
 + itsNumLeft + ". Will you go first?") == JOptionPane.YES_OPTION)
 askUsersNextChoice();
4.44 A negative guess will still get a digit right if the guess's digit is 0 and the secret digit is also 0.
 This can happen at any or all of the three digits.
4.45 usersFirst will be wrong, since it will be 10 or more. The other two digits will be
 right or wrong according to whether they would have been without the extra digits.

